# WEIGHTING POTENTIALS

**Bart Bruyneel** 

CEA Saclay, France



05-09/12/2011 EGAN school, Liverpool

#### **Principle of Signal induction**

- A point charge q at distance z<sub>0</sub> above a grounded metal plate induces a surface charge
- Different positions of q yield different charge distributions
- Here image charges can be used

$$E_z(x, y) = -\frac{qz_0}{2\pi\varepsilon_0(x^2 + y^2 + z_0^2)^{3/2}}$$
  
$$E_x, E_y = 0$$

$$\sigma(x,y) = \varepsilon_0 E_z(x,y)$$
$$Q_{ind} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sigma(x,y) dx dy = -q$$



q

# **Principle of Signal induction**

If we segment the metal plate and keep individual strips grounded:

- Surface charge does not change compared to continuous plate
- The charge on each segment is now depending on position of q
- The movement of charge q induces a current

Method for image charges created for irregular geometries is required

change blate hent is n of q e q  $E_z(x,y) = -\frac{qz_0}{2\pi\varepsilon_0(x^2+y^2+z_0^2)^{3/2}}$   $Q_1(z_0) = \int_{-\infty}^{\infty} \int_{-w/2}^{w/2} \sigma(x,y) dx dy = -\frac{2q}{\pi} \arctan \frac{w}{2z_0}$   $z(t) = z_0 - vt$   $\downarrow$   $I_1(t) = -\frac{dQ_1}{dt} = -\frac{\partial Q_1}{\partial z} \frac{dz}{dt} = \frac{4qw}{\pi[4z(t)^2 + w^2]} \cdot v$ reated quired  $I_1(t) = I_2(t)$   $I_3(t)$  $I_4(t)$ 

# Assumption

Maxwell -> Quasi steady state approximation:

Pauli lectures on physics, Volume 1, chapter 3:

The fields to be considered in this chapter are assumed to change but little during the time required for light to traverse a distance equal to the maximum dimension of the body under consideration. Thus, the finite velocity with which the fields propagate need not be considered.

$$\frac{\partial \mathbf{B}, \mathbf{D}}{\partial t} \simeq 0$$

 $n_{Ge} = 4.0$   $c = 75 \, m/\mu s$   $v_{drift} \simeq 10 \, cm/\mu s$   $d \simeq 10 \, cm$ 

- Allows separation of problem:
  - First calculate path z(t) of free charges
  - Secondly: For each position of the trajectory, calculate the induced charge Q<sub>ind</sub>(t) in the electrode of interest.

# The Shockley-Ramo theorem

• The problem:

 $\nabla^2 \phi(\vec{x}) = -[\rho(\vec{x}) + q\delta(\vec{x} - \vec{x}_0)]/\epsilon$ 

- The superposition principle:
  - Charges / current that flow during power up are not of interest

$$\begin{split} \phi(\vec{x}) &= \phi_0(\vec{x}) + \phi_q(\vec{x}) & \text{with} \\ \swarrow & \nabla^2 \phi_0(\vec{x}) = -\rho(\vec{x})/\epsilon & \phi|_{S_j} = V_j \\ \checkmark & \nabla^2 \phi_q(\vec{x}) = -q\delta(\vec{x} - \vec{x}_0)/\epsilon & \phi|_{S_j} = 0 \end{split}$$

 Signal shapes are independent of the space charge in the detector



#### The Shockley-Ramo theorem

- Consider V the volume excluding all electrodes
- Consider the potentials  $\Phi$ ,  $\Psi$  corresponding to:

| potential X | $\Delta X$                                | $X _{S_j}$     | $\frac{\partial X}{\partial n} _{S_j}$ |
|-------------|-------------------------------------------|----------------|----------------------------------------|
| $\Phi$      | $-q\delta(\vec{x}-\vec{x}_0)/\varepsilon$ | 0              | $-\sigma_{q,j}/arepsilon$              |
| $\Psi$      | 0                                         | $\delta_{i,j}$ | $-	au_j/arepsilon$                     |

• Relate both potentials using Greens 2nd identity:

$$\int_{V} \Phi \Delta \Psi - \Psi \Delta \Phi \ dV = \oint_{S} \Phi \frac{\partial \Psi}{\partial n} - \Psi \frac{\partial \Phi}{\partial n} \ dS$$
$$\stackrel{\checkmark}{=0} = 0$$
$$\int_{V} \Psi \cdot q \delta(\vec{x} - \vec{x}_{0}) \ dV = -\sum_{j} \oint_{S_{j}} \delta_{i,j} \cdot \sigma_{q,j} \ dS$$

$$q\Psi(\vec{x}_0) = -\oint_{S_i} \sigma_{q,i} \ dS = -Q_{ind,i}$$





#### The Shockley-Ramo theorem

 The induced charge Q<sub>qi</sub> on electrode i by a point charge q located at position x<sub>0</sub> is

$$Q_{qi} = -q \cdot \psi_i(\vec{x}_0)$$

- With weighting potential  $\psi_i$  defined by

$$abla^2 \psi_i(\vec{x}) = 0 \qquad \phi|_{S_j} = \delta_{i,j}$$

• The current  $I_{qi}(t)$  to electrode i is then given by

$$I_{qi} = \frac{dQ_{qi}}{dt} = -q \cdot \left(\frac{\partial \Psi_i}{\partial x_0}\frac{dx_0}{dt} + \frac{\partial \Psi_i}{\partial y_0}\frac{dy_0}{dt} + \frac{\partial \Psi_i}{\partial z_0}\frac{dz_0}{dt}\right)$$
$$= q \ \vec{E}_{\Psi i}(\vec{x}_0) \cdot \vec{v}_{drift}$$

• The function  $\vec{E}_{\Psi i} = -\nabla \Psi_i$  is called the **weighting field** 

# Weighting field properties

For a set of electrodes completely enclosing the detector volume V:

The sum of weighting potentials is 1 everywhere on V

$$\Psi(\vec{x}) = \sum_{i} \Psi_i(\vec{x}) \equiv 1$$

• The total current is 0 at any time

$$I_{tot}(t) = \sum_{i} I_{q,i} \propto \nabla \Psi \equiv 0$$



• The total induced charge is 0 at any time

$$Q_{tot}(t) = \sum_{i} Q_{q,i} \equiv 0$$





- (Assumed constant drift velocities)
- Electrons and holes are created in equal amounts, at equal positions: Charge signals always start from 0.
- When all charges are collected, the charge signal has the amplitude equal to the collected charge, but with opposite sign of the collected charge (but it is not a collection process)
- Steepest slope method: The change in slope can be used to calculate the collection time and thus the initial starting position





# Weighting potentials: examples

 Detector Simulation Software ADL: <u>http://www.ikp.uni-koeln.de/research/agata/</u> → Downloads

\_\_\_\_\_ 10 ... 90%

1 ... 9%

\_ 0.1 ... 0.9%

Coaxial detector (6x segmented)

Core weighting potential  $\Psi_0(r) = 1 - \ln \frac{r}{r_{min}} / \ln \frac{r_{max}}{r_{min}}$ Segment weighting pot:  $\psi_1(r, \theta) = \frac{\ln(r/r_{min})}{6\ln(r_{max}/r_{min})}$   $\sum_{n=1}^{\infty} \left[ (r_{min})^n - (r_{min})^n \right]$ 

Transient Signal amplitudes drop 1 order for each segment one moves away from the hit segment



tude

# Weighting potentials: examples

- In gas detector: ions ~1000x slower than electrons
- A Frish grid makes the signal only depending on the fast electrons:
  - Better timing resolution
  - Higher charge collection efficiencies



#### Examples: CdZnTe

- Frish grids also of interest in CdZnTe semiconductor detectors:
  - CdZnTe Mobility holes = 120 cm<sup>2</sup>/Vs
  - CdZnTe Mobility electrons = 1350 cm<sup>2</sup>/Vs
- Reduced influence of trapping



# **Examples: GERDA**

- Point contact detectors: also very local weighting potential
- Identification of multiple hits via steepest slope method
- Very small capacity → low serial noise





# **Extended Ramo theorem**

- Describes detectors in a realistic electronic network.
- In 3 steps:
  - 1) Apply the Ramo theorem:
     Calculate the induced currents in each electrode
  - 2) Equivalent electronics scheme: Proof: see Gatti and Padivini, NIM 193 (1982) 651-653
     -Determine the capacitances of your detector,
     -Add the current sources found from 1)

3)

- 3) Realistic electronics scheme: Change the above simplified scheme into a realistic model
- Result = realistic signals



#### **Recommended Literature**





http://kups.ub.uni-koeln.de/1858/

www.ikp.uni-koeln.de/research/agata/

#### Makes-Cows-Weighting fields:

