MTsort Language - EDOCO033

John Cresswell

Janet Sampson



MTsort Language - EDOCO033

John Cresswell
Janet Sampson

Note

Command enhancementswith thisversion ...
New Print command
Added spectrum and group data accessto left and right hand sides of expressions.

Publication date 07 Aug 2015
Abstract

Thismanual describesthe sort language. It can currently be used to sort awide sel ection of event formats, including
Eurogam, Euroball, GammaSphere, IN2P3, Goosy, Oak Ridge, Exogam and GREAT format data. More features
and data formats are being added according to users' requirements.




Table of Contents

[Fg11 oo (8 oi (oo H PP PP TPPPTTR 1
FEEADBCK ...t 2

Data File FOMMEL ........ ettt ettt e e b 3
GENEIAl SIIUCIUNE ...ttt et e e et ettt e e et e eenans 4

[\ [o] = o] o E TSP P PP UPPPPT 5

FITE TNCIUSION ..ttt et e e s 6

B ORM AT S ittt et et et e e e e e ettt e e et aae 7
Single Parameter FOMMEL ..........iieiiii et e e e et e eenes 8
Group Parameter FOIMMEL ..........oiiuiiiiiiiei e e 9
FTRIGGERS ...ttt et ettt 11
D A T A e et et 12
SOMTWOITS ...ttt ettt e ettt e et e e e e ab e e eneaas 13
Pre-defined SOMWOITS .......coutieiiiii et ettt e et e e e e e e eees 14

L€ = O PP UO PP PPPPPRPUPPPIN 15
BItMASK ALES ... ceeeeiiiee ettt 15

ID QIS oottt et 15

2D QBLES ...eieeeei e 16

EHIPCA GALES ...eeieeeiei et 16

DELB @ITAYS .. eevee ettt e 18
VAIUB GITAYS .. evveeeeeii ettt ettt ettt ettt e e e e 18

GALE BITAYS .. eeteeet ettt 19

GIN BITAYS vttt ettt ettt e e et et 19

ATTAYS OF @ITEAYS ..eeveieeeeii et 20
P E T R A et et ettt 21
FAUTOGAIN ettt ettt et et e e e e e e ennans 22
DECIAIAHONS ...ttt e 23
1600]17] 0072 010 ST TUPPPT 25
FCOMMANDS ettt et et e et 26
List Of COMMENGS .......oiiiitieeiii e e et e e e e e e eeeens 27
ParamMEter LiStS ....cceueiiiiiii ettt 28
Simple Spectrum update COMMANTS .........coevuuieiiiiie et eeeens 29
Indexed Spectrum update COMMEBNGS ........uuuniiiii et 31
INCDITS COMMANG ... e 32
Createlist COMMEANG ... .coeetieieii ettt e et et e e e enanas 33
CopYlist COMMEBNG ....ceieieieii ettt ettt e e e e e ena e eees 35
EXEraCt COMMANG ......ciiiiiiiei et e e e e e s 36

L OOPEXLIACt COMMANG ......eeeitiee ettt ettt e et e e et e e e e et e e eena e eeeees 38
If...else... command (single sortword environmMent)} ...........cooeveiveiiiiiieiiiiinieeeiieeeeeenn 39
Validation test operator (VALID) .....iiieiiiiieiii e 39
Comparison operators (EQ,NE,GE,LE,GT,LT) ..cccuuiiiiiiiiiiiiii e 39

Filtering operators (PASSES,FAILS) .....vuiiiiiiiiiiii e 40

Masking operator (MASKEDBY) ....ciiiuiiiiiiiieeeiii ettt 41
Gate-testing operator (GATEDBY) ...uciiiiiieiiiiie ettt 41
Loopif...loopfail... command (parameter-list environment)} ...........ccooiveiiiiiiiiiiiinnenennnn, 43
Validation test operator (VALID) .....iiieiiiiieiii e 44
Comparison operators (EQ,NE,GE,LE,GT,LT) ..cccuuiiiiiiiiiiiiii e 44

Filtering operators (PASSES,FAILS) .....vuiiiiiiiiiiii e 45

Masking operator (MASKEDBY) ....ciiiuiiiiiiiiieieei ettt 45
Gate-testing operator (GATEDBY) ...uiiiiiiiieiiiiie et 45

SEECE COMMENG .....euieeei ettt e e e e 47

GOLO COMIMANG ...ttt e ettt ettt ettt ettt et e et s et et e e e e ebi e aeeenba e e ennas 48
ATITNMELIC OPEIALTIONS .....eeieii ettt e et e e e e e 49
ATITNMELIC OPEIEIOIS ..ottt ettt 49

MEENS FUNCLIONS .....vieei e 49

Command FUNCLIONS .....c.uuiiiiiiee ettt e e 50




MTsort Language - EDOC033

LT T o 410010 To [ 52

Invalidate COMMANG ........couiiiii e e e e e e e aaaas 55

Groupfilter COMMENG ........uiiiiiei e e e e e e e e e e e e e e 56

(@0 1= g w'o 12110910 To [ 57

Print COMMANG ......couniiiii e e e r e e aaas 58

01U 1] == 59

(S o O] 11011 1700 TN 60

Y11 0 01T 1 Lo o N 61

[ o oo Jere 1 4142 o [ PPN 63

(@10 11010 oo 4110 o SN 64

Endevent COMMEANG .........couuiiiiiiii e e e e 66

ENd COMMEANG ....ooeni e e e e e e e 67

PalSE COMMIBNG .....iii i e e e e e e e e e 68
*RUNFILES (Offline @analySiS ONlY) .....civuiiiiiii e e e e 69
APPENAIX A. CONSITAINES ..u.iiiieiiii e e e et e e e e e e e e e e e e e e e e et e e et e e e aa e e aaneeaan s 71

e = AY/= o IRV (o PN 72

Predefined SOMWOIAS .........iiii e e e 73

MEXIMUM VBIUES ....uuiiiieii e e e e e e e e et e e e e e et e e e e et e e aan e eanaas 74
Appendix B. Data file 6XampPleS ........oiiiiiiiiic e 75
Eurogam phase 2 aUtogain SOt ........ccuuiiiiiieii e e e e e e e e e e e eanas 76
AULo-gaiNed COrTElation SOM ........ccuuiiiiiiei e e e e e e e et e et e ean s 80

L@ 0 =T £ oo PPN 82

L 0 1o o 84
U1 o doTer 1o [ 86




Introduction

In order to run a sort the user supplies afile of sorting instructions written in the sort language. This
data file should contain a description of the experimental setup, the number of spectra (histograms)
required and a set of commands to be applied to each event being sorted. The sort package checks the
syntax of these instructions and translates them into amore low level language, i.e. C. Thistrandation
isthen compiled to produce a sort program based on the user's original sort instructions.

If there are mistakes in your sortfile the sort package reports them as warnings or errors when you
try to set up a sort. Warning and error messages are given with the line number and a copy of the
erroneous line.




Introduction

Feedback

Feedback is most certainly welcome for this document. Send your additions, commentsand criticisms
to the following email address: <support @s. ph. liv. ac. uk>.




Data File Format




Data File Format

General Structure

The user-supplied datafileis divided into several sections. Each section isidentified by an associated
starword.

The recognised starwords are:

* *FORMATS

» *TRIGGERS (optional)

* *DATA (optional)

e *SPECTRA (optional)

* *AUTOGAIN (optional)

* *COMMANDS (optional)

* *FINISH (denotes end of sortfile)
» *TRIGGERS (optional)

and should appear in the data filein the above order. Itemsin the datafile are in free format separated
by spaces. Each starword section is described in afollowing chapter.

All starwords, commands and other sort language statements are expected on a new line. Any
statement which exceeds a single line may just be continued on the following line. There are no line
continuation symbols.

Names used may contain one or two components depending on whether the quantity is a group name
or not. Each component must commence with an al phabetic character and may be up to 16 characters
in length. Only aphanumeric and underscore” " characters are allowed.

All names used for single and group parameters, sortwords, items, arrays, maps, parameter lists and
routine arguments must be unique, e.g. a parameter list may not have the same name as a sortword.

Numerical values should be specified as appropriate to the command:
* integer (in the range -32768 to 32767)
* real (intherange 10% to 1038)
e.g. 2.143 2376. 936.52E5 1.509E-23
* binary (up to 16 bits) e.g. %1011101101
» hexadecimal (in the range FFFF to 7FFF) e.g. @0065

Reserved words consist of all keywords and maths function names and cannot be used as other sort
program names. See Appendix A for alist of al reserved words.

Comments may be placed anywhere in the text. Any text following an exclamation mark ! or double
forward dlash // up to end-of-lineis ignored by the setup procedure.




Data File Format

Notation

The convention in this manua is to show command names and keywords in upper-case, and
substitutable valuesin lower-case italic.

Note, however, that command entry in the sort-file is not case-sensitive.
Optional quantities are enclosed in square brackets, e.g. # optvar #.
Theletter "r"' following a quantity indicates that the item may be repeated.
Alternative quantities are denoted by |, so ajb indicates either a or b.

In the commands section wherever <statements> is used it refers to either a smple statement (single
command) or acomplex statement (group of commands enclosed within curly braces), i.e.

statenents -> single-comand

I
{

si ngl e- conmand
si ngl e- conmand




Data File Format

File Inclusion

| NCLUDE <filename>

This statement allows other text files to be included in any section of the data file. Only one level of
inclusionis allowed, i.e. included files may not contain any INCL UDE statements.




*FORMATS

This section is used to specify al experimental parameters and any other parameters required during
event processing. Parameters can be specified in two different formats depending on how they are to
be accessed: either as group or single parameter format.




*FORMATS

Single Parameter Format

<nane> <addr ess>

In single parameter format the 14-bit address of the parameter needs to be specified.

Example

* FORVATS
GE13_E2 @10D
silenal 513

This address must be unique and not lie within the address range of any group format names [ See the
Eurogam document EDOCO014 (Event Builder + Sorter Control) for further information].

Thisformat is useful for sorting non-Eurogam format data.




*FORMATS

Group Parameter Format

<nane ><[nunber]><(i temlist)>
<nane ><[nunber-range]><(itemlist)>

where <numnber - r ange> is a subset of the allowed group numbers (0 to 1023) enclosed in
[] brackets, and takes the form:

<l ower-limt>

<lower-limt>:<upper-linmt>
<lower-limt>,<next-lower-limt>:<next-upper-linmt>,..
<lower-limt>: <upper-limt>, <next-lower-limt> : <next-upper-
limt>,..

and<i tem| i st >isalist of theitems contained within a group separated by commas. Each
item consists of a name followed by an optional bit field, or an array:

<i t em name>[: <nunber - of - bi t s>]
<i tem nane>(<array-| ength>)

Group numbers less than 256 correspond to standard group format; group numbers of 256 upwards
correspond to extended group format. Within any one group the format must be the same, i.e. group
numbers must bein oneformat range only (0--255 or 256--1023). A group consists of all the parameters
associated with onedevice, e.g. agermanium detector, would have an associated energy word, ballistic
deficit correction words, etc. The structure of all devices having the same sets of associated parameters
can be specified concisely using group format,

Example

* FORMATS
GH[ 2, 4: 10, 19, 23: 26] (E1, E2, TAC, TACBD)
CLOVER] 51: 74] ( BGOE, BGOT, BGOP,
Al, A2, A3, A4,
B1, B2, B3, B4,
Cl, C2, C3, ¢4,
D1, D2, D3, D4)
CLOVERL[ 101: 124] (E20, EATAGL:3, E4DAT1:13)
CLOVERZ[ 151: 174] (E20, EATAGL: 3, E4DAT1:13, EATAG2: 3, E4DAT2:13)
TRACES[ 256: 300] ( pul se(128) )

where the group name GE represents a group type consisting of 4 items: E1, E2, TAC and TACBD.
defined for group numbers 2,4,5,6,7,8,9,10,19,23,24,25,26.

CLOVER has 19 items defined for group numbers 51 to 74 inclusive, whereas CLOVERL1 and
CLOVER2 are examples of groups which use hit fields to specify sections of theitem datawordsfor
ease of access in the* COMMANDS section.

Within the commands section the syntax used to refer to asingle item of aparticular group would be:

<group-name> # <group-number> # . <item-name>

where <group-number> need only be specified if arange of group numbers have been defined
for <group-name>.




*FORMATS

Example

GE[ 13] . E1

would refer to item E1 of group 13.

Example

CLOVER[ 153] . EATAG2

would refer to the item E4ATAG2, i.e. to the top 3 bits of the third data word, of group 153.

If only one group number is defined for a single group name, in *FORMATS, then it may be
referenced in the commands section without specifying the group number, e.g.

Example

TRI G 255] (S1, S2)

would be referenced as TRIG.S2 to access the second item of group TRIG.

Example

t races[ 256: 300] ( pul se(128) )

would be referenced as TRACES.PUL SE(I) to access thei'th PUL SE item of group TRACES.

17
traces[ 256] . pul se(i)

42
e

10



*TRIGGERS

This optional section is provided for compatibility with non-Eurogam format data.

<trigger-number> [ < adc-name>]r

where <trigger-number> isin the range 0 to 64.

For each trigger used the list of associated adcs should be specified. e.g.

Example

* FORVATS

GEl 1

GE2 2

GE3 3

GE4 4

GE5 5

* TRI GGERS

24 CGE1 GE2 GE3 GE4 GBS

specifies that the event datawords GEL1, ..., GE5 are declared as single parameters and are associated
with trigger number 24.

11



*DATA

Sort variables and other program data are defined in this section.

12



*DATA

Sortwords

Sortwords are variables used within the commands section to pass values between commands. They
may be of typeword, long, longlong or float. Long longlong and float types must be explicitly declared
in this section. Any undeclared variables in the commands section are assumed to be of type word.
Sortwords are not limited in scope i.e. they are recognised in the main commands section and all
routines.

If a sortword is defined in this section and initialised with a starting value, then the sortword is
considered global. This has the effect of keeping its value across events. Sortwords are normally
undefined until first usein an event.

WORD <nane>#=<i nt eger - val ue>#...
LONG<nane>#=<i nt eger - val ue>#...
LONGLONG<name> #=<i nt eger - val ue>#...

FLOAT <name>#=<f| oati ng- poi nt -val ue>#...

wher e

WORD decl ares a 16-bit integer,

LONG a 32-bit integer

LONGLONG a 64-bit integer

and FLOAT a 32-bit real.

IAn optional initialisation value may be specified; if omtted it
wi |l default to zero.

Example

WORD COUNTER1=1 COUNTER2=1
FLOAT PI =3. 14159

declarestwo 16-bit integer variables COUNTER1 and COUNTER2 both initialised to 1 and one 32-
bit floating point variable Pl initialised to 3.14159.

Initialisation occurs once at the start of each sort program run.

If aWORD variable is to be output from the commands section using the OUTPUT command then
it must be defined with an associated address:

WORD <name> # = <integer value> # AT <14-bit-address>

The address is neccessary for word variables to be output in Eurogam format, i.e. a data word with
a 14-bit address, so that they can be re-sorted later as pseudo-adc words. The address must lie in the
range 0 to 16383 (214-1) and not coincide with any addresses assigned in the *FORMAT S section.

Example

WORD GAMA AT @A

would define the word GAM A with hexidecimal address A.

13



*DATA

Pre-defined Sortwords

The following sortwords have predetermined usage and value:

RANDOM
IRANDOM

GATE

WORDX

WORDY

STREAM
RUNFILE_NUMBER
BLOCK_NUMBER

LOOP

floating point sortword, random value between 0.0 and 1.0
integer sortword, random value between 0 and 32767

see |F... and LOOPIF..MASKEDBY|GATEDBY commands
see LOOPIF... command

see LOOPIF... command

Usualy set =1

runfile number of currently sorted tape (1 for first file, etc.)
current block number in currently sorted runfile

no longer used, see doloop command

14



*DATA

Gates

Sets of gates may be defined here for later use in the commands section through which to filter the
event-by-event data. If a data word being tested matches a particular gate condition it is said to pass
that particular gate.

Bitmask, 1D and 2D gates are stored as 8-bit lookup maps. Elliptical gates are stored as lists of
coordinates and axes. When a sortword value is tested against a gate in the commands section it will
pass either zero or one of the gates in the map. The gate number passed will be stored in the reserved
variable GATE

Bitmask gates

A set of bitmask gates consists of one bit pattern per gate. Within aset of gates earlier gate definitions
have precedence over later ones. This means that in the commands section if the same value would
pass more than one gate out of a set then the earliest gate defined would be the one passed.

GATES MASK <bi t nask- gat e- set - nane>
<bi t mask><bi t mask,> ... <bi t mMaskngat es>

Example

GATES MASK BI TVAP1

40000 991000 990100 %0010 %©0001

Each data item consists of a 16-bit mask and represents one gate. A value will pass a gate if all the
bits set in the 16-bit value are also set in the 16-bit mask of that gate.

Within the commands section avalue will pass agateif it fallsin between the lower and upper limits
(inclusive) of that gate.

1D gates

A 1D gate-map consists of one or more pairs of values. The range of values in between each pair
(inclusive) defines a single gate. Within a set of gates successive gatesin a 1D set have precedence
over earlier ones. This means that in the commands section if a value would pass more than one gate
out of a set then the latest such gate defined would be the one passed.

GATES 1D<1d- gat e- map- nane>[ <x-range >]
(<lowlimt><high-limt>);
(<lowlimt><high-limt>),

(<l owlimt><high-1imt>)ngges

where <x- r ange> is specified as:

<lower-limt>:<upper-limt>

or

<r ange>

where <l ower -1 i m t > would be set to zero and <upper -1 i m t > would be equa to
<r ange>minus 1.

Example

15



*DATA

GATES 1D BANDL[O: 511]
(123 126) (245 259) (257 270)

definesaset of 1D gatesBAND1 withinthelimits0to 511 inclusive which contains 3 gate definitions:

gate 1 is defined as channels 123, 124, 125, 126;

gate 2 as channel s 245, 246, 247,..., 254, 255, 256;

and gate 3 as channel s 257, 258, 259, 260,..., 268, 269, 270
because gate 3 overlaps gate 2.

2D gates

A 2D gate-map consists of one or more sets of x--y coordinate pairs. Each set defines a polygonal -
shaped gate in two dimensions against which pairs of values may be tested in the commands section.
If any polygons overlap within a set successive gates have precedence over earlier ones.

GATES 2D<2d- gat e- map- name>[ <x-range , Yy-range >]
(<gat e- of - 1D- coor di nat e- pai rs>);
(<gat e- of - 1D- coor di nat e- pai rs>),

(<gat e- of - 1D- coor di nat e- pai r s> )ngat es

Example

GATES 2D MASSMAP[ 64, 64]
(11 44 13 36 18 30 25 29 28 35 30 49 26 60 20 58)
(31 62 29 1 52 1 51 62

Defines the map MASSM AP with limits 0 to 63 in both the x- and y- directions. A coordinate pair
will pass apolygonal gateif the point it defines falls within the polygonal shape defined by that gate.

Note

1. The coordinate pairs are not individually separated to simplify the syntax, hence care must
be taken when inputting the data.

2. 2D gatemaps become large for large values of <x-range> and <y-range> .

Elliptical gates

Elliptical gates may be specified in 2 or 3 dimensions. They are defined by specifying the coordinates
and axes of each ellipse or ellipsoid making up the list of gates.

GATES ELLI PSE2D<2D-el |i pti cal - gat e- nane>
(<x- coor di nat e><y- coor di nat e><x-radi us><y-radi us>);
(<x- coor di nat e><y- coor di nat e><x-radi us><y-radi us>),

(<x-coordi nat e><y-coor di nat e><x-radi us><y-radi US> )ngates

where <x- r adi us>and <y- r adi us> define theradii for each axis of the ellipse.

Each set of coordinates and radii defines an elliptical gate against which pairs of values may be tested
in the commands section. If any gates overlap within a set earlier gates have precedence over later
ones. See IF...GATEDBY and LOOPIF...GATEDBY commands.

16



*DATA

GATES ELLI PSE3D<3D-el |i pti cal - gat e- nane>

( <x-coordi nate> <y-coordinate> <z-coordi nate> <x-radi us> <y-
radi us><z-radi us>);

( <x-coordi nate> <y-coordinate> <z-coordi nate> <x-radi us> <y-
radi us><z-radi us>),

( <x-coordi nate> <y-coordinate> <z-coordi nate> <x-radi us> <y-
radi us><z-radi US> )ngates

where <x-radius> <y-radius> and <z-radius> define the radii for each axis of the ellipsoid.

Each set of coordinates and radii defines an ellipsoidal gate against which 3 values may be tested at
atimein the commands section.

17



*DATA

Data arrays

Three types of arrays may be defined to store data for subsequent access in the commands section.
Value arrays may be used to store integer or rea data. Gate arrays store pairs of integer values to
define arrays of gates. Gain arrays store the gain parameters associated with particular sortwords.

Value and 1D gate arrays both alow a lookup facility dependent on another parameter, e.g. group
number.

Value arrays

VALUEARRAY definesa 1D, 2D or 3D array of 32-bit integer or real values that can be accessed
in the commands section.

VALUEARRAY <ar r ay- nanme>
<X-range>#,<y-range>#, <z-range>##SAVE[<data-list >]

where <x- r ange> is the channel range in the first dimension, and the y- and z- quantities
the corresponding values in higher dimensions if applicable, specified in the same way as for
gate-maps.

If no starting channel isgivenit isassumed to be zero and the maximum channel will be (<x- r ange>
- 1) asbefore. If the SAVE keyword is specified, then the array iswritten back to disc at the end of the
sort, allowing modified arraysto be preserved. Thisdiscfilewill normally bein the sort setup directory
created when a sortfile iscompiled. The<dat a- | i st > isalowed in free format.

Note

The array data type (integer or float) is determined from the type of the first data element
specifiedin<dat a-li st>.

The values specified in <dat a- | i st > are given in C-style ordering: the z-parameter

changes more quickly than y- which changes more quickly than x-. Thisis the opposite way
round to the convention used in FORTRAN.

Example

VALUEARRAY ~ ANGLES [ 1:20]

157. 60 157.60 157.60 157.60 157.60
133.57 0 107.94 0 107. 94
133.57 94.16 133.57 107.94 94.16
107.94 133.57 0 133.57 107. 94

definesareal 1D array ANGL ES containing 20 elements.

Example

VALUEARRAY  ARRAY2 [2:6,3] 1 11 21 2 12 22 3 13 23 4 14 24 5 15 25

definesaninteger 2D array ARRAY 2 spanning from channels2to 6 in thefirst dimension (5 channels)
and from channels 0 to 2 in the second. The values will be assigned as follows:

(2,0),(2.1),(2,2),(3,0),(3.1).(3,2),(4,0),(4,1),(4,2)... etc.

An example of their use in the commands section would be:

18



*DATA

Example

A
C

B / ANGLES( <argunent> )
ARRAY2( <argument> 1, <argument> 2)

where <argument> is an integer expression. See Arithmetic Expressions.

Any array elements not initialised by VALUEARRAY are set to zero.

Gate arrays

A gate-array contains the definition of a 1D array of pairs of channel numbers and the corresponding
array element number. Data is allowed in free format specified in order of increasing array element
number in the range 0 to 255 where array elements may be omitted from the sequence. Each pair of
channel numbers defines a gate.

GATEARRAY <1D- gat e- arr ay- nane>
<array-index;>(<lowlimt><high-linmt>);
<array-indexy>(<lowlimt><high-linmt>),

<array-indexXpgates> (<l ow i mt><high-l1imt>)ngates

Gate-arrays may be defined here and used in the commands section to filter all group format data of
the same type through different 1D gates. See commands IF...PASSES and LOOPIF...PASSES.

Example

GATEARRAY TACGATES
1 (100 4000) 2 (95 4000) 6 (100 3950) ... 40 (85 4000) 45 (100 4000)

would define the gate array TACGATES. Thisarray could then be accessed in the commands section
to filter each germanium TAC word with parameters dependent on the group number.

Gain arrays

Sets of gain matching parameters may be specified in this section by means of a GAINWORD or
GAINARRAY statement and referenced in the commands section viathe GAIN command.

GAI NVORD <par anet er - set - nanme> <a> <b> <c>
GAl NARRAY <gai n- arr ay- nanme> <a> <b> <c>
<array- i ndex;> <a;> <b;> <c;>

<array-i ndexy> <ap> <h,> <c,>

<array-i ndexp> <ay> <b,> <c>

where <par amnet er - set - nane> contains the single set of parameters <a,> <b,> <c,> and
<gainh-array-name> contains <n> sets of gain matching parameters.

GAINWORD isdesigned for use with single variablesand GAINARRAY isused with group-format
variables, allowing the same item name associated with all groups of the sametypeto be gain-matched
by a single command line in the commands section,

GAINARRAY datais allowed in free format with array element number in the range 0 to 255.

19



*DATA

Example

* FORMATS

GAINWORD GE_ 19 0.3 -0.05 0.00 /'l single variable parameters
GAINVORD GE_ 29 0.6 0.02 0.00

GAl NARRAY E2GAI NS /1 group format

1 (-0.2 0.10 0.00)
3 (0.7 -0.03 0.00)

70 (-0.1 0.05 0.00)

Each statement stores a set of gain-matching parameters associated with a particular sortword.

The value of <sortword> may then be modified in the commands section using the GAIN command
according to the equation:

<sortword> = a+ b* <sortword> + ¢* <sortword> 2

Arrays of arrays

A set of arrays of the same type (valuearray, gatearray or gainarray) may be defined. Thisis currently
implemented for gainarrays and gatemaps in commands if...gatedby and loopif...gatedby.

ARRAYLI ST <arrayl i st-nanme>[<array-nane >]r

Thearraylist defines an array starting at element zero.

20



*SPECTRA

<spect rum name> # <[i ndex-r ange]> # <nunber - of - channel s> [ <type >]
#DISC #

where <i ndex- r ange> is expressed as

<lower-limt>:<upper-lint>

and <l ower -1 i m t>and<upper-1i nt>areoptiona integer values which allow more
than one spectrum to be declared by a single statement.

See Indexed Spectrum Updates section for an example application.

and <nunber - of - channel s>isoneof:

<i nt eger > 1D spectrum

<i nt eger >* <i nt eger > Rectangular 2D spectrum
2D Square 2D spectrum

<i nt eger >* <i nt eger >* <i nt eger > Cuboid

3D Symmetrised 1/6 cube

and <type> (optional) is:

8 Signed byte precision, 8-hits per channel
16 Signed single precision, 16-bits per channel
32 Signed double precision, 32-bits per channel

The optional keyword DI SC makes the spectrum disc-based during sorting.

If <type>is omitted then the default of 32 isassumed for 1D, 16 for 2D and 3D.

By default, spectra are sorted into shared memory. It is the user's responsibility to ensure that there
is sufficient memory available. Any combination of memory and disc-based spectramay be specified
but as the sort package is essentially memory-based and is not fully optimised for disc-based sorting,
the use of disc-updated spectrawill degrade the performance.

For the maximum number of spectra allowed, see Appendix A.

Example

Some typical spectrum declarations might be:

* SPECTRA

TI ME 1024 /1 1D 16-bit, 1024 channels

GEL1 4096 32 /1 1D 32-bit, 4096 channels

GEL3 4096*1024 /1 2D 16-bit, 4096 by 1024 channel s

GEL4 1024 2D /1 2D 16-bit, 1024 channel s square

GSPEC 1024*1024*8 /1 3D 16-bit, 1024 by 1024 by 8 channel s
SM 4: 10] 4000 /1 7 1D 16-bit spectra, 4000 channel s each
CUBE[ 1: 5] 16 3D 8 /1 5 3D 8-bit 16 channel cubes

21



*AUTOGAIN

Gain drifts can be monitored viathe* AUTOGAIN section.

The gain matched values of two well-defined peaks must be supplied. Initial gain coefficients for a
quadratic fit may be supplied in the *DATA section. Alternatively, two peak positions for each data
value to be monitored may be supplied in this section and initial linear coefficients will be derived.

The* AUTOGAIN section adjusts the gain coefficients by measuring the shift in two peak positions
for each spectrum. For an initial calibration E for data value x:

E=a+ bx+ cx®
and for the shifted energy Eney given by:
Enew= A+ BE

then the shifted coefficients are derived as:

anew=Bat+ A
bnew = Bb
Cnew = BC

The gain coefficients are applied to the data by means of the GAIN command in the* COMMANDS
section.

The gain coefficients are calculated in the autogain section and updated into a gain array ( defined
in the *DATA section). This gain array needs to be associated with a set of data words by an INIT
statement in the autogain section.

The user can set the number of blocks (autogain period) over which the gain coefficients are
initially calculated and subsequently monitored during the sort. A minimum acceptable peak areaand
maximum deviation may also be specified.

After the sample number of data blocks have been read, the peak centroids in the autogain spectra
are determined and matched to the control values. This enables the gain shift to be calculated. At the
start of an autogain sort, only the commands in the autogain section are executed until al the initial
gain coefficients have been determined. If they have not all been determined after three times the
autogain period then the autogain phase will stop. Any unresolved coefficients will take the initial
values supplied at the start of the autogain phase.

After this initial autogain phase offline, the first file will be rewound and the sort will restart, now
executing the statements in the *COMM ANDS section and checking for gain drifts each autogain
period.

If a peak centroid in a gain spectrum shifts by more than the specified deviation then the gain
coefficientsfor the corresponding dataword will be recalculated. All autogain spectra are zeroed after
the gains are monitored each time.

22



*AUTOGAIN

Declarations

SAMPLE <nbl ocks>

where <nbl ocks> isthe number of blocks after which the gain coefficients are recal culated.

Up to four times the sample number of blocks may be used to obtain the initial gain coefficients. A
default value of 50000 blocks is assumed if none is specified.

PEAKAREA <mi ni mum accept abl e- peak- ar ea>

where <mi ni num accept abl e- peak- ar ea> is the minimum integration area under a
peak required for the gain spectrum to be used to evaluate gain coefficients.

An estimate is made of the background under the peak in order to calculate the peak area. A default
value of 50 is assumed.

DEVI ATI ON<nmaxi mum accept abl e-centroi d-shift >

where <maxi mum accept abl e- cent r oi d- shi f t > isthe maximum centroid shift of a
peak in again spectrum to avoid calculation of new gain coefficients.

A default value of 1.0 is assumed.

I NI T<gai n-array>FROM <1D- spect r un> CENTROIDS<cent r 0i d1><wi dt h;>
<cent roi dy><wi dt hyo>

# PEAKS

#<gr oup- nunber ><cent r oi di><wi dt hy><cent r oi do><wi dt hy> #r

#

where <gai n- ar r ay> isthe name of again array already declared in the * DATA section,
<1D- spect runp is the name of an array of 1D 32-bit precision spectra declared in the
* SPECTRA section

and the centroids and widths are floating point numbers denoting the gain matched positions
and widths of two control peaks to gain match to.

The INIT lineis optionally followed by a PEAK S statement in which estimates of the actual peak
parameters are specified for each group number.

VOVERC <r eal nunber >

COPYGAIN FROM<gai n-array> [ < group-range >] TO <gai n-array> [ <
group-range >] ANGLES<val ue- array>DELTAS<val ue-array>

These statements allow the gain coefficients to be adjusted for detectors where multiple leaves fire
and the midpoint angle is used to correct the autogained coefficients for such data. See example in
Appendix B for use.

Example

23



*AUTOGAIN

* DATA
GAl NARRAY GAI NS1

* SPECTRA

GSPEC] 2: 5] 4096 32

* AUTOGAI N

SAVPLE 10000

PEAKAREA 40

DEVI ATI ON 0. 80

INIT GAINS1 FROM GSPEC CENTRO DS 550 5.0 1204 7.3
PEAKS

2 545 5.0 1200 7.2

3 546 5.0 1202 7.2

5 551 5.0 1207 7.3

24



*AUTOGAIN

Commands

Only asubset of the full *COMM ANDS section is available here to alow the update of gain spectra.

CREATELI ST <gr oup- par anet er - | i st - nanme>FROM <gr oup- nane>

CREATELIST defines an internal list of data words from <gr oup- par aneter -1 i st - nane>
which consists of the variables specified in an item list that are found in the current event,

Example

CREATELI ST CELIST FROM GE

would create the group-parameter-list GELI ST consisting of al the germanium groups.

I NC<aut ogai n- spect r um nane> ( <x- channel >) INDEXED <i ndex>

Spectra may be indexed my means of the INDEXED keyword used with the INC command where
<i ndex> may be an integer expression, or dollar word used to specify agroup number. The value of
<i ndex> determines which spectrum will be incremented: a value of 1 indicates the first spectrum
in the array; 2 indicates the second, and so on. Spectra indexed in this way must al have the same
dimensions and precision and be defined consecutively in the spectra section.

Seefirst examplein Appendix B for how to use autogain to derive gain coefficients and then use them
in the main commands section.

25



*COMMANDS

This starword recognises as keywor ds al sort command names. The sort commands are executed for
each event in the order in which they appear in the setup file. A sort command is a built-in routine
which performs a function on the sortwords.

26



*COMMANDS

INC

DEC

SET
INCBITS
CREATELIST
EXTRACT
LOOPEXTRACT
IF

LOOPIF
SELECT
GOTO
LABEL
INVALIDATE
GROUPFILTER
ORDER
GAIN
ROUTINE
CALL

EXEC
DOLOOP
OUTPUT
ENDEVENT
END

PAUSE

X=expr

List of Commands

increments a spectrum

decrements a spectrum

assigns a value to a spectrum channel

increments the bit pattern of an expression into a 1D-spectrum
defines a parameter-list of parameters from the event

obtains subsets of valid parameters from a defined parameter-list
obtains subsets of valid parameters from a defined parameter-list
conditional execution of sort commands

conditional execution of sort commands in parameter-list environment
alows correlation of sort commands with parameter values
jump forward to a specified |abel

define alabel to jump to

allows a group to be removed from the event

alows groups to be removed from the event

ordersalist of sortwords according to their value

adjusts the gain of a sortword using a quadratic

starts a subroutine-like section

execute the set of commandsin aROUTINE

execute an external sort function

alows looping over several commands

outputs a list of sortwords or a complete event

terminates event processing

ends event processing, or returns from called ROUTINE

pauses event processing

arithmetic operations, assign expression to sortword/spectrum x

A particular sort command may be used as many times as necessary subject to any system-dependent
limit on resultant program size. Any sortword generated by a command may be used as input to any

succeeding command.

The lF..ELSE, LOOPIF...LOOPFAIL and IF...GOTO label block structures should normally be
used to define the processing flow.

27



*COMMANDS

Parameter Lists

High fold data can usually be sorted more easily by means of parameter lists. There are three types

of list:

word-parameter-list consisting of individual datawords
group-parameter-list consisting of members of agroup
item-parameter-list consisting of lists of items from one or more groups

Once alist hasbeen created it can be operated on by other sort commandsto allow the same command
to loop over every item in the list. Commands which operate directly on parameter lists are:

CREATELIST
EXTRACT
LOOPEXTRACT
INC

DEC

INCBITS
LOOPIF

28



*COMMANDS

Simple Spectrum update commands

| NC| DEC<spect rum nane> ( <x- channel >#<y- channel >#<z- channel >##)

SET <spect rum nane> ( <x- channel > # <y- channel > # <z- channel > # #) =
<expression>

where a channel is defined as one of the following ...
arithmetic expression

parameter-list

$word = group-parameter-list

INC | DEC increment/decrement the spectrum channel specified. SET sets the spectrum channel to
the value given by <expression> . If aparameter-list is specified for a channel then the command will
be applied to all members of the list present in the event. If the same list is used for different channels
of a spectrum then the i element of alist will not be incremented with the i element.

Example

| NC GVAT( GELI ST. E2, GELI ST. E2)

... increment the channels given by each E2 word for parameter-list GELIST. Channels given by the
i element of the first list and the i element of the second list are not incremented, i.e. the same
gamma-ray is not incremented with itself.

Example

| NC GS1( GE[ 1] . E1)

... increment the channel GE[1].E1 of spectrum GS1, where E1 is an item associated with the group
GE[1].

Example

DEC GAVSPC( ( GAML+100) / 2)

... decrement channel (GAM 1+100)/2 of spectrum GAM SPC.

Example

SET TCHECK(10) = cl ock. wl

... assign the data word clock.w1 to channel 10 of spectrum TCHECK.

Example

| NC MAT2D( WORDX, LI STX)

.. increment channel given by the word WORDX (x-coordinate) and all valid words in word-
parameter-list L1 ST X (y-coordinate) of 2D spectrum MAT2D.

29



*COMMANDS

Example

I NC ALL_GES( GELI ST. E2)

... increment channel given by al valid E2 words in group-parameter-list GELIST of spectrum
ALL _GES.

Example

| NC GFEX3( GAMA, GAVB, GAMD)

... increment the symmetrised cube GFEX3 at the location given by GAMA, GAMB and GAMC.

Any spectrum update attempted by a command in this sort package which falls outside the defined
spectrum dimensions will be safely ignored.

30



*COMMANDS

Indexed Spectrum update commands

I NC| DEC<spect r um nanme> ( <x- channel > #<y- channel >#<z- channel >##)
INDEXED <i ndex>

SET <spect rum nane> ( <x- channel > # <y-channel > # <z-channel > # # )
INDEXED <i ndex> = <expr essi on>

Spectramay be indexed my means of the INDEXED keyword used with the INC or DEC commands
where index may be an integer expression, or dollar word used to specify a group humber. The value
of index determineswhich spectrum will beincremented, decremented or set: avalue of 1indicatesthe
actual spectrum specified; 2 indicates the subsequent spectrum defined in memory, and so on. Spectra
indexed in this way must all have the same dimensions and precision and be defined consecutively
in the spectra section.

For example, it is sometimes useful to be able to update a different spectrum for each gate number
passed by a gate-map testing command. e.g.

Example

* SPECTRA

CE132[ 3: 20] 4096

x COVVANDS

| F GAML GATEDBY GLREC {

| NC CE132( GAM2) | NDEXED GATE

where GATE denotes the gate number passed in the gate-map GLREC by the IF...GATEDBY
command.

If GATE is4 then the 3rd spectrum defined after CE132[3] inthe* SPECTRA section, i.e. CE132[6],
will be incremented with the value of sortword GAM 2.

It isalso possibleto use this feature to increment a spectrum according to the group number of aword,
eg.

Example

| NC CE132( GROUPA=CELI ST. E2) | NDEXED $GROUPA

where $GROUPA denotes the group number passed in the parameter list GELIST.

31



*COMMANDS

Incbits command

I NCBI TS<1D- spect rum nanme>(<bi t - patt er n>) OFFSET <i nt eger - of f set >
# INDEXED <i ndex> #

This command increments a bit-pattern into 16 channels of a 1D spectrum commencing at the offset
specified, where bit-pattern is an expression. It may be optionally indexed. The least significant bit
will beincremented at the channel given by integer -offset and successive hitsin subsequent channels.

E.g. to obtain a spectrum of 4 bit-pattern sortwords, the command would be used as follows:

Example

I NCBI TS MULT(MB1) OFFSET 0

I NCBI TS MULT(MB2) OFFSET 16
I NCBI TS MULT(MB3) OFFSET 32
I NCBI TS MULT(MB4) OFFSET 48

where MB1, MB2, MB3 and M B4 are 4 adc pattern wordsand MUL T isa 1D spectrum 64 channels
long. The bit-pattern of MB1 will be incremented into spectrum MULT starting at the first channel
(offset 0), that of M B2 incremented starting at the 17" channel, etc.

32



*COMMANDS

Createlist command

<CREATELIST> <wor d- par anet er - | i st - name>FROM [ <wor d- nane >]r

<CREATELIST> <group-paraneter-list-nane> FROM <group-nane>
#[ <gr oup- nunber - r ange>] #

where the optional <group-number-range> is used to specify a subset of group humbers from
those defined for <group-name>
and takes the form of one or more of the following separated by , (comma) ...

<gr oup- nunber >

<gr oup- nunber 1>, <gr oup- nunber 2> ...

or

<lower-limt:upper-lint>
<lower-limtq:upper-limti>,<lower-limts, upper-limty>..

CREATELI ST <i t emt paraneter-1ist-name>FROM[<group.itemnanme>]r

CREATELIST defines a list of data words present in the current event. A word parameter list is
constructed from alist of individual words,

Example

CREATELI ST VARS1 FROM TACl TAC2 TAC3 TACA

A group parameter list is specified using a single group name,

Example

CREATELI ST CELIST FROM GE

would create the group-parameter-list GEL I ST consisting of all the germanium groups.

A group parameter list may also be specified from a subset of a group,

Example

CREATELI ST GELISTA FROM GE[ 1: 6]
CREATELI ST GELISTB FROM GE[ 7, 9: 12]

would create the group-parameter-lists GELISTA consisting of germanium groups 1 to 6 and
GELISTB consisting of germanium groups 7 to 12 omitting 8.

An item parameter list is specified using one or more group.item combinations,

Example

CREATELI ST GAMLIST FROM GE. E4 CLOVERS1. A2DAT

would create the item-parameter-liss GAMLIST consisting of all the E4 items in group GE and all
the A2DAT wordsin group CLOVERSL.

Lists may be used with other commands so that a single command may be applied to all the members
of thelistinturn, .e.g.

33



*COMMANDS

Example

| NC GAMTOT( GELI ST. E2)

would increment all the E2 words in list GELIST which were present in an event into spectrum
GAMTOT.




*COMMANDS

Copylist command

<COPYLIST> <word- paraneter-1|ist-name;> TO <word-paraneter-|ist-
name,>

<COPYLIST> <gr oup- par anet er- 1 i st - nanme1> TO <gr oup- par aneter-1i st -
name,>

COPYLIST copiesthelist of datawords present in the input list to the output list.

Example

createlist gelist fromge

copylist gelist to ne