Detection and energy measurement of neutrons at radioactive ion beams: Charge exchange, Coulomb break-up, β -delayed neutrons etc.

Eckart Grosse et al.

Dresden

Forschungszentrum Rossendorf and Techn. Univ.

Neutron interactions in detector materials **Neutron energy measurements MeV** neutron time of flight measurements **Detector efficiency determination GeV** neutron time of flight measurements

Spin-isospin GR's in unstable nuclei

Attila Krasnahorkay et al., Debrecen

- The physics case

- Macroscopic & microscopic info
- Neutron skin
 - SDR sum-rule (Krasznahorkay et al., Phys. Rev. Lett. 82 (1999) 3216)
 - $-E_x(GTR)-E_x(IAS)$
- astrophysics e.g. v-process
- Experimental considerations ((p,n) in inverse kinematics)
 - High cross sections (~10mb/sr)
 - Complete kinematics (use FRS)
 - low-E_n, no energy loss in target
- Neutron detection
 - aim: 1 MeV resolution in E_x
 - required: $\Delta \Theta < 1^{\circ} \Delta E_n / E_n = 10 \%$ flight path: 1 m, Timing resolution: 1 ns

(p,n) reaction in inverse kinematics p(¹³²Sn,n) E=400 AMeV

Important ingredient for any neutron detection: Total cross section as function of neutron energy and atomic mass A

cf.: W. P. Abfalterer, (werner@lanl.gov) or F. S. Dietrich, (dietrich2@llnl.gov), Web site -- http://mesa53.lanl.gov Phys. Rev. Letters 81, 57 (1998), LA-UR-99-666, Phys. Rev. C47, 237 (1993), Phys. Rev. C47, 1033 (1993)

mean free path per b: 1.7 mol/cm²

Nuclear reactions for neutron detection

- $n + {}^{3}He \rightarrow {}^{3}H + {}^{1}H + 0.764 MeV$
- $n + {}^{6}Li \rightarrow {}^{4}He + {}^{3}H + 4.79 MeV$
- $n + {}^{10}B \rightarrow {}^{7}Li^* + {}^{4}He \rightarrow {}^{7}Li + {}^{4}He + 0.48 \text{ MeV } \gamma + 2.3 \text{ MeV } (93\%)$ \rightarrow ⁷Li + ⁴He
- $n + {}^{155}Gd \rightarrow Gd^* \rightarrow \gamma$ -ray spectrum \rightarrow conversion electron spectrum
- $n + {}^{157}Gd \rightarrow Gd^* \rightarrow \gamma$ -ray spectrum \rightarrow conversion electron spectrum
- $n + {}^{235}U \rightarrow fission fragments + ~160 MeV$
- $n + {}^{239}Pu \rightarrow fission fragments + ~160 MeV$
- $n + p \rightarrow n + p$ elastic scattering, detect recoil proton

+2.8 MeV (7%)

Institut für Strahlenphysik

Laborsystem

The ELENA setup for neutron detection

aim: 1 MeV resolution in E_x required: $\Delta \Theta < 1^{\circ}$ $\Delta E_n / E_n = 10 \%$ flight path: 1 m, timing resolution: 1 ns

VM2000 multilayer reflector for wrapping the scintillators

Light attenuation studies with ⁶⁰Co

ATOMKI Debrecen

50 % decrease after 100 cm

Time resolution (50 ps/channel)

Monte-Carlo simulations

Cross-talk by n-scattering may be possible

FZR-detectors for tof-measurements of MeV n's

Roland Beyer, Rossendorf (Diplom-Arbeit)

plastic scintillator EJ-200 (ELJEN Technologies)

(equivalent to BC-408)

- signal rise and fall time in the order of 1 ns
- dimensions: 1000 x 42 x 11 mm³ or 1000 x 42 x 22 mm³ lacksquare
- two PMTs per detector: Hamamatsu R2059-01: 2", 12 stages, high gain (2x10⁷), quartz window
- active HV-bases: iseg-PHQ2059 ullet

Very low trigger level !

- PMTs are used in ${\bullet}$ highest gain mode (approx. 2x10⁷)
- CFD threshold: about 50 mV
- → Threshold just below the single electron peak
- ➔ Coincidence of PMTs at both ends required!

Position and time resolution

R. Beyer, E. Grosse, K. Heidel, A.R. Junghans, J. Klug, A. Wagner (FZ Rossendorf)

Efficiency calibration

R. Beyer, E. Grosse*, K. Heidel, A.R. Junghans, J. Klug, D. Légrády, A. Wagner (FZ Rossendorf) R. Nolte, S. Röttger (Physikalisch-Technische Bundesanstalt/PTB Braunschweig)

- pulsed proton beam at PTB Braunschweig hits target and produces ulletquasi-mono-energetic neutron fields by (p,n) reactions
- time reference is given by accelerator pulse ۲
- **5 different energies:** ullet

—	1200 keV	at 0°	from	³ H(p,n) ³ He, E _p = 2050 keV
—	560 keV	at 0°	from	⁷ Li(p,n) ⁷ Be, E _p = 2303 keV
—	150 keV	at 0°	from	⁷ Li(p,n) ⁷ Be, E _p = 1952 keV
—	73 keV	at 50.5°		_"'_
—	24 keV	at 76.5°		_"'_

measurements with and without shadow bar (PE) to determine the ulletbackground of scattered neutrons

Efficiency calibration

at PTB Braunschweig

Institut für Strahlenphysik

Measured tof-spectrum

without shadow bar

with shadow bar (normalized)

difference spectrum

- 400 ns \rightarrow 294 keV
- 800 ns \rightarrow 74 keV
- 1200 ns \rightarrow 33 keV
- 1600 ns \rightarrow 18 keV

Preliminary results of efficiency calibration

60

E _n / keV	ε /% @22mm
1200 8	36.9 1.2
560 8	42.5 1.3
150 8	31.2 1.0
73 8	23.8 0.8
24 8	11.6 0.4

Δε/ε ~ 3.2 %

of the neutron fluence

 \rightarrow mainly caused by uncertainties

11 mm thickness: — P100D — P100E 40 в / % 20 0 200 400 600 0 E_n / keV

 \rightarrow high efficiency down to some tens of keV and good time resolution of 670 ps (FWHM)

Institut für Strahlenphysik

Preliminary results for **MeV neutrons**

as detected in tof-scintillators of 1 m length and 22 mm thickness

- time resolution: 670 ps (FWHM) •
- s = 1 m → ∆E/E = 1 % @ 1.2 MeV 3 % @ 10 MeV
 - 9 % @ 90 MeV
- $\epsilon \sim 35 \% @ > 0.2 \text{ MeV} ... \Delta \epsilon / \epsilon \sim 3 \%$
- MCNP simulations to understand and minimize background due to n-scattering

Detectors for tof-measurements of GeV n's

- As charged particle production cross sections lacksquareare well below 1b one has to introduce converter planes between many charged particle detectors (cf. LAND).
- As the neutrons may produce many charged particles at \bullet different positions these positions have to be determined accurately in all planes to allow averaging and tracking.
- Because of the high neutron energy a flight path of >10 m \bullet is envisaged and consequently a large detector surface.
- High granularity has to be realized. \bullet
- The best possible time resolution is aimed for. \bullet

Scintillators may not be the ultimate choice

Rossendorf timing RPC detectors

- tests at the electron linac ELBE -R. Kotte et al., NIMA 2006

Correction for walk and position

Plateau curve

Time resolution in dependence of electric field and

count rate

Institut für Strahlenphysik

Preliminary results for RPC-detectors of possible use for GeV neutrons

- time resolution: < 200 ps (FWHM) @ 400 cts/cm²s ۲
 - < 300 ps (FWHM) @ 1200 cts/cm²s
- s = 10 m → ΔE/E = 0.3 % @ 100 MeV 0.5 % @ 300 MeV
 - 0.7 % @ 1000 MeV
- position resolution $\Delta x < 10$ mm
- coincidence curves are Gaussian for > 2 decades
- MCNP calculations started to predict overall efficiency **E** for various converter materials and geometries

