Setup for fixed target experiments at GSI and simulation studies

O. Kiselev

Gesellschaft für Schwerionenforschung, Darmstadt

Institut für Kernchemie, Johannes Gutenberg Universität Mainz

Physics with external target

- Elastic scattering
- ✓ Inelastic scattering
- ✓ Total absorption measurements
- ✓ EM excitation
- Spallation
- ✓ Fission
- Charge-exchange reactions
- Multifragmentation
- ✓ Quasi-free scattering
- As more universal detector as possible
- ✓ Kinematically complete experiments

Experimental setup of R3B

Upgrade of existing LAND setup +Higher precision +Recoil detector +High resolution spectrometer

Angular and energy resolution

 $\Delta E^* < 0.1 \text{ MeV}$ $\Delta \Theta_{CM} < \text{few mrad}$

for recoils: $\Delta E_{lab} < 0.1 \text{ MeV}$ $\Delta \Theta_{lab} < 1-2 \text{ mrad}$

(In)elastic scattering

Angular and energy resolution

Example of free p,p scattering

 $\Delta \Theta_{\text{lab}} \sim \text{few mrad}$

Angular and energy resolution

In case of charge-exchange or transfer reactions requirements are not so strict

Multiple scattering

✓ Energy threshold – 40 MeV?
 ✓ Thin detector for the first layer – 100 (50) µm?
 ✓ Minimum thickness of double-sided Si microstrip detector – 100 µm
 ✓ New technologies should be studied

Simulation concept

- Main aim realistic simulation framework for any kind of experiments
- All detectors for target-like, beam-like particles, neutrons and gammas should be included
- Any beam of exotic particles possible
- Easy change of any parameter like detector geometry or beam particles
- Simulation package is based on modern programming tools – GEANT4 and ROOT
- People O. Kiselev (Mainz), K. Boretzky (GSI),
 N. Moreau, A. Ramus (students from Orsay University)

First simple setup

Paraffin target p 100 μm Si detector 300 μm Si detector

Target – Ø 2 cm, 1 mm thick

Two layers of Si detectors – 5 and 7 cm from the target Strip pitch – 100 µm (X and Y)

CsI scintillator to measure total energy

20 cm CsI detector

Simulation of recoil protons

Recoil protons are coming out of the target, generated according to the cross section and the kinematics for elastic and inelastic scattering on ¹²C

Simulated angular resolution

For $E_p < 50$ MeV first layer and the target must be very thin

In case of precise beam tracking and thing CH_2 target – one layer of Si with good resolution

Simulations – next steps

- Optimization of the Si detector thickness
- Different distance from the target
- Energy measurement by CsI and Si
- Different strip pitch (100, 50 μm)
- More detectors in forward part cover maximum solid angle
- Primary beam of exotic particles
- Simulation of quasi-free scattering
- Optimized setup end of 2004 Technical proposal

Alpha Magnetic Spectrometer

Si detectors for AMS tracker

- Tracker designed for high energy particles 8 layers of DSSD
- Total number of sensors 2500
- Whole tracker is in magnetic field charge and momentum measurement
- **D** Position resolution of the tracker 30 μ m (single point, Z > 4)
- Identification of particles in silicon from Z = 1 up to Z = 13
- Dynamic range ±70 MIPs
- □ Noise level 2-3 ADC counts (MIP has 30 ADC counts) ⇒ signal/noise ratio at least 10 for protons
- Size of one sensor size is $4 \times 7 \text{ cm}^2$

AMS tracker performance

Particle	p-side	n-side
μ 400 GeV	$8.5 \mu m$	$29.5 \mu m$
$p \ 20 \ {\rm GeV}$	$11.6 \mu m$	$29.2 \mu m$
$He~20~{\rm GeV/A}$	$7.1 \mu m$	$22.1 \mu m$

Elements produced by fragmentation of high energy Pb

Layout of the AMS tracker

Ladders with Si detectors

Ladders with connectors

Detector prototype for fixed target

Parameter			Units
Device area		72×41.3	mm^2
Thickness		300 ± 15	μm
Active width	J-side	70565	μm
	Ω -side	39832	μm
Number of strips	J-side	2568	
	$\Omega\text{-side}$	384	
Strip pitch	J-side	27.5	μm
	Ω -side	104	μm
Readout strips	J-side	1284	
	$\Omega\text{-side}$	384	
Readout pitch	J-side	55 (110)	μm
	Ω -side	104	μm
Full Depletion Voltage		50 (max)	V
Total Leakage current		2000	nA

Readout chips - VA_hdr9 (IDEAS)

Detector prototypes – AMS type

- ✓ Position resolution of one layer \leq 100 µm (for MIP)
- ✓Energy resolution 30 40 keV
- ✓Dynamic range 100 keV 14 MeV
- Several detectors will be available, total area 250 cm2
- \checkmark Test setup with 6 detectors, CH₂ target, beam test 2005
- ✓ 1000 channels/sensor, 4 byte/channel \Rightarrow 4kB/detector per
- event, 24 kB per 6 detectors; for 100 Hz event rate 2.4
- Mb/sec \Rightarrow DAQ, data storage
- Mechanical construction

LAND setup at Cave C

FIG. 3: Schematic view of the experimental setup (not on scale). active slit: 4-jaw slit, organic scintillator, remote control, vetoing beam halos Start: thin organic scintillator, time of flight ($\sigma_{Tof} \sim 30 \text{ ps}$) PIN: p-i-n silicon diode, 5 x 5 cm², 2-dim. position readout ($\sigma_{x,y} \sim 0.2 \text{ mm}$), energy-loss ($\sigma_Z \sim 0.2 \text{ e}$) Fibre: scintillating fibre array, 50 x 50 cm², 500 fibres CsI: segmented CsI(Tl) detector, γ -ray detection in $\sim 2\pi$ ALADIN: Large gap dipole magnet Veto/LAND: Neutron-detector, 2 x 2 m², ($\sigma_{Tof} \sim 200 \text{ ps}; \sigma_{x,y} \sim 3 \text{ cm}$) ToF: array 14 + 18 organic scintillators, 1.8 x 1.4 m², ($\sigma_{Tof} \sim 100 \text{ ps}$), energy-loss measurement

Possible layout of the test setup for knock-out/QFS experiment

Target and detectors Si3 – Si6 are inside CsI ball Inner diameter of CsI – 50 cm, size of one PCB with Si detector ~ 14 14 cm² Angular coverage – 90° - 35°

Open questions

Target - CH_2 or IiH_2?

- □ One layer of Si far from the target \Rightarrow small solid angle or two layers of Si?
- □ All is inside CsI ball or Si tracker + some scintillators behind them to measure E_{total}?
- How to measure energy for protons ~ 200-300 Mev – thick scintillator/degraders?
- □ Optimum energy of a beam 400 MeV?
- □ First candidate ⁶⁸Ni or ...?

Thin Si detectors

+Detector and readout electronics on the same Si crystal

+Thickness 20 - 50 μm

+Position resolution – $2 \mu m$

+Pixel size – up to 10 µm

-Small size - ~cm -Slow readout

IReS/LEPSI, IN2P3/ULP, Strasbourg

Si strip & pixel detectors - world experience

CMS (LHC) – 24000 sensors, single and double sided, strip detectors, 1 sensor from 6" wafer CMS (LHC) – pixel detectors 1.6 6.4 cm2, 44000 pixels per sensor, zero suppression on board ✓ ATLAS (LHC) – 4 layers of silicon tracker + pixel detectors ✓SLD (SLAC) – central tracking – 3 108 pixels ✓ALICE (LHC), LHCB (LHC) – central tracker – Si microstrips Other experiments in High Energy Physics, also at FAIR - CBM, PANDA