

Conditions at the Storage Rings

Helmut Weick EXL collaboration meeting Liverpool, 22-23.06.2004

- Beams from Super-FRS
- Operation of storage rings
- Luminosities
- Work packages Super-FRS

Layout of FAIR Beamlines

topology 21.06.2004

Layout of the NUSTAR Facility

Two-Stage Separation

most difficult case fission fragments

Beam Parameters at the Exit of Super-FRS

1500 MeV/u ²³⁸U -> 740 MeV/u ¹³²Sn two Nb degraders

Emittance much larger at exit

- Angular straggling in degrader
- Redistribution from longitudinal emittance to transversal

CR acceptance: _{x,y} = 200 mm mrad p/p=1.75%

Operation of Storage Rings

Calculation of Luminosity

- Abrasion ablation code for cross sections (K.H. Schmidt)
- Optimize target thickness for best production rate
- Choose E_in, degraders for separation and E_out=740 MeV/u
- Monte-Carlo simulation of transmission into CR, secondary reactions in target and degraders

LISE++ code

www-linux.gsi.de/~weick

Luminosities

Table 2 Expected luminosities in the NESR storage ring adopting an internal target density of 10^{14} hydrogen atoms/cm² and for a beam energy of 740 MeV per nucleon.

Nucleus	Rate after production target	Lifetime including	Luminosity
	[1/s]	losses in NESR [s]	$[\text{cm}^{-2} \text{ s}^{-1}]$
¹¹ Be	2×10^9	36	$> 10^{28}$
⁴⁶ Ar	$6 \ge 10^8$	20	$> 10^{28}$
⁵² Ca	4×10^5	12	$2 \ge 10^{26}$
⁵⁵ Ni	8×10^7	0.5	$5 \ge 10^{26}$
⁵⁶ Ni	1×10^9	3800	$> 10^{28}$
⁷² Ni	9×10^6	4.1	$1 \ge 10^{27}$
104 Sn	1×10^{6}	51	$2 \ge 10^{27}$
¹³² Sn	1×10^8	93	$> 10^{28}$
¹³⁴ Sn	8×10^5	2.7	3×10^{25}
¹⁸⁷ Pb	1×10^7	34	2×10^{28}

at 100 MeV/u factor 2-3 less.

Spot Size at Target

No further cooling after CR = 1.3 mm mrad x= ± 3.7 mm, y= ± 5.4 mm

With electron cooler ~ 0.1 mm mrad (depends on intensity) x~ ± 1 mm, y~ ± 1.5 mm

image

plane

additional guadrupoles

gas jet target

... and there is some emittance growth during stacking

Possibility -Low Beta Section at Gas Target

- Improves transmission of heavy ion spectrometer
- Small spot size -> better angular resolution for light recoil
- Shifts position of image plane in arc
- Quadrupole aperture blocks large angles in forward spectrometer

Design Tasks: Super-FRS to Rings

Especially for storage ring experiments

Target for fast extraction: Carbon wheel will break or melt! Windowless liquid metal target

Beam dump for fast primary beam: Again all solids will melt! Liquid metal container ?

Ring Branch

Beam diagnostics for fast extracted beams: profile monitors to see fragment distribution beam transformators.

<u>Coupling of Super-FRS to rings:</u> construct a working scheme for experiments

Electron Cooling of Intense Beams

Acceptance of Heavy Ion Spectrometer

start at target with small spot size transmission to image plane

