# **Production and identification of RIB** at relativistic energies

#### P.Boutachkov Technische Universität Darmstadt

**EGAN** school



December 4, 2012



### **Production of radiative beams**



#### **Production of RIB, fragmentation vs. fission.**









γ-spectroscopy at GSI



## History







# **y-spectroscopy at relativistic energies**

<sup>112</sup>Sn →Au







# **GSI projectile FRagment Separator (FRS)**

TOF through FRS ~ 300ns L~70m



#### **S2-detectors**



Dec 2012

Helmholtz International Center

### **Time Projection Chambers(TPC)**





http://www-wnt.gsi.de/frs/index.asp



#### **Scintillators**



$$\Delta T = x/v_0 - (L-x)/v_0 = 2x/v_0$$
  

$$\Delta T(SCI21L-SCI41L) + \Delta T(SCI21R-SCI41R)$$
  

$$= x/v_0 + TOF(S2-S4) + ... + (L-x)/v_0 + TOF(S2-S4) ...$$
  

$$\sim TOF(S2-S4)$$





#### **Finger detector**



- Time aliment
- Amplitude cut using QDC data
- Selecting the "proper hit"
   from the multi-hit TDC data



 $\Delta X=13 \text{ mm}$ 





#### **S4-detectors**







**MUSIC** 



 $\Delta E/\Delta x \sim z^2/\beta f(\beta)$ 

measure  $\Delta E 8$  times



#### Z-drift



# Scattering experiment at 150 MeV/u



#### Scattering chamber

TA-TOF-START 0.5 mm BC 420 12 PMT

> TA-XY DSSSD 58 x 58 mm<sup>2</sup> 32 x 32 strips







#### Fast timing



More PMTs ->

**Better time resolution** 

TOF start and stop 32 PMTs on BC-420 CFDs+TDC

Needs: Very good position info (tracking) for correction





# Lund York Cologne CAlorimeter



2 mm BC 420 32 PMT

#### - 32 x 32 strips

- Active area 58 x 58 mm<sup>2</sup>
- Interstrip distance : 75 µm
- thickness: 300 µm













long



#### LYCCA identification for mass A≈80

#### **FRS** identification LYCCA identification 37.5 B00 Ľ 84Kr Š 83,84Br 36.5 ш 35.5 34.5 2.5 2.55 2.4 2.45 E / MeV A/Q ToF Mean Diagonal RMS $\frac{\Delta Z}{2} = 0.34$ 800 E projection = 0.80= 0.4Ζ

Z separation similar for LYCCA and FRS detectors  $\blacktriangleright$  Mass separation achieved with LYCCA for A $\approx$ 80-100

(depending on target & degrader thickness etc.)

LYCCA identification efficiency currently 50-60% H



# **Doppler correction**

$$\mathsf{E}_{\gamma}^{\,\mathrm{cm}} = \gamma \,\mathsf{E}_{\gamma}^{\,\mathrm{lb}} (1 - \beta \,\cos\,\theta^{\mathrm{lb}})$$

XY-Target, XY-LYCCA DSSSD Wall,  $E_{\gamma}^{lb}(X,Y,Z)$ -AGATA  $\rightarrow \theta^{lb}$ 

LYCCA TOF  $\rightarrow \beta$ 



First order: 
$$\beta_{FRS} = \beta + const$$





# **Atomic background**







### **PreSPEC-AGATA** fast beam setup



## **Operation rates of tracking detectors**

| Detector                 | Max. Rate [pps]            |
|--------------------------|----------------------------|
| X,Y: Multi-wire chambers | <104                       |
| X,Y: Current grids       | >108                       |
| X,Y: TPC                 | <b>&lt;10</b> <sup>6</sup> |
| dE: MUSIC detectors      | <2x10 <sup>5</sup>         |
| TOF: Scintillators       | <b>&lt;10</b> <sup>6</sup> |
| Finger Scintillator      | a few 10 <sup>6</sup>      |
| DSSSD                    | a few 10 <sup>4</sup>      |



