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Principle of Signal induction

« Apoint charge q at distance z,

E.(z,y)=— .

above a grounded metal plate o 2meg(2? + Y2 + 25)%/?
induces a surface charge E., Ey=0
« Different positions of q yield
different charge distributions o(z,y)=¢coE.(z,y)
* Here image charges can be used _ _
o q (Gn=/_ [ oteuy=




Principle of Signal induction

If we segment the metal plate

and keep individual strips grounded:

« Surface charge does not change Ez(a:,y)=—27T€0(%,2 f;ﬂ )
compared to continuous plate

« The charge on each segment is
now depending on position of q

- The movement of charge q A1) = 20 — ot
induces a current

w/2 2
1(20) / / o(x,y)dxdy = — 2 arctan —
w/2 T 22

_ Q0 0Ghdx  dqw
Cdt 0z dt 7wldz(t)? 4+ w?

Method for image charges created
for irregular geometries is required
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Assumption

- Maxwell -> Quasi steady state approximation: a]?gD ~ 0
t

Pauli lectures on physics, Volume 1, chapter 3:

The fields to be considered in this chapter are assumed to nge = 4.0
change but little during the time required for light to c=T5m/pus
traverse a distance equal to the maximum dimension of Varipe = 10 cm /1
the body under consideration. Thus, the finite velocity d>~10cm
with which the flelds propagate need not be considered.

= Steady state v

- Allows separation of problem:
- First calculate path z(t) of free charges

- Secondly: For each position of the trajectory,
calculate the induced charge Q, 4(t) in the electrode of interest.



The Shockley-Ramo theorem

- The problem:
V2(Z) = —[p(Z) + q6(Z — To)] /e

- The superposition principle:
- Charges / current that flow during
power up are not of interest

S(F) =  o(T) + (@) with
X V(@) = —p(Z) /e Pls; =V
Vo V20,(3) = —qd(7 — o)/ dls, =0

- Signal shapes are independent of
the space charge in the detector




The Shockley-Ramo theorem

- Consider V the volume excluding all electrodes
- Consider the potentials ®, W corresponding to:

potential X AX X|s, 9x | S;
P —q0(Z —Zo)/e | O | —oq4/¢
v 0 57;,j —Tj/s

- Relate both potentials using Greens 2nd identity:
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The Shockley-Ramo theorem

- The induced charge Q on electrode i
by a point charge q located at position X, is

Qqi = —q - ¥i(To)
- With weighting potential @D@ defined by
Vi) =0 ¢ls; = i
- The current |(t) to electrode i is then given by

=q E\Ifz'(fo) - Udpi ft

- The function Em — —VV, is called the weighting field



-
Weighting field properties

For a set of electrodes completely enclosing the detector volume V-
- The sum of weighting potentials is 1 everywhere on V

— Z U, (%) =

- The total current is O at any time

[tot ZIqZO(v\Ij_O

- The total induced charge is 0 at any time —
Qtot Z Qq T — =0 [_
~—~—~————




Signal formation: planar detector

X e

e X h

10 15 20 time

charge signal has the amplitude equal
to the collected charge, but with
opposite sign of the collected charge

o 5 !
«  (Assumed constant drift velocities) 1 : R
@ o5 : - i
* Electrons and holes are created in o : —Q1
equal amounts, at equal positions: -5 0 ; f
Charge signals always start from 0. 0 ¢ 10, 20 L
« When all charges are collected, the 1 |

(but it is not a collection process) +
[0)
| -

+ Steepest slope method: S 0.02 :
The change in slope can be used to o= 0 5 10 15 20 time
calculate the collection time and thus -0.07 -
the initial starting position 012 -

Segment 1




. planar detector

1oNn

Signal format
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Weighting potentials: examples

- Detector Simulation Software ADL.: Coaxial detector
http.//www.ikp.uni-koeln.de/research/agata/ =» Downloads (6x segmented)

Core weighting potential
Wo(r) =1—In */In Tma

min

Segment weighting pot:

b(r0) = In(r/rmin)

6 In (Tmax/ Tmin)

e () o

2sin(nm/6)

with B, = 7 D
e |(sae)” - Gooee) |
10 30% Transient Signal amplitudes
0.1...0.9% drop 1 order for each

segment one moves away
from the hit segment



Examples: AGATA

Signal shapes from AGATA detector
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Weighting potentials: examples

- In gas detector: ions ~1000x slower than electrons

- A Frish grid makes the signal only depending on the fast electrons:
- Better timing resolution

- Higher charge collection efficiencies ,
J J Weighting

potential

blas  -0O— —O+ preamp
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Examples: CdZnTe

- Frish grids also of interest in CdZnTe semiconductor detectors:
- CdZnTe Mobility holes = 120 cm?/Vs
- CdZnTe Mobility electrons = 1350 cm?/Vs

- Reduced influence of trapping
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e
Examples: GERDA

- Point contact detectors: also very local weighting potential
- ldentification of multiple hits via steepest slope method
- Very small capacity =»low serial noise
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Examples: Gerda++ |

Point contact detectors: new generation
NIM A doi:10.1016/j.nima.2011.10.008
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Extended Ramo theorem

- Describes detectors in a realistic electronic network. ”"P f
’ ol 0 )

- In 3 steps:

- 1) Apply the Ramo theorem:
Calculate the induced currents in each electrode

- 2) Equivalent electronics scheme:
Proof: see Gatti and Padivini, NIM 193 (1982) 651-653
-Determine the capacitances of your detector,
-Add the current sources found from 1)

- 3) Realistic electronics scheme:
Change the above simplified scheme
into a realistic model

- Result = realistic signals
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