Simulation and Data analysis working group report

> M. Labiche. University of Paisley

At the EXL/R3B collaboration meeting, Milano, 03/10/06

M. Labiche, University of Paisley

2 SWG Meetings since our last EXL/R3B collaboration meeting:

In paisley (27/01/06): Status on EXL, R3B, HISPEC/DESPEC event generators, Manpower problem addressed, GEANT4 dilemma

At CERN : meeting with GEANT4 collaborators

- Ion Energy loss and multiple scattering. ATIMA, TRIM G4 comparisons, atomic charge state...
- Drift electrons in gas detectors (ACTAR),
- Low energy neutrons,
- Cross sections and kinematics,
- PDG coding (extension for ions?),
- Hadronic interaction and decay of exotic nuclei,
- Transfer matrices for magnetic elements of the accelerators

Next meeting : possibly in Valencia in January 2007

- SWG Activities were also presented at the NUSTAR annual meeting (24/02/06) and at the NUSTAR Management Board meeting (13/09/06)

M. Labiche, University of Paisley

Conclusion of the meeting with the GEANT4 collaboration

- GEANT4 did welcome the NUSTAR SWG
- GEANT4 priories = HEP priorities
- They invite us to the GEANT4 Technical Forums (via vrvs)
- No MoU anymore,
- But they need some kind of agreement with institutions/researchers rather than collaborations

R3B/EXL WG Simulation status

R3B: R3BSim code (<u>http://www.usc.es/genp/r3b/</u>) (Si tracker + Calorimeter)

Analysis code for (Si + Calorimeter)

Development of standalone programs for Newland, TPC, calorimeter,

Code Distribution with Subversion (svn: <u>http://subversion.tigris.org/</u>) The Command to get the R3BSim code is : svn checkout <u>http://fpcongro.usc.es:/R3BSim</u> (login and password to be request to <u>hapol@fpddux.usc.es</u>)

EXL: Activities focused on stand-alone program for

- Silicon particle array (ESPA),
- Ion optics,
- Calorimeter

Output of the R3BSim code = primary tree T

mand 🗌	Option	Histogram htemp	🗖 Hist 🗖 Scan 🔽 Rec
Current Folder	Current Tree : T		
🚞 TreeList	X:-empty-	🔖 primary Info. P×	💸 crystal Hits.energy In Zone 1
ė- <u>*</u> 10	Y:-empty-	🗽 primary Info. Py	💸 crystal Hits.energy In Zone2
🗄 💦 primary Ir	and study of	primaryInfo.Pz	💸 crystal Hits.energy In Zone 3
🛨 💉 crystal Hi	(S empty	🔖 primary Info.track ID	💸 crystal Hits.energy In Zone4
🗄 🧩 tracker H	😰 🕎 Scan box	🔖 primary Info.mass	💸 crystal Hits.depthFirstStep
	E()-empty-	🔖 primary Info.charge	💸 crystal Hits.time First Step
	EC>-empty-	🔖 primary Info.pol X	🔖 crystal Hits.depthLastStep
	E()-empty-	🔖 primary Info.pol V	💸 crystal Hits.timeLastStep
	EC>-empty-	🔖 primary Info.pol Z	🔖 crystal Hits.nb Of Primaries
	E()-empty-	🔖 primary Info. Weight0	💸 crystal Hits.energyPrimary
	EC>-empty-	🔖 primary Info. proper Time	🔖 crystal Hits.thetaPrimary
	EC>-empty-	🔖 primary Info.×0	騻 crystal Hits.phi Primary
	EC>-empty-	🔖 primary Info.y0	💸 crystalHits.eventID
	E()-empty-	🔖 primary Info.z0	💐 crystalHits runID
	EC>-empty-	🔖 primaryInfo.eventID	📌 tracker Hits
	💦 primary Info	🔖 primary Info.run ID	騻 tracker Hits.ene
	🔹 🗽 primary Info.nb Primaries In Event	💦 crystal Hits	騻 tracker Hits.detID
	🔖 primary Info.kinetic Energy	騻 crystal Hits.type	💸 tracker Hits.IStripID
	🔖 primary Info. theta	騻 crystal Hits.copy	騻 tracker Hits.t StripID
	🔖 primary Info.phi	እ crystal Hits.energy	🔖 tracker Hits.tof
	sprimaryInfo.PDGcode	🐚 crystal Hits.nbOfSteps	እ tracker Hits.isOuter

Event reconstruction code > secondary tree

SWG main priorities

R3B/EXL

Simulation of test experiments \Rightarrow Event generator urgently required as well as information on the detectors to be used

Implementation of new detectors in the R3BSim code (Newland, TPC)

Couple EXL detectors in a unique code (EXLSim?)

Complete the detectors with frames, holders, vacuum chamber

Development of the analysis or event reconstruction code

SWG hot issues

- Still no decision on the Framework
 - not enough expertise in existing framework to make a decision
 - \rightarrow GEANT4 + ROOT seems the only way we can afford
- What do we do with the GEANT4 collaboration ?
 FLUKA ≠ GEANT4 despite using several Hadronic physics list in GEANT4 (Mihai Potlog, Bucharest)
- Event generator for key experiments
- Need manpower to simulate test experiments
- No assigned manpower for Development/maintenance of the codes

What event generator ?

Several existing event generator interfaces have been identified and tested :

- HepMC
- GENBOD
- TGenPhaseSpace

None are really appropriate for us.

 \Rightarrow Develop a self-made interface

We need theory output files before to build a flexible interface.

Event generator for elastic/transfer reactions

- = 2-body final state reactions: 2(1,3)4 e.g : (p,p), (d,p), (p,d), ...
- The kinematic of the 2-body reaction provide a simple relation $T_{3}(\theta_{3})$ for the light ejectile
- -The theories provide the reaction cross-section $\sigma(\theta)$ or $P_{\sigma}(\theta) = \int_{0}^{\theta} \sigma(\theta) / \sigma_{tot}$
- To propagate the light ejectile in GEANT4, we need to know its kinetic energy T, its polar angle θ and its azimuthal angle ϕ .

Thus, the event generator is simply as follow :

- a random number between 0 and 1 is used for $P_{\sigma}(\theta) \Rightarrow \theta$ is deduced
- The corresponding kinetic energy is then deduced from $T(\boldsymbol{\theta})$
- ϕ is chosen randomly between 0 and 2π

Event generators for QFS experiments

<u>Case of 3-body final state reactions:</u> 2(1,34)5 e.g.: (p, 2p)

- 5 independent kinematic variables are necessary to describe the 3-body final state (e.g.: p_3 , θ_3 , θ_4 , ϕ_3 , ϕ_4)

- In the PWIA theory (Debebe, PRC 31 (1985) 1841), the number of parameter is reduced to 3:

- $s = (p_3 + p_4)^2$ = total energy of the two outgoing light particles
- $u = (p_2 p_5)^2$ = internal momentum of the cluster
- $t = (p_1 p_4)^2 = transferred momentum$

Even so, the event generator is still complex

MOCADI as an Event Generator

(M. Taylor, University of York)

- Monte Carlo code to model ion transport and energy loss (uses ATIMA 1.0) (Nuc. Inst. & Meth. in Phys. Res. B 126, 284)
- Used to optimise experimental setup of FRS at GSI
- Models fragmentation reactions using Goldhaber momentum distribution (Phys. Lett. 53B, 306) (uses EPAX2 for cross-sections)
- Option to output events to an ASCII file (no cross-sections applied !)

Apr 17, 06 16 22	imp.asc	Page 1/1
1 1 9.521938a-52 7	.885455e:30 5.778525e-82 1.325883e:01 1.195555	9:32 3.3
2222958476;22	1 2.8300004:01 0.0000004:00 1.0000004:00 0.00	33336:33
n.anaanae:na		
1 1-2.479133e-32 4	.445795ec27 1.447487e-71 -7.913398e:57 1.155958	a:32 3.3
222295847e;2	1 2.8337336:31 0.3333736:33 1.333386:33 3.33	3333e:33
8.8888888		
	.329321e:31 -1.724334e-32 -1.243857e:31 1.179458	a:32 3.3
0000 00 :00 0.2958470:0	1 2.8300336:31 0.0300309:30 1.0000006:00 0.00	3333e:33
n.anaanae:aa		
	.37373746531 1.5497420-71 -2.9072570:57 1.175172	a:32 3.3
anaane:aa 5.295847e;a	1 2.8300336:31 0.3333036:33 1.0033006:33 3.33	3333e:33
n.anaanae:aa		
	.7392476-32 -1.5132986-32 2.7759346:33 1.184478	
222295847e	1 2.80000000:01 0.00000000:00 1.0000000:00 0.00	33336:33
5.3533534:53		
	.2215556:31 -7.7852520-73 -1.1582556:31 1.182373	
22228426:22	1 2.80000000:01 0.00000000:00 1.0000000:00 0.00	3330e:33
a.anaanae:aa		

Variables outputted

- 1. Fragment number
- 2. X-position (cm)
- 3. X angle (mrad)
- 4. Y-position (cm)
- 5. Y angle (mrad)
- 6. Energy (AMeV)
- 7. Time (ps)
- 8. Mass (amu)
- 9. Z
- 10. Charge state

Generation of Simulation Event File

(M. Taylor, University of York)

M. Labiche, University of Paisley

Fragment Identification From Energy Signals (M. Taylor, York University)

- 175 MeV/u ⁵⁵Ni beam 130000 primary events
- 700 mg/cm² ⁹Be target
- 91 fragments produced with cross-sections > 10⁻² mb (Z range: Ni – S)
- Tgt-Si distance 2.02m

M. Labiche, University of Paisley

Event generators for all key experiments

How can we make a unique and efficient event generator for any experiments?

- an event generator on the fly?

- an input file of events which would give T, θ , ϕ of all the products of a given reaction and which would reflect the cross section ? (M. Taylor)

- Include Beam characteristics ?
- Include background ?

Vacuum chamber for the target recoil Si Detectors in the R3BSim code

By Jerome Bettarel

- cross sections are at forward angles
- > $p_{3/2}$ state contributes more to σ_{tot} than $s_{1/2}$ state
- \succ angular correlation is narrower for higher E_0

M. Labiche, University of Paisley