

Roman Gernhäuser, TU-München

High Rate Diamond Detectors for Heavy Ion Tracking and TOF

- detector layout
- fast timing electronics
- APV based strip readout
- material investigations

 $\Delta p/p \sim 10^{-4} @ 2.5\%$ accept.

Measurement of all kinematic variables in a HI reaction Different tasks: High resolution tracking in the super FRS, radiation hard (SFRS) 10⁶ cm⁻¹ s⁻¹ 2 x TOF (SFRS – target) (reaction products) low material budget

R3B Detector Layout

tracking layer:

- 50 x 50 mm, $d = 100 \mu m$, PC-CVDD
- 140 μm pitch (115μm strips, 25 μm gap)
- only digital position information
- multiplexed readout in vacuum

timing layer:

- 50 x 50 mm, d = 100 μm, PC-CVDD
- Input from simulation. • 8 rate matched strips, y information, trigger
- analog preamplification in vacuum
- discriminator and TDC @ 5 m distance

FRS Detector Layout

R3B/EXL Collab 2006@ INFN Milano

Time Resolution 50 µm Detector

1.9 GHz wide band amplifier BGA2748

resolution quite independent from S/N, projectile and detector thickness

Systematic error ? walk correction needed?

100 μm Material seems to be the better choice (more signal, less noise).

Time [60ps]

-70

-65

-60

-75

Investigations on MMICs show nearly ideal noise figures. Signal amplitude not written to file

CMS Readout Chip APV25

Readout Chip for CMS Detector

- 128 channels
- radiation hard (0.25 µm)
- 8 MIPS linear range (100 mV/mip)
- analog pipeline 4 µs
- 40 MHz readout
- 44 µm pitch !
- 2.3 mW /ch.
- •Vacuum suitable

Effective thickness 20% of Si CCE 20% \longrightarrow W = 13 eV

8x5x5x3.6 = 720 mips linear range Z < 27 could be linear limit in HI

Several ideas like charge split, over range behavior, have to be tested.

APV Features

- Noise figure: 246 e + 36 e/pF
- 3000 e (SNR) with 60cm lines
- 50 ns CR-RC shaper
- both polarities
- discharge path
- peak mode for low rates
- deconvolution mode for high rates analog FIR filter included.

Operation:

pipeline of 128 x 192 columns write pointer circulates continuously with 25 ns intervals. column x marked by trigger bidirectional differential current output using 2 lines (± 1 mA)

APV Test Board

First fine pitch detector tested, First readout chip bonded Next beam test in November

Check readout scheme, crosstalk, range Different readout on both sides

AC coupling needed? PPC investigations

Prototyping 2006

IAF cooperation contract

money for 12 detectors

4 witness samples reproduce material quality

first full size prototype in December 2006

First beam test needed in 2007

Efficiency

R3B/EXL Collab 2006@ INFN Milano

Local CCE

Paul Sellin, Radiation Imaging Group Surrey

R3B/EXL Collab 2006@ INFN Milano

Task List

Radiation Hardness

- Some samples show persistent photo current (PPC) after irradiation
- limit O^{16} 112 MeV 10¹³ cm⁻² (prove single measurement)

Signal Properties

- coupling between channels
- time resolution worse than expected (may be due to electronics)
- walk correction should be possible with APV readout
- test of APV and fast timing electronic on a single detector .

Detector Production

- shadow technique for bigger structures
- photo lithography (first problems solved)
- large area substrate handling still under investigation (50 x 50 mm, $d = 50 \mu m$ sample in house but more than fragile)

APV Test Board

Check readout scheme, crosstalk, range Different readout on both sides AC coupling needed? PPC investigations

Persistent photo current (PPC) only in beam

Nr.	sample	d[µm]	U[V]	I[nA]	CCD [µm]	type
13	ER VI 171	110	250	100		8x4
14	ER VI 171	110	150	300	10	4x4
16	ER V 274	55	200	350		8x4
17	ER VII 115	20	50	65		
20	ER WO 17	55	200	0-2	9	4x4
21	ER 00	55	150	375		64x4
23	ER 00	55	200	180	5	4x4
27	ER 00	55	150	200	2	4x4
38	ER 00	110	200	4150	7	4x4

WO 17 different production technique

more expensive?