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Bloch’s theorem 
The eigenstates of the Hamiltonian 
Where                           for all R in the Bravais lattice, can be chosen in the form of  
a plane wave times a function with periodicity of the Bravias lattice: 
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Properties: 

•           and            are periodic in k space: 

 
 
•  Group velocity v: 

1 Some theory

a�k
2π =

e
i �K·�R = 1

U(�r + �R)=U(�r) (1)

(2)

HΨ =

�

− �2
2m

∆+ U(�r)

�

Ψ= εΨ (3)

(4)

(5)

Ψn,k = e
i�k·�r

un,�k(�r) (6)

(7)

un,�k(�r +
�R) = un,�k(�r) (8)

(9)

Ψn,�k+ �K = Ψn,�k (10)

εn(�k + �K) = εn(�k) (11)

(12)

�vn(�k) =
1

�
�∇�kεn(

�k) (13)

(14)

(15)

References

2

1 Some theory

a�k
2π =

e
i �K·�R = 1

U(�r + �R)=U(�r) (1)

(2)

HΨ =

�

− �2
2m

∆+ U(�r)

�

Ψ= εΨ (3)

(4)

(5)

Ψn,k = e
i�k·�r

un,�k(�r) (6)

(7)

un,�k(�r +
�R) = un,�k(�r) (8)

(9)

Ψn,�k+ �K = Ψn,�k (10)

εn(�k + �K) = εn(�k) (11)

(12)

�vn(�k) =
1

�
�∇�kεn(

�k) (13)

(14)

(15)

References

2

1 Some theory

a�k
2π =

e
i �K·�R = 1

U(�r + �R)=U(�r) (1)

(2)

HΨ =

�

− �2
2m

∆+ U(�r)

�

Ψ= εΨ (3)

(4)

(5)

Ψn,k = e
i�k·�r

un,�k(�r) (6)

(7)

un,�k(�r +
�R) = un,�k(�r) (8)

(9)

Ψn,�k+ �K = Ψn,�k (10)

εn(�k + �K) = εn(�k) (11)

(12)

�vn(�k) =
1

�
�∇�kεn(

�k) (13)

(14)

(15)

References

2

•  Energies           for fixed n 
vary continuously with k 
è n = band index  

•  all distinct values of  
occur for k-values in the  
first Brillouin zone 
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Germanium Band structure 
first Brillouin zone: 
•  Electrons populate minimum  

of conduction band 
•  Holes populate maximum  

of valence band 
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Anisotropic Mobility 
•  Often neighborhood of valence band is quadratic (+ for electrons / - for holes). 

•  By choosing appropriate principle axis, mass tensor M becomes diagonal: 

 
•  èGroup velocity: 

•  Drift velocity is average over population of levels: 

•  Distribution f(k) found by solution of Boltzman equation as balance between 
variation due to field and variation due to scattering 
scattering = interaction with phonons, impurities, defects, other carriers 
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Anisotropic Mobility 

•  At high fields, radial anisotropy is observed 
•  Radial anisotropy induces tangential anisotropy:  

a drift component towards the faster axis  
•  For fields along symmetry axis, no tangential drift components can exist: 

Crystal + E field are then invariant under certain rotations; so must be the drift 

Radial anisotropy,               Tangential anisotropy,         except for E // symmetry axis 
  

E vr 
[010] 

[001] 

[010] 

[001] 
  E//[sym] 

⇓ 
Vd//[sym] 

[100], [110], [111] 

E 

vd 

[010] 

[001] 
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Germanium – Electron mobility 

Chapter 7

Electron Mobility Model

In this chapter, it will be described how the electron mobility parametrization
for specific crystallographic directions can be used to predict the electron drift
velocity at any field strength and at any orientation of the field with respect to
the crystal lattice orientation. The model described here is owing to Nathan
[61] and dates back to the 1960’s. As presented here, it deviates slightly from
the implementation as described by Mihailescu et al. [58] with regard to the
treatment of the valley population.

7.1 Layout of the model

<010>

<001>

<111>

Figure 7.1: Germanium has eight
equivalent minima in the conduc-
tion band, situated at the edge of
the Brillouin zone. A surface of
constant energy is shown to reveal
the ellipsoidal shape of the valleys
around these minima.

For the germanium band structure,
the electrons are populating eight half
ellipsoidal shaped valleys near the edge
of the Brillouin zone along the four equiv-
alent �111� directions as shown in Fig. 7.1
and Fig. 6.3b. With a suitable choice
of primitive cell in k-space these can
be represented as four valleys, the half
ellipsoids on opposite faces in Fig. 7.1
being joint together [54, p.570]. For
each of these four valleys i ∈ [1 · · · 4],
one can apply a linear transformation
�k∗i = αi

1/2�k on the wave vectors �k such
that in the new coordinate system the
ellipsoid valley i is converted into a spher-
ical valley. The tensor αi is called the
electron effective mass tensor. This ten-
sor becomes diagonal when the coordi-
nate axis is chosen to coincide with the

•  Electrons distributed over 4 ellipsoidal valleys 

•  Linear transf.                   makes valley i spherical: 
with Ri appropriate rotation matrices 
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7.2 Parametrization of the model 51

principal axis of the elliptic valley under consideration. In general the tensor
αi is given in terms of the rotation matrices Ri, responsible for aligning the
y-axis of the lab system with the i-th �111� axis by:

αi = RT
i ·




m−1

t 0 0
0 m−1

l 0
0 0 m−1

t



 · Ri (7.1)

The mass values for ml = 1.64 and mt = 0.0819 were taken according to
Mihailescu et al. [58]. The electrical field and the drift velocity transform
then as �E∗

i = αi
1/2 �E and �v∗i = αi

−1/2�v (see [62, p.187]).
Since in �k∗i -space, the valley i becomes spherical, the mobility relation for

this valley in its mass-transformed frame takes on the isotropic form [62, 63]

�v∗i ( �E) = −µ∗(E∗
i ) �E∗

i (7.2)

in which µ∗(E∗) is a scalar quantity only depending on the amplitude of the
effective field strength E∗. The minus sign makes the electrons flow in the
opposite direction of the applied electrical field.

In �k-space, the total drift velocity �vd becomes the weighted average of the
drift velocities associated with the individual valleys. The drift velocity �vi of
valley i contributes �vi = −µ∗(E∗

i )αi
�E, weighted by the relative population

ni of this valley (
�4

i=1 ni = 1). The total drift velocity thus yields:

�vd( �E) = −
4�

i=1

ni µ
∗(E∗

i )αi
�E (7.3)

7.2 Parametrization of the model

It is now possible to identify the effective mobility with the v100 drift velocity.
When the field is oriented along the �100� axis, all four valleys are identically
oriented with respect to the field as seen in Fig. 7.1. Due to this symmetry,
all ni are thus equal to 1/4. Identifying v100 with Eq. 7.3 for this specific
direction then yields

µ∗(E) =
v100(E/Γ0)

Γ0E
(7.4)

in which the constant Γ0 = 2.888 is defined by the mass tensor elements in
Eq. 7.1.

In general, the population of the valleys is governed by the intervalley
scattering rate ν(E∗

i ). The equilibrium valley population can be expressed
as

ni =
ν(E∗

i )−1

�4
k=1 ν(E∗

k)−1
(7.5)

�k∗ = α1/2
i

�k
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•  In       space, the mobility is isotropic: 
with       a scalar function of E* 

•  The field and velocities transform as: 

•  Filling everything in yields:     

�k∗ = α1/2
i

�k
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In �k-space, the total drift velocity �vd becomes the weighted average of the
drift velocities associated with the individual valleys. The drift velocity �vi of
valley i contributes �vi = −µ∗(E∗
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7.2 Parametrization of the model

It is now possible to identify the effective mobility with the v100 drift velocity.
When the field is oriented along the �100� axis, all four valleys are identically
oriented with respect to the field as seen in Fig. 7.1. Due to this symmetry,
all ni are thus equal to 1/4. Identifying v100 with Eq. 7.3 for this specific
direction then yields

µ∗(E) =
v100(E/Γ0)

Γ0E
(7.4)

in which the constant Γ0 = 2.888 is defined by the mass tensor elements in
Eq. 7.1.

In general, the population of the valleys is governed by the intervalley
scattering rate ν(E∗
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as
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The mass values for ml = 1.64 and mt = 0.0819 were taken according to
Mihailescu et al. [58]. The electrical field and the drift velocity transform
then as �E∗
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Germanium – Electron mobility 

Chapter 7

Electron Mobility Model

In this chapter, it will be described how the electron mobility parametrization
for specific crystallographic directions can be used to predict the electron drift
velocity at any field strength and at any orientation of the field with respect to
the crystal lattice orientation. The model described here is owing to Nathan
[61] and dates back to the 1960’s. As presented here, it deviates slightly from
the implementation as described by Mihailescu et al. [58] with regard to the
treatment of the valley population.

7.1 Layout of the model

<010>

<001>

<111>

Figure 7.1: Germanium has eight
equivalent minima in the conduc-
tion band, situated at the edge of
the Brillouin zone. A surface of
constant energy is shown to reveal
the ellipsoidal shape of the valleys
around these minima.

For the germanium band structure,
the electrons are populating eight half
ellipsoidal shaped valleys near the edge
of the Brillouin zone along the four equiv-
alent �111� directions as shown in Fig. 7.1
and Fig. 6.3b. With a suitable choice
of primitive cell in k-space these can
be represented as four valleys, the half
ellipsoids on opposite faces in Fig. 7.1
being joint together [54, p.570]. For
each of these four valleys i ∈ [1 · · · 4],
one can apply a linear transformation
�k∗i = αi

1/2�k on the wave vectors �k such
that in the new coordinate system the
ellipsoid valley i is converted into a spher-
ical valley. The tensor αi is called the
electron effective mass tensor. This ten-
sor becomes diagonal when the coordi-
nate axis is chosen to coincide with the
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principal axis of the elliptic valley under consideration. In general the tensor
αi is given in terms of the rotation matrices Ri, responsible for aligning the
y-axis of the lab system with the i-th �111� axis by:
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The mass values for ml = 1.64 and mt = 0.0819 were taken according to
Mihailescu et al. [58]. The electrical field and the drift velocity transform
then as �E∗
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in which µ∗(E∗) is a scalar quantity only depending on the amplitude of the
effective field strength E∗. The minus sign makes the electrons flow in the
opposite direction of the applied electrical field.

In �k-space, the total drift velocity �vd becomes the weighted average of the
drift velocities associated with the individual valleys. The drift velocity �vi of
valley i contributes �vi = −µ∗(E∗
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It is now possible to identify the effective mobility with the v100 drift velocity.
When the field is oriented along the �100� axis, all four valleys are identically
oriented with respect to the field as seen in Fig. 7.1. Due to this symmetry,
all ni are thus equal to 1/4. Identifying v100 with Eq. 7.3 for this specific
direction then yields

µ∗(E) =
v100(E/Γ0)

Γ0E
(7.4)

in which the constant Γ0 = 2.888 is defined by the mass tensor elements in
Eq. 7.1.

In general, the population of the valleys is governed by the intervalley
scattering rate ν(E∗

i ). The equilibrium valley population can be expressed
as

ni =
ν(E∗

i )−1

�4
k=1 ν(E∗

k)−1
(7.5)
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then as �E∗
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in which µ∗(E∗) is a scalar quantity only depending on the amplitude of the
effective field strength E∗. The minus sign makes the electrons flow in the
opposite direction of the applied electrical field.
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It is now possible to identify the effective mobility with the v100 drift velocity.
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(7.4)

in which the constant Γ0 = 2.888 is defined by the mass tensor elements in
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then as �E∗
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in which µ∗(E∗) is a scalar quantity only depending on the amplitude of the
effective field strength E∗. The minus sign makes the electrons flow in the
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It is now possible to identify the effective mobility with the v100 drift velocity.
When the field is oriented along the �100� axis, all four valleys are identically
oriented with respect to the field as seen in Fig. 7.1. Due to this symmetry,
all ni are thus equal to 1/4. Identifying v100 with Eq. 7.3 for this specific
direction then yields
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in which the constant Γ0 = 2.888 is defined by the mass tensor elements in
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Summary: 
•   v100 drift velocity defines 
•  Intervalley scattering rate defines ni  

Parametrization: 
•                      with                                    .  

Parameters can be obtained by fit to v111 and/or v110 drift velocity data 

•    

Parameters currently used in ADL:  
•  See file “Template_DRIFT_GE.txt” 
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then as �E∗
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in which µ∗(E∗) is a scalar quantity only depending on the amplitude of the
effective field strength E∗. The minus sign makes the electrons flow in the
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It is now possible to identify the effective mobility with the v100 drift velocity.
When the field is oriented along the �100� axis, all four valleys are identically
oriented with respect to the field as seen in Fig. 7.1. Due to this symmetry,
all ni are thus equal to 1/4. Identifying v100 with Eq. 7.3 for this specific
direction then yields
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in which the constant Γ0 = 2.888 is defined by the mass tensor elements in
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Nathan [61] experimentally observed at intermediate field strengths the

power dependence

ν(E) ∝ Eη
(7.6)

with η = 0.87, while Reik et al. [64] derived for Maxwellian electron distribu-

tions the theoretical upper limit η = 1. For its parametrization, a log-linear

electric field dependence is satisfactory:

η(E) = η0 + b ln(E/Eref ) (7.7)

The parameters η0 and b in Eq. 7.7, together with the parametrization

of the v100 through Eq. 7.4 completely defines the electron mobility vari-

ation given by Eq. 7.3. The values obtained from our detector yielded:

η0 = 0.496, b = 0.0296 for Eref = 1200V/cm while the v111 experimen-

tal data from Mihailescu et al. [58] could be well reproduced in the region

of interest (100-3000V/cm) with the fit parameters η0 = 0.422, b = 0.201

for Eref = 1200V/cm.

The rather large differences in η predicted by the different data suggest

the necessity for experimental determination of these parameters for detec-

tors with different purity separately rather than to rely on literature data.

The same conclusion can be drawn from Schweitzer et al. [65], which studied

the excess n1 of the cold valley 1 over a uniform distribution ni = n0 = 1/4

for the case in which the field is aligned with the �111� direction of val-

ley 1. In this case, the three hot valleys are equally strong populated with

an amount of (1 − n1)/3. Identification of Eq. 7.3, in specific for the �111�
direction of valley 1, yields an expression for n1(E):

n1(E) =
v111(E) − Γ

2
2 µ∗(Γ2E) · E

Γ
2
1 µ∗(Γ1E) · E − Γ

2
2 µ∗(Γ2E) · E

(7.8)

In which again Γ1 = 0.7809 and Γ2 = 3.305 are constants defined by the mass

tensor elements in Eq. 7.1. The study of Schweitzer et al. was performed on

n-type germanium samples with varying purity. The results – also including

new data from [58] and chapter 9 – are shown in Fig. 7.2. The new
n1−n0

n0

values were extracted from the electron mobility data parameters in Table 6.1

using Eq. 7.8.

The drift velocity as function of the orientation of the electrical field (for

E fixed at 1200 V/cm and using the parametrization of a 12-fold segmented

HPGe detector) is shown in Fig. 7.3. For the radial component, the major

deviation from uniformity comes from the strong difference of the mobil-

ity along the �111� direction. Here it is worth mentioning that the θ and φ
components behave differently than for the hole mobility (see for comparison

Fig. 8.5). In the coaxial part of the detector, the electrical field is restricted

to the θ = π/2 plane. For such fields, the vθ component of the drift velocity

is always zero, while the vφ component will always point towards the near-

est �100� direction when following the drift velocity direction. Since electron

6.2 Modeling the Mobility 46

on the k-axis correspond to the symmetry points indicated in Fig. 6.3a.
Even for high external fields, interactions with the lattice vibrations

(phonons) will prevent that energy levels can be reached far from equilib-
rium. In Fig. 6.3b, only the band structure in the close vicinity of the energy
gap is of importance (locations where free electrons and holes are situated are
indicated). The particular shape of these energy bands near these extrema
predict preferential directions in which the electrons and holes are easier to
accelerate by external fields through effective masses [54, p.228, 568]. It is
the dependency of these effective masses upon the lattice orientation which
forms the basis for the observed anisotropic mobilities.

For a fixed electrical field strength, both the projection of the drift veloc-
ity in the field direction and the drift component perpendicular to the field
is depending on the field orientation with respect to the crystal lattice. The
drift velocity anisotropy in both components are referred to as longitudinal
anisotropy and transverse anisotropy respectively.

Due to the crystal lattice symmetry in germanium, in three directions –
the crystallographic �100�, �110� and �111� directions – the mobility however
always has to be aligned with the electrical field: If the electrical field is
oriented along a symmetry axis, the crystal plus field becomes invariant
under a specific rotation. Therefore, the drift velocity necessarily also has
to show this invariance. Consequently, the drift velocity has to be aligned
with the symmetry axis.

Along symmetry directions, we therefore obtain direct information on the
longitudinal anisotropy. Experimental data on the longitudinal anisotropy
vl in these specific directions can be found in literature. This mobility data
can be well fitted in any principal crystallographic direction l with the para-
metrization reported by Knoll [31, p.423]:

vl =
µ0E

(1 + ( E
E0

)β)
1
β

− µnE (6.2)

At low fields, the mobility becomes isotropic and therefore the mobility fit
parameter µ0 is expected to become independent of the crystallographic
direction. For hot electrons, the departure from a linear vl − E relation
is modeled through the parameters E0 and β. At high fields, Mihailescu
et al. [58] have added the term µnE to account for the Gunn effect that
was observed by Ottaviani et al. [59] for field strengths above 3 kV/cm at
80K. However, this effect is insignificant in our detector operating with
field strengths (0.1-3 kV/cm) below the critical field strength as seen from
Fig. 6.1. Therefore, this term is not necessary. Parametrization values on
experimental longitudinal anisotropy data are summarized in Table 6.1.

The parametrization given in Table 6.1 does not only fix the mobility in
two distinct directions of the electrical field but it determines the mobility
in any direction. The anisotropy in the general case is related to the longi-
tudinal anisotropy in the �111� and �100� direction and is in fact completely
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principal axis of the elliptic valley under consideration. In general the tensor
αi is given in terms of the rotation matrices Ri, responsible for aligning the
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The mass values for ml = 1.64 and mt = 0.0819 were taken according to
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then as �E∗
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in which µ∗(E∗) is a scalar quantity only depending on the amplitude of the
effective field strength E∗. The minus sign makes the electrons flow in the
opposite direction of the applied electrical field.

In �k-space, the total drift velocity �vd becomes the weighted average of the
drift velocities associated with the individual valleys. The drift velocity �vi of
valley i contributes �vi = −µ∗(E∗
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It is now possible to identify the effective mobility with the v100 drift velocity.
When the field is oriented along the �100� axis, all four valleys are identically
oriented with respect to the field as seen in Fig. 7.1. Due to this symmetry,
all ni are thus equal to 1/4. Identifying v100 with Eq. 7.3 for this specific
direction then yields

µ∗(E) =
v100(E/Γ0)

Γ0E
(7.4)

in which the constant Γ0 = 2.888 is defined by the mass tensor elements in
Eq. 7.1.

In general, the population of the valleys is governed by the intervalley
scattering rate ν(E∗

i ). The equilibrium valley population can be expressed
as

ni =
ν(E∗

i )−1
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η(E) = η0 + η1 logE/E0 + η2(logE/E0)2
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Anisotropy in mobility 

•  Longitudinal and 
tangential components of 
drift velocity as function 
of orientation of the field 
(1200 V/cm) 

•  Electrons vr mainly 
slower near [111],  

•  Holes vr mainly faster 
near [100] 

•  Tangential components: 
-0 along symmetry axes 
-pointing towards nearest 
[100] axis 

El
ec
tr
on
s	


X Y, Z,

[001] 

[010] 

X Y, Z,

[001] 

[010] 

[100] 

H
ol
es
	


Xfit Yfit, Zfit,

[001] 

[010] 

Xfit Yfit, Zfit,

[001] 

[010] 

[100] 



Germanium – Hole mobility 
•  Maximum of conduction band  

in middle of 1st brillouin zone 
•  Band structure there is 2-fold degenerate  

into a heavy (0.3m0) and a light hole (0.04m0) band. 
•  Light hole band can be neglected  

due to smaller density of states 
•  Next band is 0.29eV lower : not accessible  

(see streaming motion model) 

•  Streaming motion: 
- energy loss by acoustic phonons is negligible 
- holes accelerate up to 0.037eV, then 
- optical phonon emission is very likely.  
- the hole loses all its energy in this  
- the streaming motion is repeated X Y, Z,

Γ
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Germanium & phonons 

 
 
 
 
Proof for streaming motion picture 
and Drifted Maxwellian distribution 
 
pictures  taken from: 
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far above the threshold for emitting optical phonons. In addition, a good cor-

respondence between simulation and experiment is achieved by only taking

into account the heavy hole band in the Monte Carlo calculation performed

by Reggiani et al. [60]. Therefore it is well justified that the heavy hole band

is solely responsible for the anisotropic mobility.

Our new model is backed by experiments by Pinson et al. [66] and Alba et

al. [67]. Since germanium has the property of being transparent to infrared

light, the population of the heavy hole band could be studied by measuring

the amount of light that is absorbed as a function of its wavelength. This

led to the conclusion that the heavy holes, accelerated by an electric field,

are trapped in the so called streaming motion: Since the energy loss to

acoustical phonon modes are negligible, the holes are accelerated in the field

until their energy becomes 0.037 eV. At that point their energy is sufficiently

large to emit an optical phonon, a process which is very likely to happen. By

emitting an optical phonon, the hole typically loses most of its energy as it

scatters back into the near-k = 0 region from where it resumes acceleration

in the field direction and a new cycle is started.

From this picture of streaming motion, the properties of the probability

distribution function for finding a heavy hole in a specific �k-state can be

predicted. The distribution should be peaking in the direction in which �k
is parallel to the electrical field. As will be shown, this does not exclude

the existence of a transversal anisotropy. Secondly, this distribution should

drop fast to zero above the energy of the optical phonon branch at 0.037 eV.

Empirically it is found that a drifted Maxwellian distribution offers a

good description for the measured wave vector distributions of heavy holes at

field strengths in the range of 130-2150V/cm, relevant for our Ge-detectors.

This distribution takes on the form (e.g. Conwell [62, p.71])

f(�k;�k0) = a · exp(−�2
(�k − �k0)

2/2mkbTh) (8.1)

in which a is a normalization constant and m the heavy hole effective mass.

The temperature of the holes is Th and the mean wave vector is �k0. Th was

observed to be less than the lattice temperature of 77 K. The term hot holes

is therefore somewhat misleading. The kinetic energy �2k2
0/2m associated

with k0 exceeded the thermal energy from 1.2 kbTh at 130V/cm to 4.1 kbTh

at 2150 V/cm. From the model on the streaming motion, we assume that

�k0(k0, θ0,φ0) will be aligned with the applied field. Therefore the complete

distribution Eq. 8.1 is defined by only two parameters, k0 and Th, which will

again be obtained from the v100 and v111 hole mobility data.

The model for the energy �(�k) dependence of heavy holes in germanium

is taken from Reggiani et al. [60, 63]:

�(�k) = A · �2k2

2m0
· [1− q(θ,φ)] (8.2)

�k∗ = α1/2
i

�k

αi
�E = Γ0Ex�ex

η(E) = η0 + η1 logE/E0 + η2(logE/E0)2

�k0// �E
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in which m0 is the free-electron mass and A = 13.35 is a germanium-specific
constant. q(θ,φ) describes the warping of the constant energy surfaces, and
θ and φ are the polar and azimuthal angles of �k with respect to the frame
defined by the three equivalent �100� axis:

q(θ,φ) = [b2 +
c2

4
· (sin(θ)4 sin(2φ)2 + sin(2θ)2)]1/2 (8.3)

With b = 0.6367 and c = 0.9820 germanium specific parameters. Eq. 8.2,
and Eq. 8.3 describe mathematically the constant energy surface shown in
Fig. 8.1. The drift velocity can then be expressed by combining the distribu-
tion function of the heavy hole concentration (Eq. 8.1) and the �k dependence
of a specific energy state (Eq. 8.2) yielding

�vd =
�

aπ3/2
√

2mkbTh

�
�v(�k) f(�k;�k0) d�k (8.4)

in which �v(�k) is the velocity associated with a specific �k-state:

�v(�k) =
1
�

�∇k�(�k) (8.5)

The gradient �∇k�(�k) is thus according to Eq. 8.5 in its spherical coordi-
nates given by:

�∇�k =
A�2k

m0
(1− q(θ,φ))

�∇�θ =
−c2A�2k

8m0q(θ,φ)
(2 sin(θ)3 cos(θ) sin(2φ)2 + sin(4θ)) (8.6)

�∇�φ =
−c2A�2k

8m0q(θ,φ)
sin(θ)3 sin(4φ)

8.2 Theoretical results on the hole model

The numerical evaluation of the three dimensional integral in Eq. 8.4 is still
very computer time consuming. Fortunately, the k-dependence can be inte-
grated over explicitly and only a double integration remains to be performed.
To simplify the notation, the constant factor �/

√
2mkbTh in Eq. 8.1 will be

absorbed in the definition of k and k0 throughout the rest of the text. In
this way, k0 could be physically interpreted as a solid-state equivalent to the
Mach number in fluid mechanics.

In order to perform the integration in Eq. 8.4, the integrand need to
be expressed in Cartesian coordinates. Eq. 8.4 can then be written more

X Y, Z,

Γ

[001] 

[010] 

[100] 
8.2 Theoretical results on the hole model 57

in which m0 is the free-electron mass and A = 13.35 is a germanium-specific
constant. q(θ,φ) describes the warping of the constant energy surfaces, and
θ and φ are the polar and azimuthal angles of �k with respect to the frame
defined by the three equivalent �100� axis:

q(θ,φ) = [b2 +
c2

4
· (sin(θ)4 sin(2φ)2 + sin(2θ)2)]1/2 (8.3)

With b = 0.6367 and c = 0.9820 germanium specific parameters. Eq. 8.2,
and Eq. 8.3 describe mathematically the constant energy surface shown in
Fig. 8.1. The drift velocity can then be expressed by combining the distribu-
tion function of the heavy hole concentration (Eq. 8.1) and the �k dependence
of a specific energy state (Eq. 8.2) yielding

�vd =
�

aπ3/2
√

2mkbTh

�
�v(�k) f(�k;�k0) d�k (8.4)

in which �v(�k) is the velocity associated with a specific �k-state:

�v(�k) =
1
�

�∇k�(�k) (8.5)

The gradient �∇k�(�k) is thus according to Eq. 8.5 in its spherical coordi-
nates given by:

�∇�k =
A�2k

m0
(1− q(θ,φ))

�∇�θ =
−c2A�2k

8m0q(θ,φ)
(2 sin(θ)3 cos(θ) sin(2φ)2 + sin(4θ)) (8.6)

�∇�φ =
−c2A�2k

8m0q(θ,φ)
sin(θ)3 sin(4φ)

8.2 Theoretical results on the hole model

The numerical evaluation of the three dimensional integral in Eq. 8.4 is still
very computer time consuming. Fortunately, the k-dependence can be inte-
grated over explicitly and only a double integration remains to be performed.
To simplify the notation, the constant factor �/

√
2mkbTh in Eq. 8.1 will be

absorbed in the definition of k and k0 throughout the rest of the text. In
this way, k0 could be physically interpreted as a solid-state equivalent to the
Mach number in fluid mechanics.

In order to perform the integration in Eq. 8.4, the integrand need to
be expressed in Cartesian coordinates. Eq. 8.4 can then be written more

8.2 Theoretical results on the hole model 57

in which m0 is the free-electron mass and A = 13.35 is a germanium-specific
constant. q(θ,φ) describes the warping of the constant energy surfaces, and
θ and φ are the polar and azimuthal angles of �k with respect to the frame
defined by the three equivalent �100� axis:

q(θ,φ) = [b2 +
c2

4
· (sin(θ)4 sin(2φ)2 + sin(2θ)2)]1/2 (8.3)

With b = 0.6367 and c = 0.9820 germanium specific parameters. Eq. 8.2,
and Eq. 8.3 describe mathematically the constant energy surface shown in
Fig. 8.1. The drift velocity can then be expressed by combining the distribu-
tion function of the heavy hole concentration (Eq. 8.1) and the �k dependence
of a specific energy state (Eq. 8.2) yielding

�vd =
�

aπ3/2
√

2mkbTh

�
�v(�k) f(�k;�k0) d�k (8.4)

in which �v(�k) is the velocity associated with a specific �k-state:

�v(�k) =
1
�

�∇k�(�k) (8.5)

The gradient �∇k�(�k) is thus according to Eq. 8.5 in its spherical coordi-
nates given by:

�∇�k =
A�2k

m0
(1− q(θ,φ))

�∇�θ =
−c2A�2k

8m0q(θ,φ)
(2 sin(θ)3 cos(θ) sin(2φ)2 + sin(4θ)) (8.6)

�∇�φ =
−c2A�2k

8m0q(θ,φ)
sin(θ)3 sin(4φ)

8.2 Theoretical results on the hole model

The numerical evaluation of the three dimensional integral in Eq. 8.4 is still
very computer time consuming. Fortunately, the k-dependence can be inte-
grated over explicitly and only a double integration remains to be performed.
To simplify the notation, the constant factor �/

√
2mkbTh in Eq. 8.1 will be

absorbed in the definition of k and k0 throughout the rest of the text. In
this way, k0 could be physically interpreted as a solid-state equivalent to the
Mach number in fluid mechanics.

In order to perform the integration in Eq. 8.4, the integrand need to
be expressed in Cartesian coordinates. Eq. 8.4 can then be written more



Germanium – Hole mobility 

• Approximate solution to                                             : 
 

•  Let                , then  

•  The Anisotropic “amplitudes” are given by 

•  With      from             (                     ) 

•  v100(E) and v111(E) determine model. 

 

8.2 Theoretical results on the hole model 57

in which m0 is the free-electron mass and A = 13.35 is a germanium-specific
constant. q(θ,φ) describes the warping of the constant energy surfaces, and
θ and φ are the polar and azimuthal angles of �k with respect to the frame
defined by the three equivalent �100� axis:

q(θ,φ) = [b2 +
c2

4
· (sin(θ)4 sin(2φ)2 + sin(2θ)2)]1/2 (8.3)

With b = 0.6367 and c = 0.9820 germanium specific parameters. Eq. 8.2,
and Eq. 8.3 describe mathematically the constant energy surface shown in
Fig. 8.1. The drift velocity can then be expressed by combining the distribu-
tion function of the heavy hole concentration (Eq. 8.1) and the �k dependence
of a specific energy state (Eq. 8.2) yielding

�vd =
�

aπ3/2
√

2mkbTh

�
�v(�k) f(�k;�k0) d�k (8.4)

in which �v(�k) is the velocity associated with a specific �k-state:

�v(�k) =
1
�

�∇k�(�k) (8.5)

The gradient �∇k�(�k) is thus according to Eq. 8.5 in its spherical coordi-
nates given by:

�∇�k =
A�2k

m0
(1− q(θ,φ))

�∇�θ =
−c2A�2k

8m0q(θ,φ)
(2 sin(θ)3 cos(θ) sin(2φ)2 + sin(4θ)) (8.6)

�∇�φ =
−c2A�2k

8m0q(θ,φ)
sin(θ)3 sin(4φ)

8.2 Theoretical results on the hole model

The numerical evaluation of the three dimensional integral in Eq. 8.4 is still
very computer time consuming. Fortunately, the k-dependence can be inte-
grated over explicitly and only a double integration remains to be performed.
To simplify the notation, the constant factor �/

√
2mkbTh in Eq. 8.1 will be

absorbed in the definition of k and k0 throughout the rest of the text. In
this way, k0 could be physically interpreted as a solid-state equivalent to the
Mach number in fluid mechanics.

In order to perform the integration in Eq. 8.4, the integrand need to
be expressed in Cartesian coordinates. Eq. 8.4 can then be written more

8.3 A practical approximation 60

Their dependence on the mean wave number k0 was obtained by fitting
Eq. 8.14 to the true solution, Eq. 8.7. This yielded:

Λ(k0) = −0.01322k0 + 0.41145k2
0 − 0.23657k3

0 + 0.04077k4
0 (8.15)

Ω(k0) = 0.006550k0 − 0.19946k2
0 + 0.09859k3

0 − 0.01559k4
0 (8.16)

The choice of the reduced k0 value still has to be related to the experi-
mentally observed longitudinal anisotropy. To do so, it is assumed that for
fixed electrical field strengths, k0 is independent of the field orientation such
that to first order, k0 is function of |E| only. Indications for this are the rel-
atively small differences observed by Pinson et al. [66, Fig.13] at 800 V/cm
between the experimentally determined distributions for fields aligned with
the �111� and �100� directions. Also the nearly orientation independent
power loss [66, Fig.16] to both acoustical and optical phonons is a further
indication. By evaluating the coordinates for the special case of the �111�
direction in Eq. 8.14, the expression

1.33Λ(k0) = [v100 − v111]/v100 (8.17)

is obtained. Eq. 8.17, in combination with Eq. 8.15 gives us implicitly k0 as
function of vrel = v111/v100. For the region of interest (the fit was performed
for k0 in the range between 0.3 and 1.5), this dependence can be expressed
explicitly by:

k0(vrel) = 9.2652 − 26.3467vrel + 29.6137v2
rel − 12.3689v3

rel (8.18)

This provides a usefull relationship to deduce k0 from experimental values
as listed in Table 6.1.

The low field isotropic limit is well predicted by the model. For low
fields, Λ and Ω approach zero in Fig. 8.2 as k0 becomes small and therefore
the model becomes isotropic as the distribution Eq. 8.1 becomes Maxwellian
again (k0 = 0). The mobility behavior at high fields can be tested on the
experimental v110 data. The ratio between Λ and Eq. 8.17 in the approxi-
mation to the true solution becomes independent of k0:

v100 − v111

v100 − v110
= 1.33 (8.19)

This relation was verified in Fig. 8.3 where the models prediction on the
v110 is compared to the experimental data from Reggiani et al. [60]. Also
the best fit corresponding to the values in Table 6.1B are shown for the
other two crystallographic directions. Good agreement is achieved between
experiment and the model description.

It is worth mentioning that the data from Reggiani et al. was obtained
under optimized laboratory conditions employing thin germanium samples
(0.2 . . . 0.8mm) which were specially prepared and cut with respect to their
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explicit expressions for the first members of the solution to integral Eq. 8.10
are obtained:

I0(x) =
√

π

2
(1 + erf(x))

I1(x) =
√

π

2
x(1 + erf(x)) +

1
2

exp(−x2)

I2(x) =
√

π

2
(x2 +

1
2
)(1 + erf(x)) +

1
2
x exp(−x2)

I3(x) =
√

π

2
(x3 +

3x

2
)(1 + erf(x)) +

1
2
(x2 + 1) exp(−x2) (8.12)

I4(x) =
√

π

2
(x4 + 3x2 +

3
4
)(1 + erf(x)) +

1
2
(x3 +

5x

2
) exp(−x2)

An alternative and non-recursive solution to Eq. 8.10 was found by sub-
stitution of y = k − x and by expanding the term (y + x)n in its binomial
form. The following general solution is obtained:

In(x) =
1
2

n�

m=0

�
n

m

�
xn−m[Γ(

m + 1
2

)+(−1)m · sgn(x) ·γ(
m + 1

2
, x2)] (8.13)

which expresses that, using the sign function sgn, the integral can be ex-
panded in terms of the complete and incomplete gamma functions Γ(x) and
γ(x, y), respectively.

Besides the integral I3, also other integrals of the type In show up nat-
urally when taking other momenta of the distribution Eq. 8.1. For example
in calculating the average hole energy, the integral I4 would be needed.

8.3 A practical approximation

Although the numerical evaluation of the two-dimensional integral in Eq. 8.7
is feasible, its implementation in a simulation code would still slow down
the computation considerably. Therefore a fit function had to be found for
this integral. The following functions, inspired by Eq. 8.6, provide a good
approximation for Eq. 8.7 for k0 in the range of interest (k0 < 3) using
the �k0(k0, θ0,φ0) components of the mean wave vector (which has the same
orientation as the electrical field �E(E, θ0,φ0)):

vr = v100(E)[1− Λ(k0)(sin(θ0)4 sin(2φ0)2 + sin(2θ0)2)]

vθ = v100(E)Ω(k0)[2 sin(θ0)3 cos(θ0) sin(2φ0)2 + sin(4θ0)] (8.14)

vφ = v100(E)Ω(k0)sin(θ0)3 sin(4φ0)

The functions Λ and Ω correspond to the relative difference in radial ve-
locity Λ = [v100 − v110]/v100 and the relative tangential velocity Ω =
vφ(φ0 = π

8 ; θ0 = π
2 )/v100. They govern the amplitude of the anisotropy.
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is obtained. Eq. 8.17, in combination with Eq. 8.15 gives us implicitly k0 as
function of vrel = v111/v100. For the region of interest (the fit was performed
for k0 in the range between 0.3 and 1.5), this dependence can be expressed
explicitly by:

k0(vrel) = 9.2652 − 26.3467vrel + 29.6137v2
rel − 12.3689v3

rel (8.18)

This provides a usefull relationship to deduce k0 from experimental values
as listed in Table 6.1.

The low field isotropic limit is well predicted by the model. For low
fields, Λ and Ω approach zero in Fig. 8.2 as k0 becomes small and therefore
the model becomes isotropic as the distribution Eq. 8.1 becomes Maxwellian
again (k0 = 0). The mobility behavior at high fields can be tested on the
experimental v110 data. The ratio between Λ and Eq. 8.17 in the approxi-
mation to the true solution becomes independent of k0:

v100 − v111

v100 − v110
= 1.33 (8.19)

This relation was verified in Fig. 8.3 where the models prediction on the
v110 is compared to the experimental data from Reggiani et al. [60]. Also
the best fit corresponding to the values in Table 6.1B are shown for the
other two crystallographic directions. Good agreement is achieved between
experiment and the model description.

It is worth mentioning that the data from Reggiani et al. was obtained
under optimized laboratory conditions employing thin germanium samples
(0.2 . . . 0.8mm) which were specially prepared and cut with respect to their



Example: Hole trajectories 
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on the k-axis correspond to the symmetry points indicated in Fig. 6.3a.
Even for high external fields, interactions with the lattice vibrations

(phonons) will prevent that energy levels can be reached far from equilib-
rium. In Fig. 6.3b, only the band structure in the close vicinity of the energy
gap is of importance (locations where free electrons and holes are situated are
indicated). The particular shape of these energy bands near these extrema
predict preferential directions in which the electrons and holes are easier to
accelerate by external fields through effective masses [54, p.228, 568]. It is
the dependency of these effective masses upon the lattice orientation which
forms the basis for the observed anisotropic mobilities.

For a fixed electrical field strength, both the projection of the drift veloc-
ity in the field direction and the drift component perpendicular to the field
is depending on the field orientation with respect to the crystal lattice. The
drift velocity anisotropy in both components are referred to as longitudinal
anisotropy and transverse anisotropy respectively.

Due to the crystal lattice symmetry in germanium, in three directions –
the crystallographic �100�, �110� and �111� directions – the mobility however
always has to be aligned with the electrical field: If the electrical field is
oriented along a symmetry axis, the crystal plus field becomes invariant
under a specific rotation. Therefore, the drift velocity necessarily also has
to show this invariance. Consequently, the drift velocity has to be aligned
with the symmetry axis.

Along symmetry directions, we therefore obtain direct information on the
longitudinal anisotropy. Experimental data on the longitudinal anisotropy
vl in these specific directions can be found in literature. This mobility data
can be well fitted in any principal crystallographic direction l with the para-
metrization reported by Knoll [31, p.423]:

vl =
µ0E

(1 + ( E
E0

)β)
1
β

− µnE (6.2)

At low fields, the mobility becomes isotropic and therefore the mobility fit
parameter µ0 is expected to become independent of the crystallographic
direction. For hot electrons, the departure from a linear vl − E relation
is modeled through the parameters E0 and β. At high fields, Mihailescu
et al. [58] have added the term µnE to account for the Gunn effect that
was observed by Ottaviani et al. [59] for field strengths above 3 kV/cm at
80K. However, this effect is insignificant in our detector operating with
field strengths (0.1-3 kV/cm) below the critical field strength as seen from
Fig. 6.1. Therefore, this term is not necessary. Parametrization values on
experimental longitudinal anisotropy data are summarized in Table 6.1.

The parametrization given in Table 6.1 does not only fix the mobility in
two distinct directions of the electrical field but it determines the mobility
in any direction. The anisotropy in the general case is related to the longi-
tudinal anisotropy in the �111� and �100� direction and is in fact completely

�k∗ = α1/2
i

�k

αi
�E = Γ0Ex�ex

η(E) = η0 + η1 logE/E0 + η2(logE/E0)2

�k0// �E

v100, v111

References
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Hole trajectories for homogeneous starting positions 
around the core electrode. Every 25ns a point was 
plotted on the trajectory 



Measuring the crystal axis 
• 400kBq Am source + 

• Lead Collimator: ∅ 1.5mm X 1cm 

• Front Scan at ∅ 4.7cm: 300 cts/s  

• Fitfunction Risetime(θ) =  

A.[1+R4cos(θ- θ4)].[1+R2cos(θ- θ2)] 
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Figure 8.3: Experimental data on the drift velocity along the three crystal
symmetry axis as taken from [60]. The longitudinal velocity component is
clearly anisotropic. The solid lines to the v100 and v111 data correspond to
the optimum fit obtained using Eq. 6.2. The values obtained by the fit are
listed in Table 6.1. The solid line through the v110 data is the prediction by
our model and using the v100 and v111 fitted curves.



But what at boundaries? 
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•  Particles are trapped to  

the surface of the interface 
•  Mobility at interface 2 orders lower 
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