The high-energy branch of the Super-FRS: A universal setup for kinematical complete measurements of **Reactions with Relativistic Radioactive Beams** Large-acceptance measurement Protons γ -rays Large-Heavy fragments Neutrons Exotic beam from acceptance Protons dipole Super-FRS Neutrons Target Tracking detectors: Neutrons $\Delta E, x, y, ToF, B\rho$ High-resolution measurement

Good news!

Evaluation of R3B by FAIR NUSTAR-PAC: 'triple A'

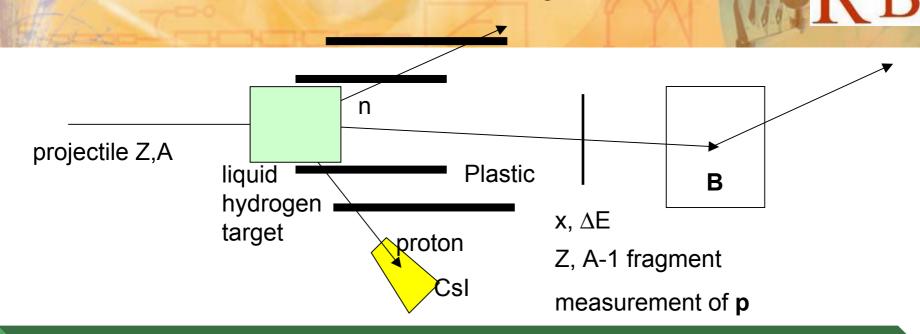
physics case: A instrumentation: A collaboration/organization: A

Quasi-free scattering at R3B

The R³B experiment:

- identification and beam "cooling" (tracking and momentum measurement, $\Delta p/p \sim 10^{-4}$)
- exclusive measurement of the final state:
- 1) knockout (Be,C target) and quasi-free scattering
 - identification and momentum analysis of fragments (high-resolution mode: $\Delta p/p \sim 10^{-4}$)
- \rightarrow momentum of knocked nucleon $\Delta p/p \sim 10-20$ MeV/c (typical width p,d: 100,150 MeV/c
 - coincident measurement of gamma-rays (gamma sum energy $\Delta E_{sum}/Es_{um} < 10\%$)
- \rightarrow binding energy of single-particle state Δ E/E < 500 keV
 - coincident measurement of fast (projectile-like) neutrons with LAND
- \rightarrow binding energy of single-particle state $\ \Delta E/E \sim 0.5$ 1 MeV

(after knockout to continuum states)

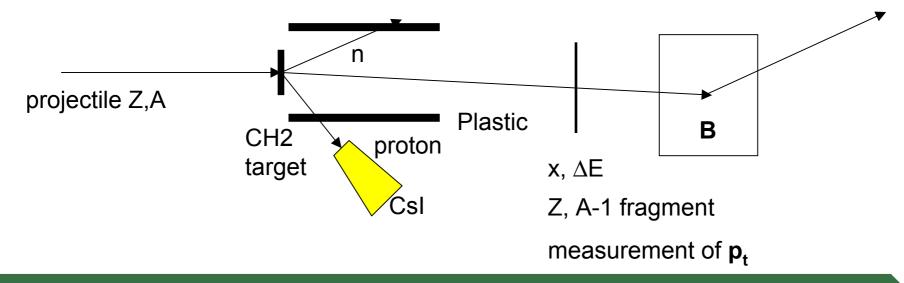

- 2) quasi-free scattering:
 - in addition detection of proton recoil

angle: Si tracker: obtainable resolution ~ 2 mrad

energy: stopping and energy measurement in CsI? obtainable resolution ?

→ redundant information on momentum of knocked nucleon and binding energy (plus clean trigger on reaction and reaction mechanism)

Quasi-free scattering at R3B



Luminosities and obtainable resolution

- liquid hydrogen target: 200 mg/cm² (3 cm), 3 cm diameter (10% interaction), 10²³ H / cm² example: N_{reac} = I (1/s) x 10⁻² / (d μb)
- straggeling: 400 MeV protons: 1.5 cm l.H. σ=0.9 mrad plus 300μm Si: σ=1.4 mrad
- detector resolution: x,y 30 μ m, distance of two layers 2.0 cm, \rightarrow 1.5 mrad
- energy loss: det. of interaction point < 3mm \rightarrow momentum-loss diff (Z,Z-1) < 0.5x10⁻⁴ protons: energy-loss / width (1.5 cm l.H): 0.65 / 0.16 MeV (sigma)
- \rightarrow thick target does not limit the resolution

Quasi-free scattering at R3B

What can we do now without spectrometer, with one layer of Si detectors

^{56,68,72}Ni Experiment in Cave C ~ around March 2005

CH₂ target: angle of protons can be determined with one layer, E measurement ? measurement of <u>transverse</u> momentum distribution 250 mg/cm² CH₂ (~30 mg/cm² H) → straggeling fragments ~ 1.1 mrad (fwhm)

+ detector resolution \rightarrow fwhm(theta) ~ 1.5 mrad

 \rightarrow momentum resolution ~ 100 MeV/c (for 68Ni)

New proposals ??