Problems / Challenges in Analyzing AGATA@LNL Data **Experiments from Autumn 2011**

Aila Gengelbach, Uppsala University

Aila Gengelbach in cooperation with Philipp John

Experimental Setup: AGATA + PRISMA

Aila Gengelbach, Uppsala University

AGATA

fragments (TLFs)

PRISMA at grazing angle

• Calibrate the PRISMA spectrometer and AGATA • Identify the binary partner of the nucleus you're interested in • Gate on this nucleus and study the γ -rays detected by AGATA • Build up a level scheme

Aila Gengelbach, Uppsala University

Complementary Fragment Technique

- Study the nuclei of interest using the complementary fragment technique
- Doppler corrected γ rays for both projectile-like (PLFs) and target-like

- Detect PLFs: Z identification, A/q, velocity, . . .
- Procedure to analyze AGATA + PRISMA data

START

Use cross for calibration: The central ion trajectory does NOT pass through the center of the MCP! histMCPcal

AGATA@LNL

Aila Gengelbach, Uppsala University

EGAN 2012

MWPPAC TOF between PPAC and MCP

Good alignment \Rightarrow good mass resolution

Aila Gengelbach, Uppsala University

Data Analysis - PRISMA

Trajectory Reconstruction Approximation for length of trajectory might be too crude

Change quad_length and target_quad_distance histAoverQGamma

Aila Gengelbach, Uppsala University

AGATA@LNL

EGAN 2012

Data Analysis - PRISMA

Ionisation Chamber Used for Z-Identification

Different calibrations for each gain

Adjustment may be needed

One pad is broken!

Instead of analyzing each section separately: Align TOF!

Aila Gengelbach, Uppsala University

histradiusVoverIC

Ic:RBeta {Beta>0&&TOF<330&&Zed==34}

Aila Gengelbach, Uppsala University

IC DE Section A vs. Total E

Data Analysis - AGATA

Distance AGATA - PRISMA Need to be checked

Position of AGATA moved by a few cm

Aila Gengelbach, Uppsala University

Use FWHM of one peak

histThetaOverGammaEDC

Data Analysis - AGATA

TSDiff

When MWPPAC is used as a trigger: Correct the time difference by $TSDiff + 0.1 \cdot TOF$

If timestamps are not aligned properly, do it manually

Difference with TOF included

Time Stamp Difference

Energy Calibration Check your energy calibration (and the input files for the tracking)!

Aila Gengelbach, Uppsala University

gammaE2D

AGATA@LNL

EGAN 2012

Data Analysis

AGATA of one peak (difficult!)

PRISMA

Do the analysis within the PRISMA library!

- wrong there

Aila Gengelbach, Uppsala University

AGATA@LNL

Try to automize your analysis!

• Try to take as many events as possible • Try to go down in energy as far as possible • Use all information available for Z identification • Nice spectra when using the Q value (plunger experiments)

• Check where an event is rejected (error codes) and what might go

• For background suppression use the acceptance level of the tracking

• Check the distance between AGATA and PRISMA using the FWHM

Philipp John, LNL Annual Report 2011

Aila Gengelbach, Uppsala University

Energy [keV]

