EXL Recoil Detector Experience With the CHICSi Detector

L. Westerberg The Svedberg Laboratory, Uppsala University, Sweden

CHICSi detector system

UHV compatibility studies

CHICSi auxiliary detectors

Possible CHICSi detector array for EXL

CHIC Collaboration

Lund, Uppsala Copenhagen, Dubna St. Petersburg, Cracow

CHICSi: CELSIUS Heavy Ion Collaboration Silicon Detector System - A Compact Ultra-high Vacuum Compatible Detector System for Studies of Proton and Light Heavy-ion (N-Ar) Reactions on Cluster-jet Targets of Ar -Xe

- 504 1.0 Cm² Telescopes Si (10 μ M) + Si (300 μ M) + Si (300 μ M Veto) or

6 Mm GSO Crystal + PhD -Identify Intermediate Mass Fragments 3 ≤ Z ≤ 10; Threshold 700A keV

Scattering chamber

Readout cables Kapton-insulated cables

Printed-circuit board cable

Fig. 5. A vertical plane cut of CHICSi and the scattering chamber. Upper: CHICSi located outside the chamber. Lower: CHICSi located in the chamber The total (internal) height of the chamber is 456 mm.

UHV compatible Materials needed

- •New type of rectangular flanges for large ports
- •Printed circuit boards for
 - detector mounts
 - VLSI readout
- •Coaxial cables
- •Flat cables
- •Contacts for cables and printed circuit boards
- •Conducting and insulating twocomponent glues

Insulators

Macor	Can break when machining Threads are fragile
Vespel	Varying outgassing Discharge can cause carbonizing
PEEK	High outgassing, H ₂ O
Photoveel	SiO2, Al ₂ O ₃ Lower outgassing
M-soft Shapal	AlN Low outgassing, Expensive

Ceramics

FR-4

Outgassing measurements

Material	Area	Bake-	out in	Bake-out in		H_2	H ₂ O	CO	Total outgassing	
	cm ²	a Tem p °C	ir Tim e h	vac Tem p °C	uum Time h	W/m ²	W/m ²	W/m ²	rate W/m²	
PRINTED CIRCUIT		-		•						
Pyralux (2 layers)	19			150	20	2.10-5	4·10 ⁻⁷	3.10-6	3.10-5	
AP (2 layers)	98			150	20	2.10-7	4·10 ⁻⁸	3.10-7	1.10-6	
Epoxy-Acrylic (2 layers)	30			150	20	1.10-7	3.10-7	3.10-7	3.10-6	
Epoxy-Glass fibre, 1 layer	36			150	20	4.10-7	4·10 ⁻⁸	4.10-8	2.10-6	
Alumina (14 layer electrical print)	32			150	20				3.10-7	
Glass reinforced Kapton [™]	74			150	24				2.10-8	
FR4	475			150	30				1.5.10-8	
FR4	331	150	24						6·10 ⁻⁷	
FR4	331	150	24	150	23	2.10-10			6·10 ⁻⁸	
FR4	331	150	24	150	77				4·10 ⁻⁹	
FR4 – 6 layers	120			150	30	<1.10-7			5.10-7	
INSULATORS										
РЕЕК				150	20	1.4.10-6	8·10 ⁻⁷	5.10-7	3.10-6	
Photoveel	44			150	20	1.6.10-7	1.0.10-8	3.10-8	2.10-7	
M-soft shapal	44			150	20	1.4.10-8	1.0·10 ⁻⁹	4·10 ⁻⁹	1.10-7	
Macor TM	75			200	26				4.10-8	
Macor [™] , 30 min air expos	75								2.10-6	

Outgassing measurements Epoxies (EPO-TEK)

Туре	Weig ht	Bake-out in air		Bake-out in vacuum		H ₂	H ₂ O	CO	CO ₂	CH ₄	Total outgas sing
	(g)	Temp (°C)	Time (h)	Te mp (°C)	Time (h)	(W/g)	(W/g)	(W/g)	(W/g)	(W/g)	rate (W/g)
377	1.15	90	1.5								1.4.10-7
377	1.15	90	1.5	150	24	1.3 ·10 ⁻¹⁰	1.8 ·10 ⁻¹¹	2.0 ·10 ⁻¹¹	4. 10 ⁻¹²	6.10-12	4·10 ⁻¹⁰
H20 E	2.16	90	1.5			4.10-8	1.6 ·10 ⁻⁸	6·10 ⁻⁹	8·10 ⁻¹⁰		6.10-8
H20 E	2.16	90	1.5	150	24	4 ·10 ⁻¹¹	1.2 ·10 ⁻¹⁰	3 ·10 ⁻¹¹	2 ·10 ⁻¹¹	1.4 ·10 ⁻¹¹	7 ·10 ⁻¹⁰
H27 D	3.90	90	1.5								1.1.10-7
H27 D	3.90	90	1.5	150	24						3 . 10 - 8

Outgassing from cables

Figure 4.1. Dependence of the measured residue mass on the fragment velocity, expressed as a fraction of the compound nuclear velocity for the systems studied in this work

PF-WALL

Projectile Fragmentation WALL $3.9^{\circ} - 11-7^{\circ}$ Z identification: $Z \le 18$, Mass identification: H - He

Integrated ΔE -E detector

Fig. 9. Channeling of a particle in a crystal. From "Channeling in Crystals", by W. Brandt, Copyright © (March, 1968) by Scientific American, Inc., all rights reserved.

Small Angle Detector (SAD)

Study of Silicon SEU-hazardous recoils at CELSIUS

FIG. 2. Differential π^+ cross sections in p + Ar collisions at three angles (55°, 97°, 120°), and in Ne + Ar collisions at two angles (90°, 120°). The points represent BUU calculations

CHICSi experiments

Pion production Slow ramping experiments **Isotope** ratios **Isobar** ratios Ne+Ar 2003-2004 p + Ar, Kr, Xe Autumn 2004 Ne + Ar, Kr, Xe Spring 2005 Xe + Xe at ESR 2006?

Charge distribution of low energy fragments from the ${}^{20}Ne + {}^{40}Ar$ reaction at 200A MeV. CHICSi data (Oct. 2003)

CHICSi and EXL

Arrange 8 - 12 GMB's in the angular region $20^{\circ} - 90^{\circ}$

each with (8 - 12) telescopes,

mounted as a semi-cylinder of radius ~30 cm.

In this way installation can be performed in the same way as CHICSi at CELSIUS with all equipment on one flange.

Instead of using only two 300 μ m Si detectors, as suggested for EXL transfer reactions, we suggest to introduce (at least in one part of the array) 15 μ m + 300 μ m Si + 6000 μ m GSO/PD detectors stopping protons from 1 to 60 MeV.

This is a reasonable choice for interferometry and could possibly be used for other EXL (elastic?) reactions.

The Svedberg-laboratoriet Entré

1 Pl