Outstanding Physics Questions We Can Address

Single Particle Structure in Nuclei Short-Range Correlations in Nuclei

Modification of Meson and Nucleon properties in Nuclear Medium

One of the most direct way of investigating such questions Is via quasi-free scattering using hadronic and leptonic probes

Ideally suited to GSI/FAIR energies

Our Picture of the Nucleus

Independent Particle Shell Model - very successful. BUT !!!

L. Lapikas, Nucl. Phys. A553 (1993) 297c.

Effect of long-range and short-range correlations

One-Neutron Removal Reaction in Inverse Kinematics

Directly measure momentum distribution k_{A-1} . Related to momentum of struck nucleon k_3 by :

$$k_3 = \frac{A-1}{A}k_A - k_{A-1}$$

- I-value from momentum distribution of core
- tag excited core states with γ-rays

Example : ⁹Be(¹⁷C, ¹⁶C+γ)X

V. Maddalena et al., Phys. Rev. C 63 (2001) 024613.

Quenching Factors R_s From Knockout Reactions

Quasi-Free Scattering (QFS) : Kinematics

Nuclear recoil momentum :

$$k_{A-1} = k_0 - k_1 - k_2 = -k_3$$

Separation energy of knocked-out nucleon

$$E_{S} = E_{0} - E_{1} - E_{2} - \frac{k_{A-1}^{2}}{2(A-1)}$$

Coplanar geometry

Correlation cross-section in the factorized **DWIA** :

$$\frac{d^{3}\sigma}{d\Omega_{1}d\Omega_{2}dE} = S_{3}F_{k}\frac{d\sigma_{pp}}{d\Omega}(E_{0},\theta,P_{eff})G(\vec{k}_{3})$$

spectroscopic free n-n distorted factor cross-section momentum distribution

QFS : Binding Energy Spectra

Energy resolution ~ few MeV

A.A. Cowley et al., Phys. Lett. B 359 (1995) 300.

QFS : Angular Correlation Spectra

¹⁶O(p,2p)¹⁵N

G. Jacob and Th. A.J. Maris, Rev. Mod. Phys. 38 (1966) 121.

QFS : Energy Sharing Correlation Spectra

 $E_{p} = 101.3 \text{ MeV}$

(a) 41.0°/ -41.0° (b) 46.7°/ -35.0° (c) 52.2°/ -29.0° (d) 57.0°/ -23.0°

C. Samanta et al., Phys. Rev. C 34 (1986) 1610.

Summary of QFS Spectroscopic Results c. 1973

G. Jacob and Th. A.J. Maris, Rev. Mod. Phys. 45 (1973) 6.

Comparison of (p,2p) and (e,e'p)

TABLE II. Average spectroscopic factors.				
Reaction	Incident energy (MeV)	Reference	Spectrosco ${}^{15}\mathbf{N}_{g.s.}(\frac{1}{2}^{-})$	pic factors ${}^{15}N_{6.3}(\frac{3}{2}^-)$
(<i>p</i> ,2 <i>p</i>)	101	2	2.2	3.1
	101	2ª	1.9	2.5
	151	This work	1.3	2.4
	200	17	1.3	2.7
(e,e'p)	500	18 ^b	1.2	2.3
$(d, {}^{3}\mathrm{He})$	29	20	2.2-2.3	2.8-3.7
	34	21	2.1	3.7
Theory		19	1.5	2.9

^aOur reanalysis of the results of Ref. 2. ^bValues from Ref. [18] corresponding to Elton-Swift [14] bound state, and with spin-orbit interaction in distorting potentials.

A.A. Cowley et al., Phys. Rev. C 44 (1991) 329.

Table 2

Comparison between spectroscopic factors extracted in this work and existing values

Spectroscopic factor	Reference	
0.7-0.8	this work (p, 2p)	
0.65	[4] (e, e'p)	
0.71	[5] (e, e'p)	
0.65-0.73	[6](e, e'p)	
0.70	[14] theory	

R. Neveling et al., Phys. Rev. C 66 (2002) 034602. A.A. Cowley et al., Phys. Lett. B 359 (1995) 300.

²⁰⁸Pb(p,2p)²⁰⁷TI E_p = 204 MeV

¹⁶O(p,2p)¹⁵N E_p = 151 MeV

Spin-Dependence in Quasi-Free Scattering

Absorption and spin-orbit coupling gives an effective polarization to knocked out nucleon.

With experimental asymmetry defined as :

$$A_{\exp} = \frac{d\sigma^{(+)} - d\sigma^{(-)}}{d\sigma^{(+)} + d\sigma^{(-)}}$$
$$= \frac{P(\theta) + P_{eff}C_{nn}(\theta)}{1 + P_{eff}P(\theta)}P_{0}$$

Free nucleon-nucleon cross-section

$$\frac{d\sigma}{d\Omega}(\theta) = I_0(\theta) \left[1 + \left(P_0 + P_{eff} \right) P(\theta) + P_0 P_{eff} C_{nn}(\theta) \right]$$

 $-I_0(\theta)$ is free unpolarized nn cross-section - P_0 is polarization of incoming nucleon - P_{eff} is effective polarization of knocked out nucleon

- $P(\theta)$, $C_{nn}(\theta)$ are spin observables for free polarized nn scattering

If $P_{eff} = 0$ (e.g. s-state nucleon) and $P_0 = 1$:

$$P(\theta) = A_{exp}$$

Analysing Powers For ¹⁶O(p,2p)¹⁵N

Analysing Powers For ⁴⁰Ca(p,2p)³⁹K

L. Antonuk et al., Nucl. Phys. A 370 (1981) 389.

Isospin Dependence in Quasi-Free Scattering

Nuclear Medium Effects

K. Hatanaka et al., Phys. Rev. Lett. 78 (1997) 1014.

V.A. Andreev et al., Phys. Rev. C 69 (2004) 024604.

Chiral symmetry restoration, quark deconfinement :

Modification of

- nucleon and meson masses
 sizes
- meson-nucleon coupling constants

Experimental Setup for External Target

SuperFRS-R3B is ideal with addition of target recoil detector

Complete kinematics :

- detect/reconstruct projectile-like fragment, neutrons
- detect target and knocked-out nucleon(s)
- tag excited states with gamma-rays
- polarised target

A Possible Experimental Programme

PHASE 1 – Unpolarized QFS

- (p,2p) and (p,pn) measurements
- first attempt using ¹²C
- compare 1n removal and (p,pn) reactions
- (p,2p)/(p,pn) tests of impulse approximation
- physics measurements using light n-rich nuclei, e.g. He, C, O, Si etc.
- extraction of spectroscopic factors
- parallel development of theoretical programme crucial !!!

PHASE 2 – Polarized QFS

- measure experimental asymmetrys
- first measurements of polarized (p,pn)
- probe spin-orbit properties
- examine in-medium effects
- extend measurements to heavier nuclei, e.g. Ca and upwards