WEIGHTING POTENTIALS

Bart Bruyneel
CEA Saclay, France DIru
05-09/12/2011 EGAN school, Liverpool

Principle of Signal induction

- A point charge q at distance z_{0} above a grounded metal plate induces a surface charge

$$
\begin{aligned}
E_{z}(x, y) & =-\frac{q z_{0}}{2 \pi \varepsilon_{0}\left(x^{2}+y^{2}+z_{0}^{2}\right)^{3 / 2}} \\
E_{x}, E_{y} & =0
\end{aligned}
$$

- Different positions of q yield different charge distributions
- Here image charges can be used

$$
\begin{aligned}
\sigma(x, y) & =\varepsilon_{0} E_{z}(x, y) \\
Q_{\text {ind }} & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sigma(x, y) d x d y=-q
\end{aligned}
$$

- \mathbf{q}

Principle of Signal induction

If we segment the metal plate and keep individual strips grounded:

- Surface charge does not change compared to continuous plate
- The charge on each segment is now depending on position of q
- The movement of charge q
induces a current
Method for image charges created

$$
E_{z}(x, y)=-\frac{q z_{0}}{2 \pi \varepsilon_{0}\left(x^{2}+y^{2}+z_{0}^{2}\right)^{3 / 2}}
$$

Assumption

- Maxwell -> Quasi steady state approximation: $\frac{\partial \mathbf{B}, \mathbf{D}}{\partial t} \simeq 0$

Pauli lectures on physics, Volume 1, chapter 3:
The fields to be considered in this chapter are assumed to change but little during the time required for light to traverse a distance equal to the maximum dimension of the body under consideration. Thus, the finite velocity with which the fields propagate need not be considered.

$$
\begin{aligned}
n_{G e} & =4.0 \\
c & =75 \mathrm{~m} / \mu \mathrm{s} \\
v_{d r i f t} & \simeq 10 \mathrm{~cm} / \mu \mathrm{s} \\
d & \simeq 10 \mathrm{~cm}
\end{aligned}
$$

\rightarrow Steady state \checkmark

- Allows separation of problem:
- First calculate path $z(\mathrm{t})$ of free charges
- Secondly: For each position of the trajectory, calculate the induced charge $Q_{i n d}(t)$ in the electrode of interest.

The Shockley-Ramo theorem

- The problem:

$$
\nabla^{2} \phi(\vec{x})=-\left[\rho(\vec{x})+q \delta\left(\vec{x}-\vec{x}_{0}\right)\right] / \epsilon
$$

- The superposition principle:
- Charges / current that flow during power up are not of interest
- Signal shapes are independent of the space charge in the detector

$$
\begin{aligned}
\phi(\vec{x}) & =\phi_{0}(\vec{x})+\phi_{q}(\vec{x}) & & \text { with } \\
\boldsymbol{X} \nabla^{2} \phi_{0}(\vec{x}) & =-\rho(\vec{x}) / \epsilon & & \left.\phi\right|_{S_{j}}=V_{j} \\
\nabla^{2} \phi_{q}(\vec{x}) & =-q \delta\left(\vec{x}-\vec{x}_{0}\right) / \epsilon & & \left.\phi\right|_{S_{j}}=0
\end{aligned}
$$

The Shockley-Ramo theorem

- Consider V the volume excluding all electrodes
- Consider the potentials Φ, Ψ corresponding to:

potential X	ΔX	$\left.X\right\|_{S_{j}}$	$\left.\frac{\partial X}{\partial n}\right\|_{S_{j}}$
Φ	$-q \delta\left(\vec{x}-\vec{x}_{0}\right) / \varepsilon$	0	$-\sigma_{q, j} / \varepsilon$
Ψ	0	$\delta_{i, j}$	$-\tau_{j} / \varepsilon$

- Relate both potentials using Greens 2nd identity:

$$
\begin{aligned}
\int_{V} \Phi \Delta \Psi-\Psi \Delta \Phi d V & =\oint_{S} \Phi \frac{\partial \Psi}{\downarrow n}-\Psi \frac{\partial \Phi}{\partial n} d S \\
\Downarrow & =0 \\
\int_{V} \Psi \cdot q \delta\left(\vec{x}-\vec{x}_{0}\right) d V & =-\sum_{j} \oint_{S_{j}} \delta_{i, j} \cdot \sigma_{q, j} d S
\end{aligned}
$$

Potential Ψ

The Shockley-Ramo theorem

- The induced charge Q_{qi} on electrode i by a point charge q located at position x_{0} is

$$
Q_{q i}=-q \cdot \psi_{i}\left(\vec{x}_{0}\right)
$$

- With weighting potential ψ_{i} defined by

$$
\nabla^{2} \psi_{i}(\vec{x})=\left.0 \quad \phi\right|_{S_{j}}=\delta_{i, j}
$$

- The current $\mathrm{I}_{\mathrm{q} i}(\mathrm{t})$ to electrode i is then given by

$$
\begin{aligned}
I_{q i} & =\frac{d Q_{q i}}{d t}=-q \cdot\left(\frac{\partial \Psi_{i}}{\partial x_{0}} \frac{d x_{0}}{d t}+\frac{\partial \Psi_{i}}{\partial y_{0}} \frac{d y_{0}}{d t}+\frac{\partial \Psi_{i}}{\partial z_{0}} \frac{d z_{0}}{d t}\right) \\
& =q \vec{E}_{\Psi i}\left(\vec{x}_{0}\right) \cdot \vec{v}_{d r i f t}
\end{aligned}
$$

- The function $\quad \vec{E}_{\Psi i}=-\nabla \Psi_{i}$ is called the weighting field

Weighting field properties

For a set of electrodes completely enclosing the detector volume V :

- The sum of weighting potentials is 1 everywhere on V

$$
\Psi(\vec{x})=\sum_{i} \Psi_{i}(\vec{x}) \equiv 1
$$

- The total current is 0 at any time

$$
I_{t o t}(t)=\sum_{i} I_{q, i} \propto \nabla \Psi \equiv 0
$$

- The total induced charge is 0 at any time

$$
Q_{t o t}(t)=\sum_{i} Q_{q, i} \equiv 0
$$

Signal formation: planar detector

- (Assumed constant drift velocities)
- Electrons and holes are created in equal amounts, at equal positions: Charge signals always start from 0 .
- When all charges are collected, the charge signal has the amplitude equal to the collected charge, but with opposite sign of the collected charge (but it is not a collection process)
- Steepest slope method:

The change in slope can be used to calculate the collection time and thus the initial starting position

Signal formation: planar detector

Weighting potentials: examples

- Detector Simulation Software ADL: http://www.ikp.uni-koeln.de/research/agata/ \rightarrow Downloads

Coaxial detector (6x segmented)

Core weighting potential
$\Psi_{0}(r)=1-\ln \frac{r}{r_{\text {min }}} / \ln \frac{r_{\text {max }}}{r_{\text {min }}}$
Segment weighting pot:
$\psi_{1}(r, \theta)=\frac{\ln \left(r / r_{\text {min }}\right)}{6 \ln \left(r_{\text {max }} / r_{\text {min }}\right)}$
$+\sum_{n=1}^{\infty} B_{n}\left[\left(\frac{r_{\text {min }}}{r}\right)^{n}-\left(\frac{r}{r_{\text {min }}}\right)^{n}\right] \cos (n \theta)$
with

$$
B_{n}=\frac{2 \sin (n \pi / 6)}{n \pi\left[\left(\frac{r_{\min }}{r_{\max }}\right)^{n}-\left(\frac{r_{\max }}{r_{\text {min }}}\right)^{n}\right]}
$$

Transient Signal amplitudes drop 1 order for each segment one moves away from the hit segment

Examples: AGATA

- Signal shapes from AGATA detector as function of position
- Simulation using ADL
- (Steepest slope not always clear)
- (remark: segment preamps are inverting)

Weighting potentials: examples

- In gas detector: ions ~1000x slower than electrons
- A Frish grid makes the signal only depending on the fast electrons:
- Better timing resolution
- Higher charge collection efficiencies

Examples: CdZnTe

- Frish grids also of interest in CdZnTe semiconductor detectors:
- CdZnTe Mobility holes $=120 \mathrm{~cm}^{2} / \mathrm{Vs}$
- CdZnTe Mobility electrons $=1350 \mathrm{~cm}^{2} / \mathrm{Vs}$
- Reduced influence of trapping

Examples: GERDA

- Point contact detectors: also very local weighting potential
- Identification of multiple hits via steepest slope method
- Very small capacity \rightarrow low serial noise

Examples: Gerda++

- Point contact detectors: new generation NIM A doi:10.1016/j.nima.2011.10.008
- Sub mm position resolution

Extended Ramo theorem

- Describes detectors in a realistic electronic network.
- In 3 steps:
- 1) Apply the Ramo theorem: Calculate the induced currents in each electrode
- 2) Equivalent electronics scheme:

Proof: see Gatti and Padivini, NIM 193 (1982) 651-653
-Determine the capacitances of your detector,
-Add the current sources found from 1)

- 3) Realistic electronics scheme: Change the above simplified scheme into a realistic model
- Result = realistic signals

3)

Recommended Literature

http://kups.ub.uni-koeln.de/1858/
www.ikp.uni-koeln.de/research/agata/ \rightarrow publications

Makes-Cows-Weighting fields:

