
*Gas detector where the gas constitutes both the target and the detection medium

exotic HI on a light target → inverse kinematics

* Working principle : Time projection chamber detector

ACTAR Collaboration

GANIL

H. Savajols, W. Mittig, P.Roussel-Chomaz, A. Villari, F. de Oliveira, F. Rejmund, M. Rejmund, B. Jurado

DAPNIA

A. Drouart, L. Nalpas, V. Lapoux, A. Gillibert, E. Pollaco

CENBG

B. Blank, J. Giovinazzo, G. Canchel, C. Borcea, J.L. Pedroza, L. Hay, J. Pibernat

CLRC

R. Lemmon, D. Warner, I. Lazarus, P. Coleman-Smith, V. Pucknell, S. Letts

University of Liverpool

M. Chartier, R. Page, J. Thornhill, J. Cresswel, D. Sedon, C.E. Demonchy

University of Birmingham

M. Freer, N. Clarke, P. Jagpal

GSI

P. Egelhof, O. Kiselev

University of Santiago de Compostela

J. Benlliure, D. Cortina, I.Duran, M. Caamaño

Status of ACTAR

2 main questions: Cubic or Cylindrical? Magnetic field or not?

- Large dynamics needed: 0.2-20 MeV
- Either magnetic field or ancillary detectors (many)
- Energy resolution:

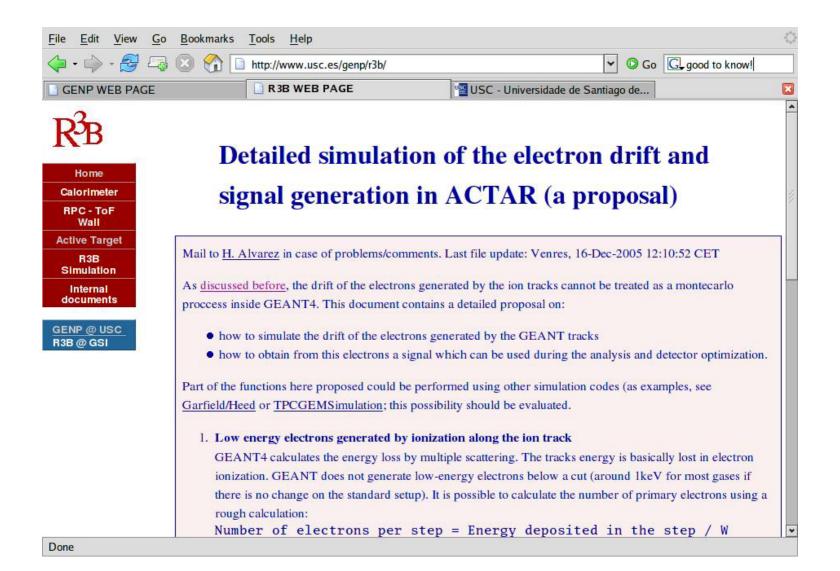
50 keV for Si detectors

=>10% at 0.5 MeV, 0.5% at 5 MeV

Position resolution 0.25mm

=>2.5% for 1cm, 0.25% for 10cm

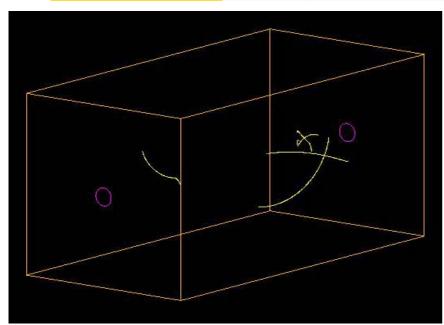
-Cubic geometry :


Problem with deflection of the beam in with B

Solid angle reduced by factor 2(4)

-Cylindrical geometry:

Problem at small angles (ancillary detectors below 5°) Varying rise times of the pulses —Preliminary simultations in favor of cylindric geometry with longitudinal electric and magnetic field for reactions related to resonant elastic scattering, inelastic scattering (giant resonances) and transfer reactions.


An overview of ActarSim

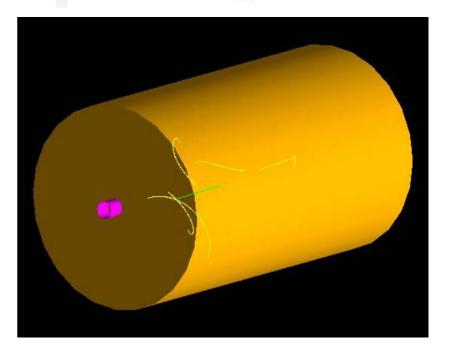
H. Alvarez Pol USC

The (geant4) ActarSim: geometry

GEANT4 TRACKING | DRIFT AND DIGITIZATION | ANALYSIS AND RECONSTRUCTION

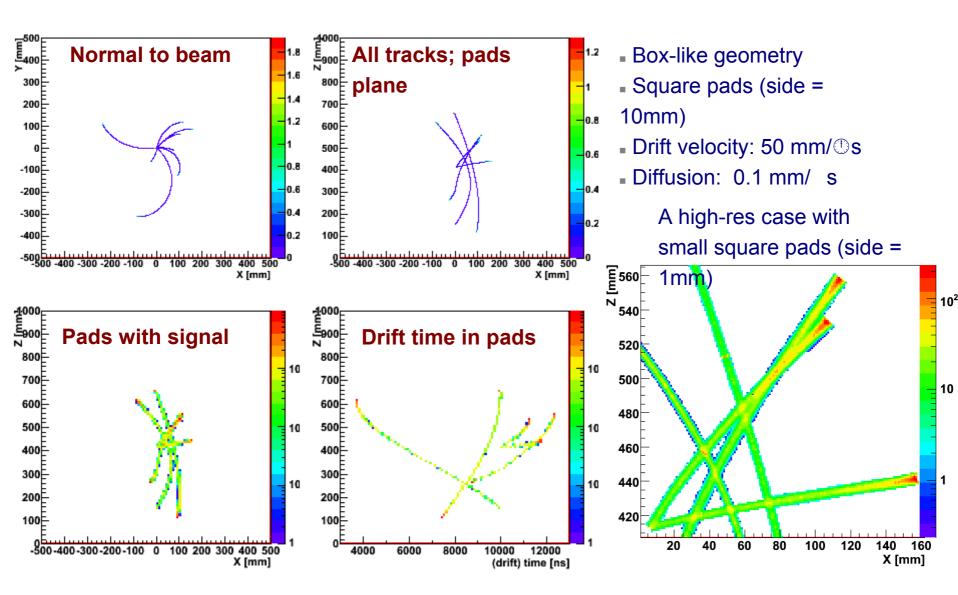
BEAM SHIELDING /ActarSim/det/setBeamShield tube /ActarSim/det/setInnerRadiusBeamShieldTub 50 mm /ActarSim/det/setRadiusBeamShieldTub 50.001 mm /ActarSim/det/setLengthBeamShieldTub 1 m # MATERIALS /ActarSim/det/setGasMat isoC4H10STP /ActarSim/det/setBeamShieldMat Galactic /ActarSim/det/setBeamShieldMat Iron #ELECTRIC AND MAGNETIC FIELDS /ActarSim/det/setEleField 0 0 0 /ActarSim/det/setMagField 0 0 0 T # UPDATE (D0 NOT FORGET!) /ActarSim/det/update

BOX

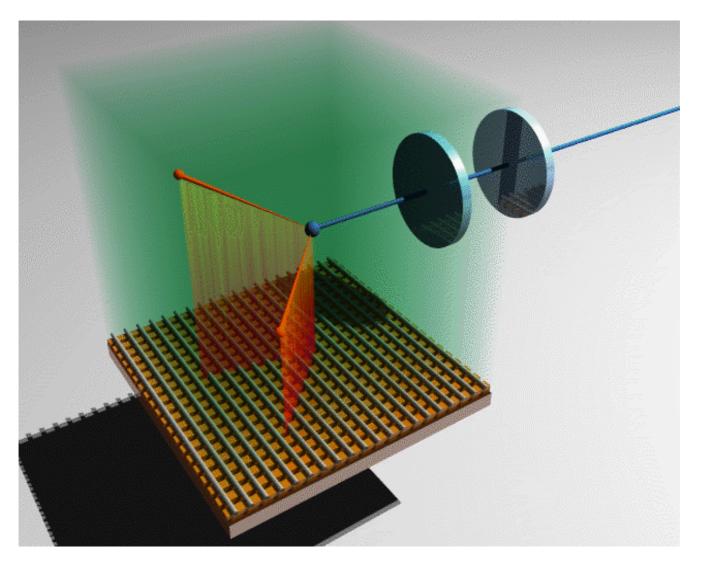

/ActarSim/det/setDetectorGeometry box

/ActarSim/det/setXLengthGasBox 0.5 m /ActarSim/det/setYLengthGasBox 0.5 m /ActarSim/det/setZLengthGasBox 1 m

TUBE


/ActarSim/det/setDetectorGeometry tube

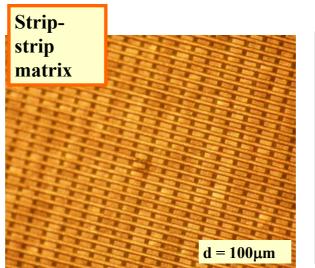
/ActarSim/det/setRadiusGasTub 0.6 m /ActarSim/det/setLengthGasTub 1 m



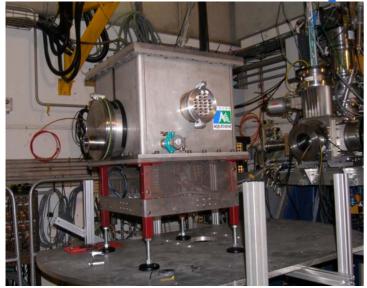
Digitization and visulatization macros

GEANT4 TRACKING | DRIFT AND DIGITIZATION | ANALYSIS AND RECONSTRUCTION

TPC for 2p radioactivity studies


Bertram Blank, CENBG

time projection chamber



GEM Ø = 70μm

time projection chamber

MAYA-ITO test runs at GANIL

F. Rejmund et al.

MAYA-ITO test runs at GANIL

```
Beams used

<sup>13</sup>C @ 3 - 4.35 - 11MeV/u

<sup>16</sup>O @ 3.4 - 8.4 MeV/u

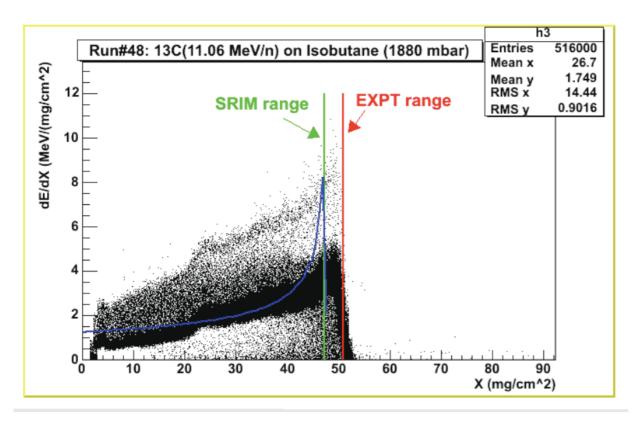
<sup>36</sup>S @ 3.92 - 11.32 MeV/u

<sup>208</sup>Pb @ 4.5 MeV/u
```

Gases: H,D,He,Ne,Ar,Xe, Isobutane

MAYA-ITO test runs at GANIL: ¹³C results

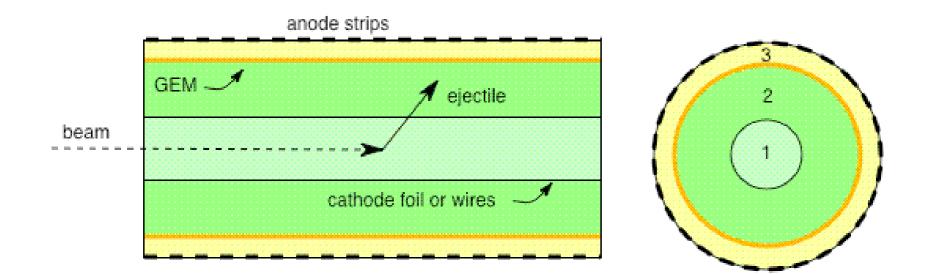
<u>(a)</u>	(a) Ion: ¹³ C 4.35 MeV/n (~56 MeV after the 1.5µm myler window)							
	Gas	ρ(STP) [mg/cm ³]	Pressure [mbar]	Inflexion point [mm] (Expt.)	Inflexion point [mm] (SRIM]	Inflexion Point [mm] (Expt)	Inflexion Point [mm] (SRIM)	Range [mm] (SRIM)
	Ne	0.9	1500	120.9	115.6			123.2
	Ne	0.9	1860	97.0	93.2	100.7	98.36	99.4
	Ar	1.78	710	162.9	152.Õ			161.5
	Ar	1.78	1005	114.1	107.7	114.9	112.6	114.1
	Xe	5.85	500	108.6	123.9	110.0	107.8	124.8
	Isobutane	2.59	500	81.6	73.4	81.6	73.65	75.2
(a1) Ion: ¹³ C 3.01 MeV/n (38.4~ MeV after the 1.5µm myler window)								
	H_2	0.09	1800	148.95	141.9	150.9	162.8	152.8
	D_2	0.18	1800	149.22	150.5			160.3
	D_2	0.18	1950	137.6	138.9	138.8	146.7	148.0
	He	0.18	1900	173.4	188.5	173.7	199.6	207.8


(a2) Range Straggling. Ion: ¹³C 4.35 MeV/n

Gas	ρ	pressure	Straggling exp	Straggling
			[mm]	SRIM [mm]
Ne	0.9	1860	5.3	6.5
Ar	1.78	1005	2.5	2.2
Xe	5.85	500	3.6	2.2
C4H10	2.59	500	4.1	1.38

MAYA-ITO test runs at GANIL: ¹³C results

Gas	$\rho(\text{STP})$	Pressure	Range [mm]	Range [mm]
	[mg/cm ³]	[mbar]	(Expt.)	(SRIM)
Xe	5.85	1500	153.8	149.2
Isobutane	2.59	1880	105.7	98.2

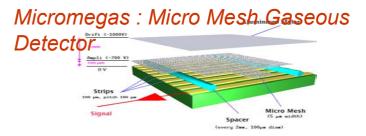


<u>TRIUMF</u><u>Annular</u><u>Chamber for the</u> <u>Tracking and</u><u>Identification of</u> <u>Charged</u> Particles

Original concept: L. Buchmann, TRIUMF

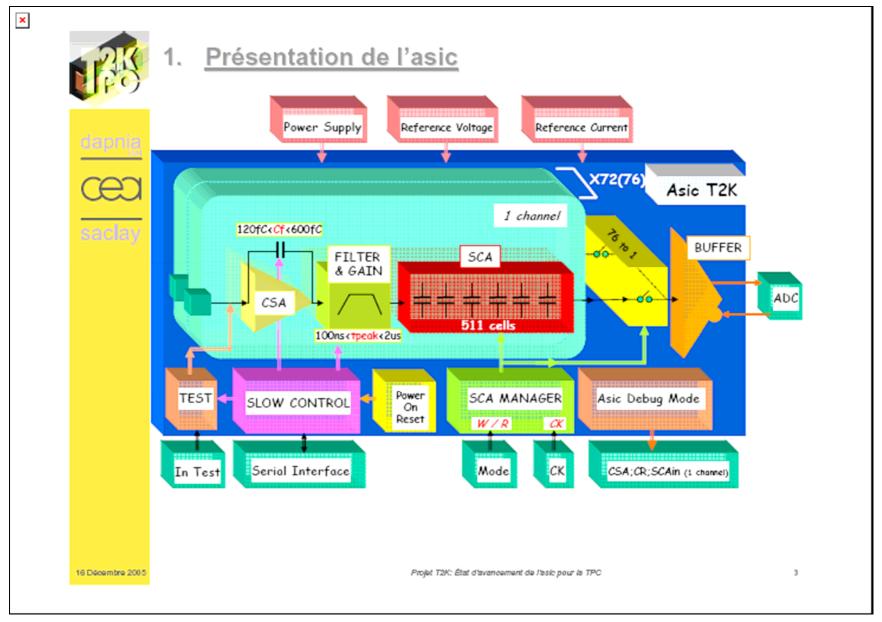
TACTIC: York-TRIUMF Collaboration

How is it going to work?


90% helium 10% CO2 gas mixture Pressure of a few hundred mbar Drift voltage ~100V/cm

	MWPC	GEM	Micromegas
Rate capability	10^4Hz/mm^2	>5x10^5Hz/mm^2	10^6Hz/mm^2
Gain	High 10^6	low 10^3 (single) > 10^5 (multi GEM)	High > 10^5
Gain stability	Drops at 10^4Hz/mm^2	Stable over 5*10^5Hz/mm^2	Stable over 10^6Hz/mm^2
2D Readout ?	Not really	Yes and flexible	Yes, not flexible
Position resolution	> 200 µm (analog)	50 µm (analog)	Good < 80 µm
Time resolution	~ 100 µs	< 100 ns	< 100 ns
Magnetic Field effect	High	Low	Low
Cost	Expensive, fragile	Cheap, robust	Cheap, robust

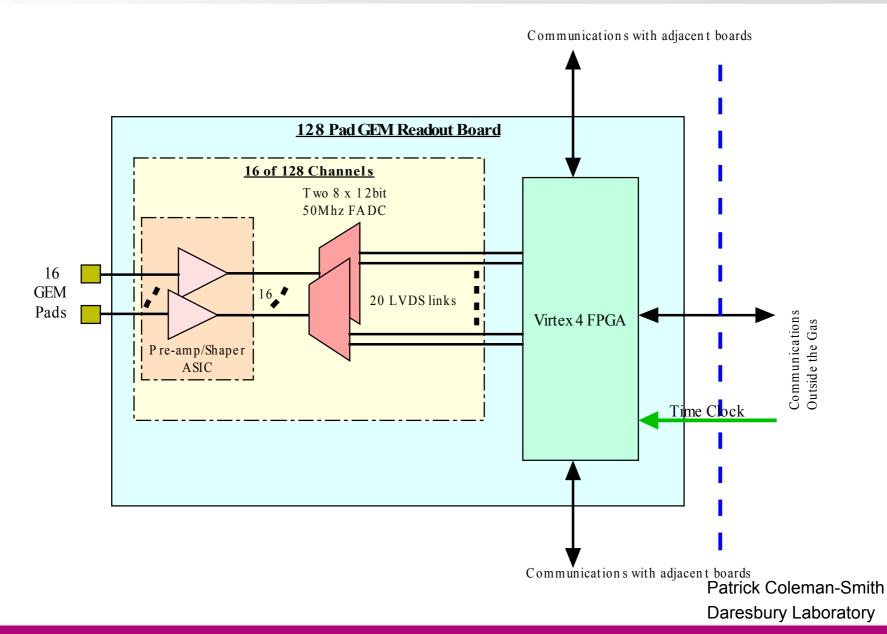
L. Pollacco


TPC for T2K

The T2K experiment will study oscillations of an off-axis muon neutrino beam between the JPARC accelerator complex and the Super-Kamiokande detector, with special emphasis on measuring the unknown mixing angle θ_{13} by observing the sub-dominant $\nu_{\mu} \rightarrow \nu_{e}$ oscillation. The neutrino en-

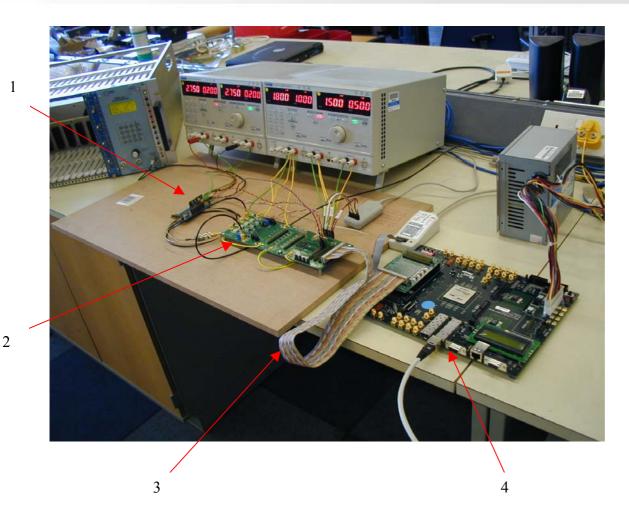
- Micromegas chosen as gas amplifier
 - 30x30 cm² ie 1400 of 0.8x0.8cm²
- Saclay is responsible for the FEE electronics. Namely ASIC + Front-end board+ADC
- ASIC T2K has 72 channels ie 20 chip/micomegas
- System slow 20Hz needs trigger
- Gain options:n120,240,360,600 fC
- Shaping times:0.1...2 μs

L. Pollacco

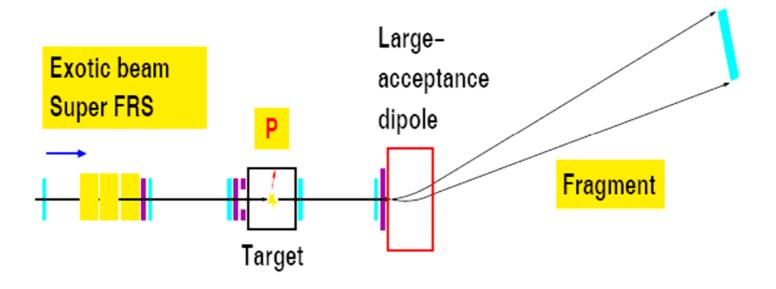


L.Pollacco

ACTAR


GEMs readout proposal with ASIC & ADC per pad.

ACTAR


GEMs readout proposal with ASIC & ADC per pad.

- 1. GASSIPLEX 32 channel board under test.
- 2. MAXIM Flash ADC evaluation board with Virtex2 FPGA for readout conversion, and GASSIPLEX control
- 3. Parallel connection between the two FPGAs
- 4. Virtex2Pro development board on loan from RAL with link to PC via Ethernet.

Patrick Coleman-Smith Daresbury Laboratory

ACTAR at R3B

Preliminary study of ¹³²Sn(p,p)¹³²Sn at 700 A.MeV

- report by F. Aksouh, GSI, September 2006

Needs for ACTAR

- Need to check the gain and dynamic range
- Shaping time drift time of H2 might be too long for high pressure. Limitation approx 2µsec.
- Need to have a post doc for 12 to 18 months.
- ACTAR test set-up option ~October-November 2007
 - Order immediately?