
MTsort Language - EDOC033
John Cresswell

Janet Sampson

MTsort Language - EDOC033
John Cresswell
Janet Sampson

Note
Command enhancements with this version ...
New Print command
Added spectrum and group data access to left and right hand sides of expressions.

Publication date 07 Aug 2015

Abstract

This manual describes the sort language. It can currently be used to sort a wide selection of event formats, including
Eurogam, Euroball, GammaSphere, IN2P3, Goosy, Oak Ridge, Exogam and GREAT format data. More features
and data formats are being added according to users' requirements.

iii

Table of Contents
Introduction .. 1

Feedback .. 2
Data File Format ... 3

General Structure ... 4
Notation ... 5
File Inclusion .. 6

*FORMATS ... 7
Single Parameter Format ... 8
Group Parameter Format ... 9

*TRIGGERS ... 11
*DATA .. 12

Sortwords ... 13
Pre-defined Sortwords ... 14
Gates ... 15

Bitmask gates .. 15
1D gates ... 15
2D gates ... 16
Elliptical gates ... 16

Data arrays ... 18
Value arrays .. 18
Gate arrays ... 19
Gain arrays ... 19
Arrays of arrays ... 20

*SPECTRA ... 21
*AUTOGAIN .. 22

Declarations .. 23
Commands .. 25

*COMMANDS .. 26
List of Commands ... 27
Parameter Lists .. 28
Simple Spectrum update commands .. 29
Indexed Spectrum update commands ... 31
Incbits command .. 32
Createlist command .. 33
Copylist command ... 35
Extract command ... 36
Loopextract command ... 38
If...else... command (single sortword environment)} ... 39

Validation test operator (VALID) ... 39
Comparison operators (EQ,NE,GE,LE,GT,LT) .. 39
Filtering operators (PASSES,FAILS) ... 40
Masking operator (MASKEDBY) ... 41
Gate-testing operator (GATEDBY) ... 41

Loopif...loopfail... command (parameter-list environment)} ... 43
Validation test operator (VALID) ... 44
Comparison operators (EQ,NE,GE,LE,GT,LT) .. 44
Filtering operators (PASSES,FAILS) ... 45
Masking operator (MASKEDBY) ... 45
Gate-testing operator (GATEDBY) ... 45

Select command .. 47
Goto command .. 48
Arithmetic operations ... 49

Arithmetic Operators .. 49
Maths functions ... 49
Command Functions ... 50

MTsort Language - EDOC033

iv

Gain command .. 52
Invalidate command ... 55
Groupfilter command .. 56
Order command ... 57
Print command .. 58
Routines ... 59
Exec Command ... 60

Synchronization ... 61
Doloop command ... 63
Output command ... 64
Endevent command .. 66
End command ... 67
Pause command ... 68

*RUNFILES (offline analysis only) .. 69
Appendix A. Constraints ... 71

Reserved words ... 72
Predefined sortwords .. 73
Maximum values ... 74

Appendix B. Data file examples ... 75
Eurogam phase 2 autogain sort ... 76
Auto-gained correlation sort ... 80
Quadsort ... 82
Quinsort ... 84
Pulse Processing .. 86

1

Introduction
In order to run a sort the user supplies a file of sorting instructions written in the sort language. This
data file should contain a description of the experimental setup, the number of spectra (histograms)
required and a set of commands to be applied to each event being sorted. The sort package checks the
syntax of these instructions and translates them into a more low level language, i.e. C. This translation
is then compiled to produce a sort program based on the user's original sort instructions.

If there are mistakes in your sortfile the sort package reports them as warnings or errors when you
try to set up a sort. Warning and error messages are given with the line number and a copy of the
erroneous line.

Introduction

2

Feedback
Feedback is most certainly welcome for this document. Send your additions, comments and criticisms
to the following email address : <support@ns.ph.liv.ac.uk>.

3

Data File Format

Data File Format

4

General Structure
The user-supplied data file is divided into several sections. Each section is identified by an associated
starword.

The recognised starwords are:

• *FORMATS

• *TRIGGERS (optional)

• *DATA (optional)

• *SPECTRA (optional)

• *AUTOGAIN (optional)

• *COMMANDS (optional)

• *FINISH (denotes end of sortfile)

• *TRIGGERS (optional)

and should appear in the data file in the above order. Items in the data file are in free format separated
by spaces. Each starword section is described in a following chapter.

All starwords, commands and other sort language statements are expected on a new line. Any
statement which exceeds a single line may just be continued on the following line. There are no line
continuation symbols.

Names used may contain one or two components depending on whether the quantity is a group name
or not. Each component must commence with an alphabetic character and may be up to 16 characters
in length. Only alphanumeric and underscore "_" characters are allowed.

All names used for single and group parameters, sortwords, items, arrays, maps, parameter lists and
routine arguments must be unique, e.g. a parameter list may not have the same name as a sortword.

Numerical values should be specified as appropriate to the command:

• integer (in the range -32768 to 32767)

• real (in the range 10-38 to 1038)

e.g. 2.143 2376. 936.52E5 1.509E-23

• binary (up to 16 bits) e.g. %1011101101

• hexadecimal (in the range FFFF to 7FFF) e.g. @0065

Reserved words consist of all keywords and maths function names and cannot be used as other sort
program names. See Appendix A for a list of all reserved words.

Comments may be placed anywhere in the text. Any text following an exclamation mark ! or double
forward slash // up to end-of-line is ignored by the setup procedure.

Data File Format

5

Notation
The convention in this manual is to show command names and keywords in upper-case, and
substitutable values in lower-case italic.

Note, however, that command entry in the sort-file is not case-sensitive.

Optional quantities are enclosed in square brackets, e.g. # optvar #.

The letter "r"' following a quantity indicates that the item may be repeated.

Alternative quantities are denoted by |, so a|b indicates either a or b.

In the commands section wherever <statements> is used it refers to either a simple statement (single
command) or a complex statement (group of commands enclosed within curly braces), i.e.

statements -> single-command
 |
 {
 single-command
 single-command
 ...
 }

Data File Format

6

File Inclusion

INCLUDE <filename>

This statement allows other text files to be included in any section of the data file. Only one level of
inclusion is allowed, i.e. included files may not contain any INCLUDE statements.

7

*FORMATS
This section is used to specify all experimental parameters and any other parameters required during
event processing. Parameters can be specified in two different formats depending on how they are to
be accessed: either as group or single parameter format.

*FORMATS

8

Single Parameter Format

<name> <address>

In single parameter format the 14-bit address of the parameter needs to be specified.

Example

*FORMATS
GE13_E2 @010D
silena1 513

This address must be unique and not lie within the address range of any group format names [See the
Eurogam document EDOC014 (Event Builder + Sorter Control) for further information].

This format is useful for sorting non-Eurogam format data.

*FORMATS

9

Group Parameter Format

<name > <[number]> <(item-list)>
<name > <[number-range]> <(item-list)>

where <number-range> is a subset of the allowed group numbers (0 to 1023) enclosed in
[] brackets, and takes the form:
<lower-limit>
<lower-limit> : <upper-limit>
<lower-limit> , <next-lower-limit> : <next-upper-limit> , ...
<lower-limit> : <upper-limit> , <next-lower-limit> : <next-upper-
limit> , ...

and <item-list> is a list of the items contained within a group separated by commas. Each
item consists of a name followed by an optional bit field, or an array:

<item-name> [: <number-of-bits>]
<item-name> (<array-length>)

Group numbers less than 256 correspond to standard group format; group numbers of 256 upwards
correspond to extended group format. Within any one group the format must be the same, i.e. group
numbers must be in one format range only (0--255 or 256--1023). A group consists of all the parameters
associated with one device, e.g. a germanium detector, would have an associated energy word, ballistic
deficit correction words, etc. The structure of all devices having the same sets of associated parameters
can be specified concisely using group format,

Example

*FORMATS
GE[2,4:10,19,23:26] (E1,E2,TAC,TACBD)
CLOVER[51:74] (BGOE,BGOT,BGOP,
 A1,A2,A3,A4,
 B1,B2,B3,B4,
 C1,C2,C3,C4,
 D1,D2,D3,D4)
CLOVER1[101:124] (E20, E4TAG1:3, E4DAT1:13)
CLOVER2[151:174] (E20, E4TAG1:3, E4DAT1:13, E4TAG2:3, E4DAT2:13)
TRACES[256:300] (pulse(128))

where the group name GE represents a group type consisting of 4 items: E1, E2, TAC and TACBD.
defined for group numbers 2,4,5,6,7,8,9,10,19,23,24,25,26.

CLOVER has 19 items defined for group numbers 51 to 74 inclusive, whereas CLOVER1 and
CLOVER2 are examples of groups which use bit fields to specify sections of the item data words for
ease of access in the *COMMANDS section.

Within the commands section the syntax used to refer to a single item of a particular group would be:

<group-name> # <group-number> # . <item-name>

where <group-number> need only be specified if a range of group numbers have been defined
for <group-name>.

*FORMATS

10

Example

 GE[13].E1

would refer to item E1 of group 13.

Example

 CLOVER[153].E4TAG2

would refer to the item E4TAG2, i.e. to the top 3 bits of the third data word, of group 153.

If only one group number is defined for a single group name, in *FORMATS, then it may be
referenced in the commands section without specifying the group number, e.g.

Example

TRIG[255] (S1,S2)

would be referenced as TRIG.S2 to access the second item of group TRIG.

Example

traces[256:300] (pulse(128))

would be referenced as TRACES.PULSE(I) to access the i'th PULSE item of group TRACES.

e.g.
i = 17
s = traces[256].pulse(i)

11

*TRIGGERS
This optional section is provided for compatibility with non-Eurogam format data.

<trigger-number> [< adc-name >] r

where <trigger-number> is in the range 0 to 64.

For each trigger used the list of associated adcs should be specified. e.g.

Example

*FORMATS
GE1 1
GE2 2
GE3 3
GE4 4
GE5 5
*TRIGGERS
24 GE1 GE2 GE3 GE4 GE5
...

specifies that the event data words GE1, ..., GE5 are declared as single parameters and are associated
with trigger number 24.

12

*DATA
Sort variables and other program data are defined in this section.

*DATA

13

Sortwords
Sortwords are variables used within the commands section to pass values between commands. They
may be of type word, long, longlong or float. Long longlong and float types must be explicitly declared
in this section. Any undeclared variables in the commands section are assumed to be of type word.
Sortwords are not limited in scope i.e. they are recognised in the main commands section and all
routines.

If a sortword is defined in this section and initialised with a starting value, then the sortword is
considered global. This has the effect of keeping its value across events. Sortwords are normally
undefined until first use in an event.

WORD <name> # = <integer-value> # ...

LONG <name> # = <integer-value> # ...

LONGLONG <name> # = <integer-value> # ...

FLOAT <name> # = <floating-point-value> # ...

where
WORD declares a 16-bit integer,
LONG a 32-bit integer
LONGLONG a 64-bit integer
and FLOAT a 32-bit real.
An optional initialisation value may be specified; if omitted it
will default to zero.

Example

WORD COUNTER1=1 COUNTER2=1
FLOAT PI=3.14159

declares two 16-bit integer variables COUNTER1 and COUNTER2 both initialised to 1 and one 32-
bit floating point variable PI initialised to 3.14159.

Initialisation occurs once at the start of each sort program run.

If a WORD variable is to be output from the commands section using the OUTPUT command then
it must be defined with an associated address:

WORD <name> # = <integer value> # AT <14-bit-address>

The address is neccessary for word variables to be output in Eurogam format, i.e. a data word with
a 14-bit address, so that they can be re-sorted later as pseudo-adc words. The address must lie in the
range 0 to 16383 (214-1) and not coincide with any addresses assigned in the *FORMATS section.

Example

WORD GAMA AT @A

would define the word GAMA with hexidecimal address A.

*DATA

14

Pre-defined Sortwords
The following sortwords have predetermined usage and value:

RANDOM floating point sortword, random value between 0.0 and 1.0

IRANDOM integer sortword, random value between 0 and 32767

GATE see IF... and LOOPIF...MASKEDBY|GATEDBY commands

WORDX see LOOPIF... command

WORDY see LOOPIF... command

STREAM Usually set =1

RUNFILE_NUMBER runfile number of currently sorted tape (1 for first file, etc.)

BLOCK_NUMBER current block number in currently sorted runfile

LOOP no longer used, see doloop command

*DATA

15

Gates
Sets of gates may be defined here for later use in the commands section through which to filter the
event-by-event data. If a data word being tested matches a particular gate condition it is said to pass
that particular gate.

Bitmask, 1D and 2D gates are stored as 8-bit lookup maps. Elliptical gates are stored as lists of
coordinates and axes. When a sortword value is tested against a gate in the commands section it will
pass either zero or one of the gates in the map. The gate number passed will be stored in the reserved
variable GATE

Bitmask gates
A set of bitmask gates consists of one bit pattern per gate. Within a set of gates earlier gate definitions
have precedence over later ones. This means that in the commands section if the same value would
pass more than one gate out of a set then the earliest gate defined would be the one passed.

GATES MASK <bitmask-gate-set-name>
<bitmask1> <bitmask2> ... <bitmaskngates>

Example

GATES MASK BITMAP1
%10000 %01000 %00100 %00010 %00001

Each data item consists of a 16-bit mask and represents one gate. A value will pass a gate if all the
bits set in the 16-bit value are also set in the 16-bit mask of that gate.

Within the commands section a value will pass a gate if it falls in between the lower and upper limits
(inclusive) of that gate.

1D gates
A 1D gate-map consists of one or more pairs of values. The range of values in between each pair
(inclusive) defines a single gate. Within a set of gates successive gates in a 1D set have precedence
over earlier ones. This means that in the commands section if a value would pass more than one gate
out of a set then the latest such gate defined would be the one passed.

GATES 1D <1d-gate-map-name> [< x-range >]
(<low-limit> <high-limit>)1
(<low-limit> <high-limit>)2
...
(<low-limit> <high-limit>)ngates

where <x-range> is specified as:
<lower-limit> : <upper-limit>
or
<range>
where <lower-limit> would be set to zero and <upper-limit> would be equal to
<range> minus 1.

Example

*DATA

16

GATES 1D BAND1[0:511]
(123 126) (245 259) (257 270)

defines a set of 1D gates BAND1 within the limits 0 to 511 inclusive which contains 3 gate definitions:

gate 1 is defined as channels 123, 124, 125, 126;
gate 2 as channels 245, 246, 247,..., 254, 255, 256;
and gate 3 as channels 257, 258, 259, 260,..., 268, 269, 270
because gate 3 overlaps gate 2.

2D gates
A 2D gate-map consists of one or more sets of x--y coordinate pairs. Each set defines a polygonal-
shaped gate in two dimensions against which pairs of values may be tested in the commands section.
If any polygons overlap within a set successive gates have precedence over earlier ones.

GATES 2D <2d-gate-map-name> [< x-range , y-range >]
(<gate-of-1D-coordinate-pairs>)1
(<gate-of-1D-coordinate-pairs>)2
...
(<gate-of-1D-coordinate-pairs>)ngates

Example

GATES 2D MASSMAP[64,64]
(11 44 13 36 18 30 25 29 28 35 30 49 26 60 20 58)
(31 62 29 1 52 1 51 62)

Defines the map MASSMAP with limits 0 to 63 in both the x- and y- directions. A coordinate pair
will pass a polygonal gate if the point it defines falls within the polygonal shape defined by that gate.

Note

1. The coordinate pairs are not individually separated to simplify the syntax, hence care must
be taken when inputting the data.

2. 2D gatemaps become large for large values of <x-range> and <y-range> .

Elliptical gates
Elliptical gates may be specified in 2 or 3 dimensions. They are defined by specifying the coordinates
and axes of each ellipse or ellipsoid making up the list of gates.

GATES ELLIPSE2D <2D-elliptical-gate-name>
(<x-coordinate> <y-coordinate> <x-radius> <y-radius>)1
(<x-coordinate> <y-coordinate> <x-radius> <y-radius>)2
...
(<x-coordinate> <y-coordinate> <x-radius> <y-radius>)ngates

where <x-radius> and <y-radius> define the radii for each axis of the ellipse.

Each set of coordinates and radii defines an elliptical gate against which pairs of values may be tested
in the commands section. If any gates overlap within a set earlier gates have precedence over later
ones. See IF...GATEDBY and LOOPIF...GATEDBY commands.

*DATA

17

GATES ELLIPSE3D <3D-elliptical-gate-name>
(<x-coordinate> <y-coordinate> <z-coordinate> <x-radius> <y-
radius> <z-radius>)1
(<x-coordinate> <y-coordinate> <z-coordinate> <x-radius> <y-
radius> <z-radius>)2
...
(<x-coordinate> <y-coordinate> <z-coordinate> <x-radius> <y-
radius> <z-radius>)ngates

where <x-radius> <y-radius> and <z-radius> define the radii for each axis of the ellipsoid.

Each set of coordinates and radii defines an ellipsoidal gate against which 3 values may be tested at
a time in the commands section.

*DATA

18

Data arrays
Three types of arrays may be defined to store data for subsequent access in the commands section.
Value arrays may be used to store integer or real data. Gate arrays store pairs of integer values to
define arrays of gates. Gain arrays store the gain parameters associated with particular sortwords.

Value and 1D gate arrays both allow a lookup facility dependent on another parameter, e.g. group
number.

Value arrays
VALUEARRAY defines a 1D, 2D or 3D array of 32-bit integer or real values that can be accessed
in the commands section.

VALUEARRAY <array-name>
<x-range> #, <y-range> #, <z-range> # # SAVE [< data-list >]

where <x-range> is the channel range in the first dimension, and the y- and z- quantities
the corresponding values in higher dimensions if applicable, specified in the same way as for
gate-maps.

If no starting channel is given it is assumed to be zero and the maximum channel will be (<x-range>
- 1) as before. If the SAVE keyword is specified, then the array is written back to disc at the end of the
sort, allowing modified arrays to be preserved. This discfile will normally be in the sort setup directory
created when a sortfile is compiled. The <data-list> is allowed in free format.

Note

The array data type (integer or float) is determined from the type of the first data element
specified in <data-list> .

The values specified in <data-list> are given in C-style ordering: the z-parameter
changes more quickly than y- which changes more quickly than x-. This is the opposite way
round to the convention used in FORTRAN.

Example

VALUEARRAY ANGLES [1:20]
157.60 157.60 157.60 157.60 157.60
133.57 0 107.94 0 107.94
133.57 94.16 133.57 107.94 94.16
107.94 133.57 0 133.57 107.94

defines a real 1D array ANGLES containing 20 elements.

Example

VALUEARRAY ARRAY2 [2:6,3] 1 11 21 2 12 22 3 13 23 4 14 24 5 15 25

defines an integer 2D array ARRAY2 spanning from channels 2 to 6 in the first dimension (5 channels)
and from channels 0 to 2 in the second. The values will be assigned as follows:

(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2)... etc.

An example of their use in the commands section would be:

*DATA

19

Example

A = B / ANGLES(<argument>)
C = ARRAY2(<argument> 1, <argument> 2)

where <argument> is an integer expression. See Arithmetic Expressions.

Any array elements not initialised by VALUEARRAY are set to zero.

Gate arrays
A gate-array contains the definition of a 1D array of pairs of channel numbers and the corresponding
array element number. Data is allowed in free format specified in order of increasing array element
number in the range 0 to 255 where array elements may be omitted from the sequence. Each pair of
channel numbers defines a gate.

GATEARRAY <1D-gate-array-name>
<array-index1> (<low-limit> <high-limit>)1
<array-index2> (<low-limit> <high-limit>)2
...
<array-indexngates> (<low-limit> <high-limit>)ngates

Gate-arrays may be defined here and used in the commands section to filter all group format data of
the same type through different 1D gates. See commands IF...PASSES and LOOPIF...PASSES.

Example

GATEARRAY TACGATES
1 (100 4000) 2 (95 4000) 6 (100 3950) ... 40 (85 4000) 45 (100 4000)

would define the gate array TACGATES. This array could then be accessed in the commands section
to filter each germanium TAC word with parameters dependent on the group number.

Gain arrays
Sets of gain matching parameters may be specified in this section by means of a GAINWORD or
GAINARRAY statement and referenced in the commands section via the GAIN command.

GAINWORD <parameter-set-name> <a> <c>

GAINARRAY <gain-array-name> <a> <c>
<array-index1> <a1> <b1> <c1>
<array-index2> <a2> <b2> <c2>
...
<array-indexn> <an> <bn> <cn>

where <parameter-set-name> contains the single set of parameters <an> <bn> <cn> and
<gain-array-name> contains <n> sets of gain matching parameters.

GAINWORD is designed for use with single variables and GAINARRAY is used with group-format
variables, allowing the same item name associated with all groups of the same type to be gain-matched
by a single command line in the commands section,

GAINARRAY data is allowed in free format with array element number in the range 0 to 255.

*DATA

20

Example

*FORMATS
GAINWORD GE_19 0.3 -0.05 0.00 // single variable parameters
GAINWORD GE_29 0.6 0.02 0.00

GAINARRAY E2GAINS // group format
1 (-0.2 0.10 0.00)
3 (0.7 -0.03 0.00)
...
70 (-0.1 0.05 0.00)

Each statement stores a set of gain-matching parameters associated with a particular sortword.

The value of <sortword> may then be modified in the commands section using the GAIN command
according to the equation:

<sortword> = a + b* <sortword> + c* <sortword> 2

Arrays of arrays
A set of arrays of the same type (valuearray, gatearray or gainarray) may be defined. This is currently
implemented for gainarrays and gatemaps in commands if...gatedby and loopif...gatedby.

ARRAYLIST <arraylist-name> [< array-name >] r

The arraylist defines an array starting at element zero.

21

*SPECTRA

<spectrum-name> # <[index-range]> # <number-of-channels> [< type >]
DISC
where <index-range> is expressed as
<lower-limit> : <upper-limit>
and <lower-limit> and <upper-limit> are optional integer values which allow more
than one spectrum to be declared by a single statement.
See Indexed Spectrum Updates section for an example application.
and <number-of-channels> is one of:

<integer> 1D spectrum

<integer> * <integer> Rectangular 2D spectrum

2D Square 2D spectrum

<integer> * <integer> * <integer> Cuboid

3D Symmetrised 1/6 cube

and <type> (optional) is:

8 Signed byte precision, 8-bits per channel

16 Signed single precision, 16-bits per channel

32 Signed double precision, 32-bits per channel

The optional keyword DISC makes the spectrum disc-based during sorting.

If <type> is omitted then the default of 32 is assumed for 1D, 16 for 2D and 3D.

By default, spectra are sorted into shared memory. It is the user's responsibility to ensure that there
is sufficient memory available. Any combination of memory and disc-based spectra may be specified
but as the sort package is essentially memory-based and is not fully optimised for disc-based sorting,
the use of disc-updated spectra will degrade the performance.

For the maximum number of spectra allowed, see Appendix A.

Example

Some typical spectrum declarations might be:

*SPECTRA
TIME 1024 // 1D 16-bit, 1024 channels
GEL1 4096 32 // 1D 32-bit, 4096 channels
GEL3 4096*1024 // 2D 16-bit, 4096 by 1024 channels
GEL4 1024 2D // 2D 16-bit, 1024 channels square
GSPEC 1024*1024*8 // 3D 16-bit, 1024 by 1024 by 8 channels
SM[4:10] 4000 // 7 1D 16-bit spectra, 4000 channels each
CUBE[1:5] 16 3D 8 // 5 3D 8-bit 16 channel cubes

22

*AUTOGAIN
Gain drifts can be monitored via the *AUTOGAIN section.

The gain matched values of two well-defined peaks must be supplied. Initial gain coefficients for a
quadratic fit may be supplied in the *DATA section. Alternatively, two peak positions for each data
value to be monitored may be supplied in this section and initial linear coefficients will be derived.

The *AUTOGAIN section adjusts the gain coefficients by measuring the shift in two peak positions
for each spectrum. For an initial calibration E for data value x:

E = a + bx + cx2

and for the shifted energy Enew given by:

Enew = A + BE

then the shifted coefficients are derived as:

anew = Ba + A

bnew = Bb

cnew = Bc

The gain coefficients are applied to the data by means of the GAIN command in the *COMMANDS
section.

The gain coefficients are calculated in the autogain section and updated into a gain array (defined
in the *DATA section). This gain array needs to be associated with a set of data words by an INIT
statement in the autogain section.

The user can set the number of blocks (autogain period) over which the gain coefficients are
initially calculated and subsequently monitored during the sort. A minimum acceptable peak area and
maximum deviation may also be specified.

After the sample number of data blocks have been read, the peak centroids in the autogain spectra
are determined and matched to the control values. This enables the gain shift to be calculated. At the
start of an autogain sort, only the commands in the autogain section are executed until all the initial
gain coefficients have been determined. If they have not all been determined after three times the
autogain period then the autogain phase will stop. Any unresolved coefficients will take the initial
values supplied at the start of the autogain phase.

After this initial autogain phase offline, the first file will be rewound and the sort will restart, now
executing the statements in the *COMMANDS section and checking for gain drifts each autogain
period.

If a peak centroid in a gain spectrum shifts by more than the specified deviation then the gain
coefficients for the corresponding data word will be recalculated. All autogain spectra are zeroed after
the gains are monitored each time.

*AUTOGAIN

23

Declarations

SAMPLE <nblocks>

where <nblocks> is the number of blocks after which the gain coefficients are recalculated.

Up to four times the sample number of blocks may be used to obtain the initial gain coefficients. A
default value of 50000 blocks is assumed if none is specified.

PEAKAREA <minimum-acceptable-peak-area>

where <minimum-acceptable-peak-area> is the minimum integration area under a
peak required for the gain spectrum to be used to evaluate gain coefficients.

An estimate is made of the background under the peak in order to calculate the peak area. A default
value of 50 is assumed.

DEVIATION <maximum-acceptable-centroid-shift>

where <maximum-acceptable-centroid-shift> is the maximum centroid shift of a
peak in a gain spectrum to avoid calculation of new gain coefficients.

A default value of 1.0 is assumed.

INIT <gain-array> FROM <1D-spectrum> CENTROIDS <centroid1> <width1>
<centroid2> <width2>
PEAKS
<group-number> <centroid1> <width1> <centroid2> <width2> #r
#

where <gain-array> is the name of a gain array already declared in the *DATA section,
<1D-spectrum> is the name of an array of 1D 32-bit precision spectra declared in the
*SPECTRA section
and the centroids and widths are floating point numbers denoting the gain matched positions
and widths of two control peaks to gain match to.

The INIT line is optionally followed by a PEAKS statement in which estimates of the actual peak
parameters are specified for each group number.

VOVERC <real number>

COPYGAIN FROM <gain-array> [< group-range >] TO <gain-array> [<
group-range >] ANGLES <value-array> DELTAS <value-array>

These statements allow the gain coefficients to be adjusted for detectors where multiple leaves fire
and the midpoint angle is used to correct the autogained coefficients for such data. See example in
Appendix B for use.

Example

*AUTOGAIN

24

*DATA
GAINARRAY GAINS1
*SPECTRA
GSPEC[2:5] 4096 32
*AUTOGAIN
SAMPLE 10000
PEAKAREA 40
DEVIATION 0.80
INIT GAINS1 FROM GSPEC CENTROIDS 550 5.0 1204 7.3
PEAKS
2 545 5.0 1200 7.2
3 546 5.0 1202 7.2
5 551 5.0 1207 7.3
 ...

*AUTOGAIN

25

Commands
Only a subset of the full *COMMANDS section is available here to allow the update of gain spectra.

CREATELIST <group-parameter-list-name> FROM <group-name>

CREATELIST defines an internal list of data words from <group-parameter-list-name>
which consists of the variables specified in an item list that are found in the current event,

Example

CREATELIST GELIST FROM GE

would create the group-parameter-list GELIST consisting of all the germanium groups.

INC <autogain-spectrum-name> (<x-channel>) INDEXED <index>

Spectra may be indexed my means of the INDEXED keyword used with the INC command where
<index> may be an integer expression, or dollar word used to specify a group number. The value of
<index> determines which spectrum will be incremented: a value of 1 indicates the first spectrum
in the array; 2 indicates the second, and so on. Spectra indexed in this way must all have the same
dimensions and precision and be defined consecutively in the spectra section.

See first example in Appendix B for how to use autogain to derive gain coefficients and then use them
in the main commands section.

26

*COMMANDS
This starword recognises as keywords all sort command names. The sort commands are executed for
each event in the order in which they appear in the setup file. A sort command is a built-in routine
which performs a function on the sortwords.

*COMMANDS

27

List of Commands
INC increments a spectrum

DEC decrements a spectrum

SET assigns a value to a spectrum channel

INCBITS increments the bit pattern of an expression into a 1D-spectrum

CREATELIST defines a parameter-list of parameters from the event

EXTRACT obtains subsets of valid parameters from a defined parameter-list

LOOPEXTRACT obtains subsets of valid parameters from a defined parameter-list

IF conditional execution of sort commands

LOOPIF conditional execution of sort commands in parameter-list environment

SELECT allows correlation of sort commands with parameter values

GOTO jump forward to a specified label

LABEL define a label to jump to

INVALIDATE allows a group to be removed from the event

GROUPFILTER allows groups to be removed from the event

ORDER orders a list of sortwords according to their value

GAIN adjusts the gain of a sortword using a quadratic

ROUTINE starts a subroutine-like section

CALL execute the set of commands in a ROUTINE

EXEC execute an external sort function

DOLOOP allows looping over several commands

OUTPUT outputs a list of sortwords or a complete event

ENDEVENT terminates event processing

END ends event processing, or returns from called ROUTINE

PAUSE pauses event processing

x=expr arithmetic operations, assign expression to sortword/spectrum x

A particular sort command may be used as many times as necessary subject to any system-dependent
limit on resultant program size. Any sortword generated by a command may be used as input to any
succeeding command.

The IF...ELSE, LOOPIF...LOOPFAIL and IF...GOTO label block structures should normally be
used to define the processing flow.

*COMMANDS

28

Parameter Lists
High fold data can usually be sorted more easily by means of parameter lists. There are three types
of list:

word-parameter-list consisting of individual data words

group-parameter-list consisting of members of a group

item-parameter-list consisting of lists of items from one or more groups

Once a list has been created it can be operated on by other sort commands to allow the same command
to loop over every item in the list. Commands which operate directly on parameter lists are:

CREATELIST
EXTRACT
LOOPEXTRACT
INC
DEC
INCBITS
LOOPIF

*COMMANDS

29

Simple Spectrum update commands

INC|DEC <spectrum-name> (<x-channel> # <y-channel> # <z-channel> # #)

SET <spectrum-name> (<x-channel> # <y-channel> # <z-channel> # #) =
<expression>

where a channel is defined as one of the following ...
arithmetic expression
parameter-list
$word = group-parameter-list

INC | DEC increment/decrement the spectrum channel specified. SET sets the spectrum channel to
the value given by <expression> . If a parameter-list is specified for a channel then the command will
be applied to all members of the list present in the event. If the same list is used for different channels
of a spectrum then the ith element of a list will not be incremented with the ith element.

Example

INC GMAT(GELIST.E2,GELIST.E2)

... increment the channels given by each E2 word for parameter-list GELIST. Channels given by the
ith element of the first list and the ith element of the second list are not incremented, i.e. the same
gamma-ray is not incremented with itself.

Example

INC GS1(GE[1].E1)

... increment the channel GE[1].E1 of spectrum GS1, where E1 is an item associated with the group
GE[1].

Example

DEC GAMSPC((GAM1+100)/2)

... decrement channel (GAM1+100)/2 of spectrum GAMSPC.

Example

SET TCHECK(10) = clock.w1

... assign the data word clock.w1 to channel 10 of spectrum TCHECK.

Example

INC MAT2D(WORDX,LISTX)

... increment channel given by the word WORDX (x-coordinate) and all valid words in word-
parameter-list LISTX (y-coordinate) of 2D spectrum MAT2D.

*COMMANDS

30

Example

INC ALL_GES(GELIST.E2)

... increment channel given by all valid E2 words in group-parameter-list GELIST of spectrum
ALL_GES.

Example

INC GFEX3(GAMA,GAMB,GAMC)

... increment the symmetrised cube GFEX3 at the location given by GAMA, GAMB and GAMC.

Any spectrum update attempted by a command in this sort package which falls outside the defined
spectrum dimensions will be safely ignored.

*COMMANDS

31

Indexed Spectrum update commands

INC|DEC <spectrum-name> (<x-channel> # <y-channel> # <z-channel> # #)
INDEXED <index>

SET <spectrum-name> (<x-channel> # <y-channel> # <z-channel> # #)
INDEXED <index> = <expression>

Spectra may be indexed my means of the INDEXED keyword used with the INC or DEC commands
where index may be an integer expression, or dollar word used to specify a group number. The value
of index determines which spectrum will be incremented, decremented or set: a value of 1 indicates the
actual spectrum specified; 2 indicates the subsequent spectrum defined in memory, and so on. Spectra
indexed in this way must all have the same dimensions and precision and be defined consecutively
in the spectra section.

For example, it is sometimes useful to be able to update a different spectrum for each gate number
passed by a gate-map testing command. e.g.

Example

*SPECTRA
 ...
CE132[3:20] 4096
 ...
*COMMANDS
 ...
IF GAM1 GATEDBY GLREC {
 ...
INC CE132(GAM2) INDEXED GATE
 ...

where GATE denotes the gate number passed in the gate-map GLREC by the IF...GATEDBY
command.

If GATE is 4 then the 3rd spectrum defined after CE132[3] in the *SPECTRA section, i.e. CE132[6],
will be incremented with the value of sortword GAM2.

It is also possible to use this feature to increment a spectrum according to the group number of a word,
e.g.

Example

INC CE132(GROUPA=GELIST.E2) INDEXED $GROUPA

where $GROUPA denotes the group number passed in the parameter list GELIST.

*COMMANDS

32

Incbits command

INCBITS <1D-spectrum-name> (<bit-pattern>) OFFSET <integer-offset>
INDEXED <index>

This command increments a bit-pattern into 16 channels of a 1D spectrum commencing at the offset
specified, where bit-pattern is an expression. It may be optionally indexed. The least significant bit
will be incremented at the channel given by integer-offset and successive bits in subsequent channels.

E.g. to obtain a spectrum of 4 bit-pattern sortwords, the command would be used as follows:

Example

INCBITS MULT(MB1) OFFSET 0
INCBITS MULT(MB2) OFFSET 16
INCBITS MULT(MB3) OFFSET 32
INCBITS MULT(MB4) OFFSET 48

where MB1, MB2, MB3 and MB4 are 4 adc pattern words and MULT is a 1D spectrum 64 channels
long. The bit-pattern of MB1 will be incremented into spectrum MULT starting at the first channel
(offset 0), that of MB2 incremented starting at the 17th channel, etc.

*COMMANDS

33

Createlist command

<CREATELIST> <word-parameter-list-name> FROM [< word-name >] r

<CREATELIST> <group-parameter-list-name> FROM <group-name>
[<group-number-range>]

where the optional <group-number-range> is used to specify a subset of group numbers from
those defined for <group-name>
and takes the form of one or more of the following separated by , (comma) ...

<group-number>
<group-number1> , <group-number2> ...
or
<lower-limit:upper-limit>
<lower-limit1:upper-limit1> , <lower-limit2:upper-limit2> ...

CREATELIST <item-parameter-list-name> FROM [< group.item-name >] r

CREATELIST defines a list of data words present in the current event. A word parameter list is
constructed from a list of individual words,

Example

CREATELIST VARS1 FROM TAC1 TAC2 TAC3 TAC4

A group parameter list is specified using a single group name,

Example

CREATELIST GELIST FROM GE

would create the group-parameter-list GELIST consisting of all the germanium groups.

A group parameter list may also be specified from a subset of a group,

Example

CREATELIST GELISTA FROM GE[1:6]
CREATELIST GELISTB FROM GE[7,9:12]

would create the group-parameter-lists GELISTA consisting of germanium groups 1 to 6 and
GELISTB consisting of germanium groups 7 to 12 omitting 8.

An item parameter list is specified using one or more group.item combinations,

Example

CREATELIST GAMLIST FROM GE.E4 CLOVERS1.A2DAT

would create the item-parameter-list GAMLIST consisting of all the E4 items in group GE and all
the A2DAT words in group CLOVERS1.

Lists may be used with other commands so that a single command may be applied to all the members
of the list in turn, .e.g.

*COMMANDS

34

Example

INC GAMTOT(GELIST.E2)

would increment all the E2 words in list GELIST which were present in an event into spectrum
GAMTOT.

*COMMANDS

35

Copylist command

<COPYLIST> <word-parameter-list-name1> TO <word-parameter-list-
name2>

<COPYLIST> <group-parameter-list-name1> TO <group-parameter-list-
name2>

COPYLIST copies the list of data words present in the input list to the output list.

Example

createlist gelist from ge
 ...
copylist gelist to newgelist
 ...

*COMMANDS

36

Extract command

EXTRACT <word-parameter-list-name> INTO <parameter-list> ORDERED |
REVERSED

EXTRACT <group-parameter-list-name> . <item> INTO <parameter-list>
ORDERED | REVERSED

EXTRACT <group-parameter-list-name> INTO <parameter-list>

where <parameter-list> is:
<word> [< word >] r

EXTRACT places valid words from a parameter list into output words to be accessed individually.

In the first 2 forms of the command EXTRACT scans the items in <*-parameter-list-name>
and copies only those which are valid in the current event to <parameter-list> . In this case the
values of the parameters in the input list are copied to the specified words,

Example

EXTRACT LIST1.E2 INTO GAMA GAMB GAMC GAMD

copies valid parameter values from the group parameter list LIST1.E2 into the words GAMA,
GAMB, etc.

In the third form of the command the group information is retained in the output parameters. This is
through use of the $ symbol which indicates that the variable references a group-format parameter and
does not contain the actual value itself. This means that the group number information, i.e. address,
is retained in $-parameters.

The output data must be accessed by specifying the group and an associated item ...

Example

EXTRACT LIST1 INTO $GA $GB
IF $GA.E2 PASSES GARRAY($GA) {
 IF $GB.E2 PASSES GARRAY($GB) {
 ...
 }
}

copies the group numbers of valid parameters in group parameter list LIST1 into the group-words
$GA and $GB. This group information is then used by the IF...PASSES commands to index into the
gate array GARRAY.

If there are fewer valid words than output words they will be placed in the first output words specified
in the command. If there are more valid words than available output words then the output words are
chosen randomly from the valid words in the input list.

EXTRACT can be combined with the arithmetic NUMBER function (See Arithmetic Functions). to
obtain the number of words in the parameter list which are present in the event,

Example

*COMMANDS

37

EXTRACT GELIST.E2 INTO GAMA GAMB GAMC GAMD GAME GAMF
IF NUMBER(GELIST) GT 4 {
 ...

The optional keywords ORDERED (REVERSED) enable the user to specify whether the values
of words in the input list are to be output in order of increasing (decreasing) numerical value. If no
keyword is specified then the values are output in the order in which they appear in the input list.

*COMMANDS

38

Loopextract command

LOOPEXTRACT <word-parameter-list-name> INTO <parameter-list>
ORDERED | REVERSED {
<statements>
}

LOOPEXTRACT <group-parameter-list-name> . <item> INTO <parameter-
list> ORDERED | REVERSED {
<statements>
}

LOOPEXTRACT <group-parameter-list-name> INTO <parameter-list> {
<statements>
}

where <parameter-list> is:
<word> [< word >] r

LOOPEXTRACT works in the same way as the EXTRACT command except that if there are more
valid words in the input parameter-list than available output words then event processing will loop
over all combinations of input words for the associated <statements> .

Example

CREATELIST LIST1 FROM GE
 ...
LOOPEXTRACT LIST1.E2 INTO A B
 {
 INC MAT2(A,B)
 INC MAT2(B,A)
 }

So if there were 3 valid words in list LIST1, say x, y and z, then LOOPEXTRACT would be executed
for the following parameter combinations (x,y), (x,z) and (y,z).

*COMMANDS

39

If...else... command (single sortword
environment)}

IF <test> <statements> # ELSE <statements> #

where <test> is one of the following:
<sortword > VALID
<sortword1> | <bracketed_expr1> EQ|NE|GE|LE|GT|LT <sortword2> |
<bracketed_expr2>
<sortword> | <bracketed_expr> PASSES|FAILS <1D-gate>
<sortword> | <bracketed_expr> MASKEDBY <16-bit mask>
<sortwordx> | <bracketed_exprx> # <sortwordy> | <bracketed_expry> #
GATEDBY <gate-expression>
<bracketed_expr> is a normal <expression> surrounded in brackets e.g. (a+b)
and <gate-expression> is one of:
<gate-name>
<arraylist-of-gates> [< expression >]
where the gate dimension must match the number of arguments tested. The <expression>
specified with the arraylist argument determines the offset into the arraylist, starting from zero,
and hence the particular gate map referenced.

The IF command allows conditional execution of <statements1> or <statements2> depending
on the result of a test. If the result is true, then <statements1> are executed, otherwise
<statements2> are executed (if specified). The various forms of the IF command are described
below in more detail.

Validation test operator (VALID)

IF <sortword> VALID ...

where VALID means `present in the event' or `set true by some previous statement in the sortfile',
i.e. by an arithmetic assignment, EXTRACT, LOOPEXTRACT or CALL statement. For each such
word, <statements1> are executed.

Comparison operators (EQ,NE,GE,LE,GT,LT)

IF <sortword1> | <bracketed_expr1> EQ|NE|GE|LE|GT|LT <sortword2> |
<constant> | <bracketed_expr2> ...

where
EQ denotes ``is equal to''
NE denotes ``is not equal to''
GE denotes ``is greater than or equal to''
LE denotes ``is less than or equal to''
GT denotes ``is greater than''
LT denotes ``is less than''
and <constant> may be an integer or real constant.

The first <sortword> or <expression> is compared with the second according to the operator
specified,

*COMMANDS

40

Example

IF GAMA GT THRESHOLD {
 INC SPEC1(GAMA)
 INC SPEC2(TAC)
 }
ELSE EVENTEND

In the above example, the spectrum increments are performed if the value of GAMA is greater than that
of THRESHOLD. Otherwise event processing is terminated for that event (EVENTEND command).

Filtering operators (PASSES,FAILS)

IF <sortword> | <bracketed_expr> PASSES (<lower-limit> , <upper-
limit>) ...

where expressions may be used to define <lower-limit> and <upper-limit> . IF...PASSES
is true if <sortword> or <expression> falls inside the gate defined by <lower-limit> and
<upper-limit> inclusive,

Example

IF GAMA PASSES (100 , HLIMIT) INC SPEC1(GAMB)

causes spectrum SPEC1 to be incremented if the value of sortword GAMA lies between 100 and the
value of HLIMIT (inclusive).

If <upper-limit> is less than <lower-limit> then the IF test will always give the result
FALSE.

IF <sortword> | <bracketed_expr> PASSES <gate-array-name> (<index>) ...

where <index> is an integer expression which gives the array element number used to obtain a gate
defined in <gate-array-name> . See gate-array command.

Example

EXTRACT GELIST INTO $G1
IF $G1.TAC PASSES TACLIST($G1) {
 ...

IF <sortword> | <bracketed_expr> FAILS <gate-array-name> (<index>) ...

Conversely IF...FAILS is true only if <sortword> or <expression> is present in the event and
falls outside the limits of the gate,

Example

IF GAMA FAILS (100 , HLIMIT) {

*COMMANDS

41

 DEC SPEC2(GAMB)
 DEC SPEC3(GAMC)
 }

causes spectra SPEC2 and SPEC3 to be decremented if sortword GAMA is outside the range defined
by 100 and HLIMIT (inclusive).

Masking operator (MASKEDBY)

IF <sortword> | <bracketed_expr> MASKEDBY <16-bit mask-value> ...

IF...MASKEDBY is true only if all the bits set in the 16-bit mask are present in the sortword or
expression being tested,

Example

IF GAMA MASKEDBY %00110101 INC SPEC1(MB1)

causes SPEC1 to be incremented if all the bits set in GAMA are also set in the bit pattern %00110101.

IF <sortword> | <bracketed_expr> MASKEDBY <bitmask-set-name> ...

This form of the command is true if there is a bit pattern in <bitmask-set-name> for which all the
bits set are present in <sortword> or <expression> . The gate number of the bit pattern which
satisfies this condition is placed in the reserved word GATE.

Gate-testing operator (GATEDBY)
IF...GATEDBY is true if the value or <sortword> or <expression> falls within the set of
gates associated with <gate-expression> . The gate number passed is placed in the reserved
variable GATE. This variable is only recognised within <statements> . See section group name
for definition of gate limits.

IF <sortword> | <bracketed_expr> GATEDBY <1D-gate-expr> ...

Example

IF GAMTOT GATEDBY GLIST1 {
 INC SPEC1(GAMTOT)
 INC SUMSPEC(SUMEN)
 }
ELSE EVENTEND

where the spectra SPEC1 and SUMSPEC are incremented if sortword GAMTOT passes any of
the 1D gates defined in the gate-map GLIST1. If no gates are passed then command processing is
terminated for that event (EVENTEND command).

IF <sortwordx> | <bracketed_exprx> <sortwordy> | <bracketed_expry>
GATEDBY <2d-gate-expr> ...

*COMMANDS

42

In the 2D gate test command the gate is passed if the coordinates given by <exprx> and <expry> fall
within the set of 2D polygonal or elliptical gates specified in <2d-gate-expr> . The intersection
of two polygons is given the gate number of the later defined gate.

Example

IF EDELTE SUMEN GATEDBY GREC1 {
 INC MASS1(GAMTOT)
 SELECT(GATE)
 ... commands dependent upon which gate passed ...
 }
ELSE {
 IF EDELTE SUMEN GATEDBY GREC2
 INC MASS2(GAMTOT)
 }

If EDELTE (x-coordinate) and SUMEN (y-coordinate) pass any of the gates defined in the gate-map
GREC1 then the commands within the first set of braces will be executed, otherwise if they pass any
of the gates defined in GREC2 then the commands within the second set of braces will be obeyed:

*COMMANDS

43

Loopif...loopfail... command (parameter-list
environment)}

LOOPIF <test> # NEWLISTX= <list-name> # # NEWLISTY= <list-name> #
<statements1> # LOOPFAIL <statements2> #

where <test> is one of the following:
<word-param-list> VALID
<$-word> = <group-param-list> VALID
<list-expression> EQ|NE|GE|LE|GT|LT <sortword> | (<expression>)
<list-expression> PASSES|FAILS <1D-gate>
<list-expression> MASKEDBY <16-bit mask>
<list-expressionx> <list-expressiony> GATEDBY <2d-gate-
expression>
<list-expressionx> <sortwordy> | (<expressiony>) GATEDBY <2d-gate-
expression>
<sortwordx> | (<expressionx>) <list-expressiony> GATEDBY <2d-gate-
expression>
and <list-expression> is either a word- or a group- parameter list:
<word-parameter-list-name>
<$-word> = # <group-parameter-list-name> . <item-name>
where for a group parameter list the particular group passed may be stored in the group variable
$-word if specified.
<gate-expression> is one of:
<gate-map-name>
<arraylist-of-gatemaps> [< expression >]
where the gate dimension must match the number of arguments tested. The <expression>
specified with the arraylist argument determines the offset into the arraylist, starting from zero,
and hence the particular gate map referenced.

The LOOPIF command is a parameter-list form of the IF command, i.e. it executes an IF test for all
words in an input parameter-list. Each time an item from the list (or item pair from the lists) is found
that satisfies the test <statements1> are executed.

If the input list is a word parameter list (See Createlist command) then for each test the current
parameter value being tested is placed in the reserved variable WORDX (or WORDY for
<parameter-list-namey>).

For the LOOPIF...MASKEDBY <bitmask-set-name> and LOOPIF...GATEDBY commands,
the gate number passed each time is placed in the reserved variable GATE.

If the NEWLISTX and/or NEWLISTY (for the second list in 2D gate-map case) keywords are used to
specify output parameter lists then for each parameter which satisifes the test all the other parameters
in the input list are copied to the specified output lists.

If no parameter-list items satisfy the test and LOOPFAIL has been specified then <statements2>
are executed.

Example

Consider the case where 2 group parameter lists are being tested together against a 2D gate-map. Each
valid word in the first list is tested with all valid words in the second list:

*COMMANDS

44

CREATELIST LIST1 GE30
CREATELIST LIST2 GE150
LOOPIF LIST1.E2 LIST2.E2 GATEDBY GATES1 NEWLISTX=LIST1A NEWLISTY=LIST2A
 INC MAT6(LIST1A.E2,LIST2A.E2)

i.e. all the combinations of E2 words in lists LIST1 and LIST2 will be tested. For those combinations
which pass any of the gates in the gate-map GATES1 then the INC command will cause all
permutations of the remaining E2 words in the lists (LIST1A and LIST2A) to be incremented into
the 2D spectrum MAT6.

Validation test operator (VALID)

LOOPIF <word-param-list> VALID ...

LOOPIF # <$-word> = # <group-param-list> VALID ...

For a word parameter list, <statements1> are executed for each word in the list which is present in
the event. For a group parameter list, <statements1> are executed for each group in the list which
is present in the event. If the optional " <$-word> =" is specified in the command then the group
identifier is assigned to the $-word variable for each iteration of the loop.

Comparison operators (EQ,NE,GE,LE,GT,LT)

LOOPIF <list-expression> EQ|NE|GE|LE|GT|LT <sortword> | <constant> |
<expression> ...

where
EQ denotes ``is equal to''
NE denotes ``is not equal to''
GE denotes ``is greater than or equal to''
LE denotes ``is less than or equal to''
GT denotes ``is greater than''
LT denotes ``is less than''
and <constant> may be an integer or real constant.

In this format of the LOOPIF command all words from <parameter-list> found in the event are
compared with the value of <sortword> or <expression> according to the operator specified.
For each case which gives the result true then <statements1> are executed.

Example

CREATELIST GELIST FROM GE
LOOPIF GELIST.E1 GT THRESHOLD {
 INC SPEC1(GAMA)
 INC SPEC2(TAC)
 }
LOOPFAIL EVENTEND

In the above example, the spectrum increments are performed if the value of GELIST.E1 is greater
than that of sortword THRESHOLD. Otherwise event processing is terminated for that event
(EVENTEND command).

*COMMANDS

45

Filtering operators (PASSES,FAILS)

LOOPIF <list-expression> PASSES|FAILS <1D-gate> (<lower-limit> ,
<upper-limit>) ...

LOOPIF <list-expression> PASSES|FAILS <gate-array-name> (<index>) ...

The first form of the command allows valid member of <parameter-list> to tested against the
gate defined by the expressions <lower-limit> and <upper-limit> . In the second form of the
command each valid member of <parameter-list> to tested against a gate in the array <gate-
array-name> (See Gate-Array command) where the array element number used is given by the
expression <index> .

Example

*DATA
GATEARRAY TACGATES
1 (100 4000) 2 (90 4000) ...
 ...
*COMMANDS
CREATELIST GELIST FROM GE
LOOPIF $GROUPX=GELIST.TAC PASSES TACGATES($GROUPX) {
 ...
 }

LOOPIF...PASSES is true for each case where a member of <parameter-list> falls inside the
gate defined by <lower-limit> and <upper-limit> inclusive. Conversely LOOPIF...FAILS
is true for each case where a member of <parameter-list> is present in the event and falls outside
the limits of the gate.

Masking operator (MASKEDBY)

LOOPIF <list-expression> MASKEDBY <16-bit mask-value or bitmask-
set-name> ...

LOOPIF...MASKEDBY is true for words in the list where all the bits set in the 16-bit mask or a gate
in <bitmask-set-name> are present in the word being tested. For the latter case the gate number
passed is placed in the reserved word GATE.

Gate-testing operator (GATEDBY)
LOOPIF...GATEDBY is true for each case where a member of <parameter-list> falls within
the set of gates associated with <gate-expr> . Whenever a gate is passed the gate number will
be placed in the reserved variable GATE. The data defining the gate limits within the gate-map is
specified in the *DATA section.

LOOPIF <list-expression> GATEDBY <1D-gate-expr> ...

In the above case each member of the parameter-list found in the event is tested against the gate-map
specified,

*COMMANDS

46

Example

 ...
*DATA
GATEMAP 1D MASS130A[0:600]
(100 180) (160 270) (250 340) (330
 460) (440 560)
 ...
*COMMANDS
 ...
CREATELIST RLIST1 FROM GE
LOOPIF RLIST1.E2 GATEDBY MASS130A NEWLISTX=RLIST2 {
 ...
 LOOPIF RLIST2.E2 GATEDBY ... {
 ...
 }
 }

LOOPIF <list-expressionx> <list-expressiony> GATEDBY <2d-gate-
expression> ...

LOOPIF <list-expressionx> <sortwordy> | (<expressiony>) GATEDBY <2d-
gate-expression> ...

LOOPIF <sortwordx> | (<expressionx>) <list-expressiony> GATEDBY <2d-
gate-expression> ...

For the 2D gate-map-test format one or both of the parameters to be tested must be a list-expression,

Example

 ...
*DATA
GATES 2D MAP1[64,64]
(12 20 20 22 23 26 19 31 17 27 16 23) (19 24 25 21 30 27 31 38
29 40 26 38 23 26 21 24) (35 28 38 32 40 33 42 41 40 45 38 41
37 39 36 32)
 ...
*COMMANDS
 ...
SUMEN = ...
CREATELIST GELIST FROM GE
LOOPIF GELIST.E2 SUMEN GATEDBY MAP1 NEWLISTX=OUTLIST1 {
 LOOPIF OUTLIST1.E2 GATEDBY ...
 ...

*COMMANDS

47

Select command

SELECT (<expression>)
(<value>) <statements> #r
(NOMATCH) <statements>

SELECT (<expression1> , <expression2>)
(<value1> , <value2>) <statements> #r
(NOMATCH) <statements>

The SELECT command is used for matching specific parameter values to specific sort commands.
This allows gate numbers passed by any of the gate-map-test commands to be matched to specific
update commands.

Each combination of values specified within the SELECT command must be specified only once but
any number of sort commands can be associated with it.

The SELECT command evaluates the expression (or expressions) to obtain a value (or values) which
is then compared with the sets of values following. If one set matches then any associated commands
are executed. If no values match then the commands associated with (NOMATCH) are executed, if
it has been specified.

After the sort commands for a specific combination have been executed command execution passes
to the command following the SELECT command.

Example

Consider updates after a gate-map-test command. See if...gatedby and loopif...gatedby commands.

IF GAMA GATEDBY BAND1 {
 ...
 SELECT (GATE)
 (1) INC SPEC1(GAMA)
 (4) INC SPEC4(GAMA)
 (5) {
 INC SPEC5(GAMA)
 INC SPEC9(GAMA)
 }
 ...
 }

Example

or correlated updates after two gate-map-test commands:

IF GAMB GATEDBY BAND2 {
 ...
 SELECT(GATE1,GATE)
 (1,1) {
 INC MAT1(GAMA,GAMB)
 INC SPEC12(GAMB)
 }
 (1,2) INC MAT2(GAMA,GAMB)
 (NOMATCH) ENDEVENT
 }

In the second example, if no gate combination matches those provided by the SELECT command
then ENDEVENT is executed so no more commands are processing for that event.

*COMMANDS

48

Goto command

GOTO <label-name>

LABEL <label-name>

The GOTO command allows event processing to be passed forwards only in the *COMMANDS
section to a point specified using LABEL.

GOTO may not be used to jump into a DOLOOP, IF or SELECT command.

Example

IF GAMA GATEDBY GREC2
 GOTO BAND1
 ...
LABEL BAND1
 ...

*COMMANDS

49

Arithmetic operations

<sortword> = <expression>

<array-name> (<x-index>) = <expression>
<array-name> (<x-index> , <y-index>) = <expression>
<array-name> (<x-index> , <y-index> , <z-index>) = <expression>

Note

<spectrum-name-specifier> (<x-index>) = <expression>
<spectrum-name> (<x-index> , <y-index>) = <expression>
<spectrum-name> (<x-index> , <y-index> , <z-index>) =
<expression>

<group-name> [<group-number>] <.item-specifier> =
<expression>

where <expression> is
<operand> # <operator> <operand> #r
<operand> is either a <sortword> or a <integer constant> .
and <x-index> , <y-index> and <z-index>
may each be one of <sortword> or <integer constant>
<spectrum-name-specifier> is either <spectrum-name> or <spectrum-
name[index-value]> .
<index-value> is either a <sortword> or a <integer constant> .
<group-number> is either a <sortword> or a <integer constant> .
<item-specifier> is either <item-name> or <item-name[item-offset]> .
<item-offset> is either a <sortword> or a <integer constant> .

Evaluated expressions may be assigned to a sortword variable, i.e. a word, long or float type variable.

C precedence determines the order in which operations are performed in the absence of parentheses.
Up to 6 nested pairs of parentheses are allowed.

A floating point randomised value in the range 0.0 to 1.0 may be obtained by specifying the reserved
float variable RANDOM. A random integer value in the range 0 to 32767 may be accessed using the
reserved word IRANDOM.

Arithmetic Operators

+ - * / mod < > & ior xor
where
mod is the integer modulus operator (a mod b)
& ior xor are logical bitwise operators
< > are left and right arithmetic shift operators respectively which need to be followed by an
integer value between 0 and 15
(to specify the number of places to the left or right by which the bits are to be shifted).

Maths functions

SQRT EXP ABS NOT LOG LOG10 SIN COS TAN ASIN ACOS ATAN

*COMMANDS

50

The argument should be specified in parentheses following the function name.

Example

... + EXP(A + (B * X)) ...

Command Functions

GROUP <$-word>

returns the value of the group number of group identifier $-word e.g. group($x).

NWORDS <$-word>

returns the number of items in the group identifier $-word.

POW (<expression1> , <expression2>)

returns the value of <expression1> to the power <expression2> .

NUMBER (<parameter-list-name>)

returns the length of the named list present in the current event.

<array-name> (<x-index>)
<array-name> (<x-index> , <y-index>)
<array-name> (<x-index> , <y-index> , <z-index>)

returns the contents of an array location where the array must be initialised using VALUEARRAY in
the *DATA section. Each channel can be specified by a sortword or integer constant.

<spectrum-name-specifier> (<x-index>)
<spectrum-name-specifier> (<x-index> , <y-index>)
<spectrum-name-specifier> (<x-index> , <y-index> , <z-index>)

returns the contents of a spectrum location defined in the *SPECTRA section. Each channel can be
specified by a sortword or integer constant.

<group-name> [<group-number>] <.item-specifier>

returns the contents of a data location defined in the *FORMATS section. Each item can be specified
by a sortword or integer constant.

NBIT (<integer-expression>)

*COMMANDS

51

evaluates the number of bits set in the 16-bit expression.

<variable1> : <variable2>
<variable1> : <variable2> : <variable3>
<variable1> : <variable2> : <variable3> : <variable4>

evaluates 2 16-bit group-item parameters or sortwords as a 32-bit integer, and 3 or 4 16-bit words as
a 64-bit integer (longlong).

TIMESTAMPOF (<variable>)

evaluates the 64-bit absolute timestamp associated with <variable> , which has to be a raw data group-
item parameter. The value is returned as a LONGLONG data type. Currently only supported for
GREAT TDR format input data.

*COMMANDS

52

Gain command

GAIN <sortword> # FACTOR <shift-factor> #

GAIN <sortword> <gain-array-name> INDEXED <index> # FACTOR <shift-
factor> #

GAIN <sortword> <array-list-name> [<array-index>] INDEXED <index>
FACTOR <shift-factor>

GAIN <group-param-list-name> . <item-name> <gain-array-name>
FACTOR <shift-factor>

GAIN <group-param-list-name> . <item-name> <array-list-name>
[<array-index>] # FACTOR <shift-factor> #

where <array-index> and <index> are expressions.

Gain coefficients must be specified in the *DATA section.

A sortword can be gain matched using coefficients stored in a GAINWORD element (first format);
the <index> th element of <gain-array-name> (second and third formats). For the third format,
the gain array must be a member of an ARRAYLIST in the *DATA section, where <array-index>
specifies the gain array used via it's index in the arraylist. Indices start from zero.

In the fourth format of the command the words in <group-param-list-name> are all gain-matched with
the corresponding parameters in <gain-array-name> indexed by absolute group number, i.e. if the
particular item in group n is present in the event it is gain matched with the nth set of gain matching
parameters defined in the gain array. The fifth format is similar to this but allows the particular gain
array used to be selected via an index into an arraylist where <array-index> can be an expression.

An expression may also be supplied as an optional <shift-factor> argument to be applied to each
of the gain coefficients. This is useful for making a Doppler shift correction when the original gain
coefficients have been derived from source measurements.

Example

The value of a word is modified according to:

 <word> = a + b* <word> + c* <word> 2

The calculation includes a randomisation process which adjusts the result by at most one channel in
order to produce a smooth function.

Gain drifts may be automatically adjusted by adding an *AUTOGAIN section.

Example

*FORMATS
ge[1:35] (e20,e4,ft,co,bgoe,bgot,hitpat)
*DATA
GAINARRAY gegains
1 (-.3 0.09 0.004)
2 (0.6 0.10 0.002)
 ...
*COMMANDS

*COMMANDS

53

CREATELIST gelist FROM ge
GAIN gelist.e4 gegains

will gain match all the E4 adcs associated with each GE group number.

Example

*FORMATS
clovers1[81:110] (bgop, A1, A2tag:3,A2dat:13, A3)
*DATA
GAINARRAY segA !! segment A
 81 (-6.4294434 0.9705133 0.0000000)
 82 (-1.8133545 0.9134621 0.0000000)
 83 (2.0946655 1.0252383 0.0000000)
 ...
*COMMANDS
CREATELIST clist1 FROM clovers1
loopif $c1=clist1 valid
 {
 groupno = group($c1)
 inc clgroups(groupno)
 select ($c1.a2tag) !! check tag to see which seg fired
 (1) { !! segment A
 gain $c1.a2dat segA indexed $c1
 }
 (2) { !! segment B
 gain $c1.a2dat segB indexed $c1
 }
 (3) { !! segment C
 gain $c1.a2dat segC indexed $c1
 }
 (4) { !! segment D
 gain $c1.a2dat segD indexed $c1
 }
 }

will gain match all the a2dat adcs associated with each clovers1 group number, where the gainarray
used is found by checking a2tag to determine which element of the detector has fired.

Example

CREATELIST qlist FROM clover
LOOPIF $q=qlist VALID
 {
 detid = GROUP($q) - 30
 capmult = NWORDS($q)/3
 SELECT (capmult)
 (1) { ! Single hit
 capid = $q.Atag
 theta = qthetas(detid,capid)
 gfac = (2.0)/((1.0)+(cos(theta)*beta))
 GAIN $q.Agehigh qgains[detid] INDEXED capid FACTOR gfac ! GM ener
 GAIN $q.Agetime qgainst[detid] INDEXED capid !gain match TAC
 INC esum($q.Agehigh)
 }
 (2) { ! Double hit
 capid0 = $q.Atag
 capid1 = $q.Btag
 theta0 = qthetas(detid,capid0)
 theta1 = qthetas(detid,capid1)
 theta2 = (theta0 + theta1)/2.0
 costh = cos(theta2)

*COMMANDS

54

 gfac = 2.0/(1.0 + costh*beta)
 GAIN $q.Agehigh qgains[detid] INDEXED capid0 FACTOR gfac
 GAIN $q.Bgehigh qgains[detid] INDEXED capid1 FACTOR gfac
 GAIN $q.Agetime qgainst[detid] INDEXED capid0 !gain match TAC
 GAIN $q.Bgetime qgainst[detid] INDEXED capid1 !gain match TAC
 INC esum($q.Agehigh + $q.Bgehigh)
 }
 }

will gain match and Doppler correct all single and double hit energies and times for the group clover,
updating the shifted energies into the spectrum esum.

*COMMANDS

55

Invalidate command

INVALIDATE <group-identifier>

where <group-identifier> is:
<group-name> or <$-group-variable>

The INVALIDATE command removes all the items associated with the <group-identifier>
specified from the current event.

Example

INVALIDATE GE[12]

would remove group 12

Example

INVALIDATE RMS

would remove the RMS group

Example

INVALIDATE $GROUPX

would remove the group referenced by $GROUPX.

*COMMANDS

56

Groupfilter command

GROUPFILTER <group-name> # FIXEDLEN= <length> # # VARLEN= <length> #
ITEM= <item-offset> # <filter>

where <group-name> is defined here.
FIXEDLEN and VARLEN require integer values to define the fixed and variable number of
words in the group definition. If omitted they default to zero.
<item-offset> is the index of the item in the group, starting from zero, that is being tested
and <filter> is:
KEEP | REJECT (<expr> , <expr>)

The GROUPFILTER command removes all the items associated with each member of <group-
name> from the current event that do not satisfy the condition specified by <filter>

Example

GROUPFILTER CLUST VARLEN 3 ITEM 1 REJECT (0,0)

would remove all members of group CLUST where the 2nd item for each subset of 3 items was zero.

*COMMANDS

57

Order command

ORDER word1 word2 ... UP|DOWN

where UP outputs the values in increasing numerical order
and DOWN outputs them in decreasing numerical order.

The ORDER command orders sortwords according to their value.

Example

ORDER GAM1 GAM2 GAM3 DOWN

will reassign the highest value from GAM1, GAM2 and GAM3 to GAM1, the next highest to GAM2
and the lowest to GAM3.

*COMMANDS

58

Print command

PRINT word1 word2 ...

where word is a sortword.
Other data types (group data, spectrum channels etc.) may be printed by setting a sortword.
The results are printed in the Scheduler window.

The PRINT command outputs parameter values to the Scheduler terminal window, on an event-by-
event basis.

Example

print sortword1 sortword2 sortword3

*COMMANDS

59

Routines

CALL <routine-name> # (<argument> # <argument> #r) #

ROUTINE <routine-name> # (<argument> # <argument> #r) #

where <argument> is a sortword, i.e. a
WORD , LONG , LONGLONG or FLOAT type.

A ROUTINE is a set of sort commands which are physically placed after the main command section
and accessed by a CALL command within the main section. The last command in a ROUTINE
should be END or ENDEVENT. END returns event processing to the command following the CALL
command. when the routine has been executed whereas ENDEVENT terminates processing of the
current event at that point in the sortfile.

A routine must be called at least once before it is defined in the sortfile so that the argument types can
be determined, i.e. word, long or float, before the routine is specified. The current maximum number
of arguments that may be passed to a routine may be found in Appendix A. If a sortword argument is
specified any operation performed on that parameter within the routine will result in a corresponding
change in value of the sortword upon returning from the routine,

Example

IF GELI3 GATEDBY GLIST2 {
 SELECT(GATE) {
 (1) CALL ABC(SUMEN,INDEX)
 (2) CALL XXXXYYYY
 ...
 }
}
END
ROUTINE ABC(ENERGY,OFFSET)
 ...
CALL XXXXYYYY
 ...
END
ROUTINE XXXXYYYY
 ...
END

where SUMEN and INDEX are sortwords, ENERGY and OFFSET are dummy sortword arguments
local to the routine ABC.

Calls may be nested up to a maximum level of 8, but routines must not be called recursively, i.e. a
routine may not call itself or one that directly or indirectly calls it. A routine must be called at least
once before it is specified, i.e. at least one CALL statement for a given routine must occur before the
ROUTINE statement in the sortfile.

*COMMANDS

60

Exec Command

EXEC <function-name> [< sortarg >] r # INIT [< initarg >] r #

where
<function-name> is the name of the external command,
<sortarg> r is a list of runtime arguments from the following list, which are passed as the
variable address...
<sortword> , <spectrum> , <indexed-spectrum> ,map, array, <group-
name[number]> ,
<initarg> r is a list of initialisation arguments to the function, e.g. filenames, that are passed
asis without change.
Note: Newlines are not allowed within this command.

Deprecated command ...
USER <function-name> ([< sortarg >] r)

where <function-name> is the name of the external command, which will be forced to be
UPPER-case.
<sortarg> r is a list of runtime arguments, e.g. sortwords, spectrum names, which are passed
as the variable address.

The EXEC command allows externally defined subroutines to be accessed from the sort. It allows
different sorting and storage algorithms to be used via the sort language.

<function-name> is a string by which the new external routine is known. The arguments
associated with <function-name> are specific to the corresponding routine. <function-
name> will be forced to be LOWER-case, see example below.

The return code of the routine is tested for success. A non-zero return code will stop processing the
current event at that point.

There are two sets of arguments, associated with the two routines defined below in the C language ...

<function-name> (<sortarg1> , ...)

<function-name> _init (<initarg1> , ...)

The <function-name> _init routine is optional, and will only be executed if the init section of the
exec command is specified. If present, the init routine will be executed once only before any events
are processed. The current maximum number of arguments that may be passed to an exec routine may
be found in Appendix A.

Example

 ...
 exec printit sortword
 ...

will require the following C code ...

int printit(short *sortword)

*COMMANDS

61

{
 printf("Sortword value = %d\n",*sortword);
 return 0;
}

Example

To output some information to a file, then the following code can be used to place the file in the sort
directory. Note: Be aware that outputting every event may produce a large file.

 ...
 exec fileit sortword
 ...

will require the following C code ...

extern char basedir[];
static char filename[128];
static FILE *fp;

int fileit_init()
{
 strcpy(filename,basedir);
 strcat(filename,"/myfile");
 fp = fopen (filename, "w"));

 return 0;
}

int fileit(short *sortword)
{
 fprintf(fp, "%d\n", *sortword);
 return 0;
}

Synchronization
If it is necessary to execute a routine to tidy up after the sort has finished, but not yet exited, a hook
mechanism is provided for that purpose. This allows a user-provided routine to be executed at the sort
program flushing stage immediately before exit. The mechanism to connect the routine into the sort
program is to execute a routine called flush_hook_add() in the <function-name> _init routine.

Such a mechanism could be useful if the current state or a set of variables needs to be saved.

<flush_hook_add> (<function-name> _tidy)

Example

 ...
 exec calculate sortword init
 ...

will require the following C code ...

*COMMANDS

62

calculate_tidy()
 {
 /* Tidy up calculate before exit */
 ...
 return 0;
 }
calculate_init()
 {
 flush_hook_add(calculate_tidy());
 return 0;
 }

*COMMANDS

63

Doloop command

DOLOOP <loop-count> FROM <initial-loop-value> TO <final-loop-
value> STEP <loop-step-size>

where <loop-count> is a sortword, and integer or sortword values may be used to specify
the loop initial, final and step values.
DOLOOP commands may be nested.

The DOLOOP command allows <statements> to be executed a defined number of times with an
incrementing variable. The loop will always be executed at least once since the loop-count variable
will be incremented at the end of each loop. This variable, if omitted, is an automatically created word
named LOOP. The variable may be used freely within the loop,

Example

DOLOOP LOOP1 FROM 1 TO 8 STEP 2
 {
 ...
 NEWWORD = POSITION * LOOP1
 INC NEWWORD POSSPEC
 ...
 }

will execute the commands within curly braces for values of the word LOOP1 of 1,3,5 and 7.

Example

The loop values may be negative ...

DOLOOP INDEX FROM 7 TO -2 STEP -3

will execute the contained commands for values of the variable INDEX of 7,4,1 and -2.

Example

To exit from a loop before the loop variable has reached the final loop value the IF...GOTO command
should be used ...

DOLOOP FROM X1 TO X2 STEP I {
 ...
 IF ...
 GOTO ABCD
 ...
 }
LABEL ABCD:
 ...

*COMMANDS

64

Output command
The OUTPUT command allows whole events or data words, 16-bit sortwords and parameter lists to
be output on up to 4 different streams. The output <stream number> must be an integer value
between 1 and 4 (inclusive). The data will automatically be output in Eurogam-style format with an
event-header, etc. per event.

OUTPUT <stream number> EVENT

This form of the command will output all elements of the event as defined in the *FORMATS section.
Note that any data items in the event, but not defined in the *FORMATS section, will not be output.

Although several such statements can be included (e.g. within if clauses), only the first statement
reached will be executed.

Example

SELECT (I)
(1) OUTPUT 1 EVENT
(2) OUTPUT 2 EVENT
(3) OUTPUT 1 EVENT

OUTPUT <stream number> <output-parameter>

where <output-parameter> may be one of the following:
<single-parameter-word>
<group-parameter-word>
<group-parameter-list>
<group-parameter-word> (<item-list>)
<group-parameter-list> (<item-list>)
where <item-list> is a subset of the original item list associated with the group that was
declared in the *FORMATS section.

This command can be used to output partial event components and generated simple variables.

Example

*FORMATS
TRIG[255] (MUSER,MTAC)
GE[1:54] (E1,E2)
*COMMANDS
OUTPUT 1 TRIG(MTAC) GE(E2)

If WORD type variables are output in the format specified above they must also be defined with an
associated address to make them simulate real ADCs. See Sortwords section.

Note

If any commands have been used to alter any event parameters, e.g. GAIN, INVALIDATE
or arithmetic operations, prior to OUTPUT EVENT then the altered values will be output.

*COMMANDS

65

OUTPUT <stream number> GROUP <group number> ([< item-list >] r)

where <group number> is an integer or sortword.
where <item-list> is a list of sortwords.

Example

OUTPUT 1 GROUP 234 (A, B)

This command can be used either to output an existing group with a modified item list, or a new group.

Care must be taken that group numbers are not duplicated within an event. The following example is
illegal if group 15 is present in the raw data, but would not be checked for by the compiler.

Example

OUTPUT 1 EVENT
...
OUTPUT 1 GROUP 15 (A, B, C)

*COMMANDS

66

Endevent command

ENDEVENT

ENDEVENT terminates event processing at this point in the sortfile. It may be used anywhere in the
commands section. See also the Routine command.

*COMMANDS

67

End command

END

END is used to specify the end of the main command section prior to any routines or the end of a
routine. If used at the end of a routine then during execution event processing will pass to the command
following the point from where the routine was called after the routine has been executed.

Example

*COMMANDS
 ...
END
 ...

Example

*COMMANDS
 ...
END
ROUTINE
 ...
END
ROUTINE
 ...
END
 ...

*COMMANDS

68

Pause command

PAUSE

The Pause before each event feature in the Run window causes a temporary halt in event processing
at a point just before executing the first event command. Pressing the resume button allows event
processing to occur upto the next pause point. If the Pause before each event button is unchecked,
then resume will allow event processing to continue without further pauses.

The pause command works in the same way as the Pause before each event feature in the Run
window, except that processing is paused at the point the pause command is executed. It may be used
anywhere in the commands section.

If the pause command is placed inside a conditional statement, then the pause may be used to inspect
spectra and variable values after some defined set of circumstances. Hence it can be a useful diagnostic
aid.

The pause can be turned on and off by setting a global sortword in the *DATA section. See the example
below which uses the sortword pauseflag.

Example

*COMMANDS
 ...
if pauseflag gt 0 pause
 ...
END
 ...

69

*RUNFILES (offline analysis only)
Statements in this section allow input tape or disc files to be specified.

<tape-volume-name> <file-name> # <start-block> # <finish-block> # #

<tape-volume-name> <file-specifier> # , <file-specifier> #

where
<tape-volume-name> is the tape name or label
<file-name> is the name of a file to be sorted on the tape
and <file-specifier> can be:
<file-name>
<file-pattern>
or a range:
<file-name1> - <file-name2>
which will sort all files from <file-name1> to <file-name2> inclusive.
If <start-block> is greater than zero, that number of blocks will be skipped at the start of
the file. If <finish-block> is greater than <start-block> , processing will stop at that
point, else continue to end of file.

<file-pattern> may consist of the wildcard characters ``*'' to match any character combination
and ``?'' to match a single wildcard character,

e.g. CAL* to sort any filename beginning with the letters ``CAL'', RUN2? to sort any filename
beginning with the characters ``RUN2'' and followed by one further character.

A large subset of the characters defined in the ANSI tape standard X3.27-1987 are recognised:

alphanumeric (A to Z, 0 to 9)

and the following non-alphanumeric characters:

 " % & ' () + - . / : ; < = > \ _

Names must start with an alphanumeric character.

The volume name is contained in a field 6 characters long and the file name contained in 17 characters.
For non-ANSI format tapes, e.g. ones with no file headers, filenames of RUNxx should be used where
xx denotes the file number on tape. For unlabelled tapes, the same convention using TAPExx should
be used to distinguish between different volumes.

Example

*RUNFILES
SN001 RUN01
SN002 RUN02-RUN04, RUN06-RUN15, RUN17, *
SN003 RUN21 5000 9999999
SN003 RUN22
SN003 RUN23
SN004 *
 ...

In this example the whole of file RUN01 on tape SN001 would be sorted, followed by files RUN02
up to RUN04, RUN06 up to RUN15, and RUN17 onwards on tape SN002. Any files not included in

*RUNFILES (offline analysis only)

70

the specified ranges, e.g. RUN05, are omitted. File RUN21 on tape SN003 is sorted from block 5000
onwards, followed by files RUN22 and RUN23 and the whole of tape SN004.

Disc files may be specified as follows:

DISC <file-name> # <start-block> # <finish-block> # #
where
<file-specifier> can be:
<file-name>
<file-pattern>
If <start-block> is greater than zero, that number of blocks will be skipped at the start of
the file. If <finish-block> is greater than <start-block> , processing will stop at that
point, else continue to end of file.

<file-pattern> may consist of the wildcard characters ``*'' to match any character combination
and ``?'' to match a single wildcard character, in the same way as for tapes above. If a full disc-file
pathname is given, then wild-card characters may only appear in the file-name, and not in the directory
name(s).

Example

*RUNFILES
DISC /disc1/calib/eu152/run1
DISC /disc1/calib/eu152/run3 1 100
DISC /disc1/calib/eu152/run2*

71

Constraints
This section contains lists of reserverd words and maximum array values.

Constraints

72

Reserved words
This is the list of names that should not be used for user-defined arrays, spectra or sortwords.

ABS EXTRACT IOR PASSES
ACOS FAILS IRANDOM PEAKAREA
ANGLES FACTOR ITEM PEAKS
ARRAYLIST FIXEDLEN KEEP POW
ASIN FLOAT LABEL RANDOM
AT FROM LE REJECT
ATAN GAIN LOG REVERSED
CALL GAINARRAY LOG10 ROUTINE
CENTROIDS GAINWORD LONG SAMPLE
COPYGAIN GATEARRAY LOOPEXTRACT SAVE
COS GATEDBY LOOPFAIL SELECT
CREATELIST GATEMAP LOOPIF SET
DEC GATES LT SIN
DELTAS GOTO MASK SQRT
DEVIATION GROUP MASKEDBY STEP
DISC GROUPFILTER NBIT TAN
DOLOOP GT NE TO
DOWN IF NEWLISTX UP
ELLIPSE2D INC NEWLISTY USER
ELLIPSE3D INCBITS NOT VALUEARRAY
ELSE INDEXED NOMATCH VALID
END INDEXED NUMBER VALUE
ENDEVENT INDEXED NWORDS VARLEN
EQ INIT OFFSET VOVERC
EVENT INTO ORDER WORD
EXEC INVALID ORDERED XOR
EXP INVALIDATE OUTPUT

Constraints

73

Predefined sortwords
These are sortwords that are automatically defined for every sort. They may be used in the same way
as normal sortwords.

STREAM
GATE
WORDX
WORDY
BLOCK_NUMBER
RUNFILE_NUMBER

Constraints

74

Maximum values
Name length 30

Number of Spectra 32768

Disc-based update Spectra 4096

Spectrum length per dimension 65536

Number of gain names 512

Number of gate names 512

Number of arrays 512

Number of arraylists 512

Number of single adcwords 200

Number of groups 2048

Number of sortwords 512

Number of lists 64

Number of routines 64

Number of routine args 8

Number of exec/user args 64

Number of runfiles 255

Files per wildcard expansion 4096

Spectrum memory space 32bit ~1.5GB

Spectrum memory space 64bit at least
4GB

75

Data file examples

Data file examples

76

Eurogam phase 2 autogain sort
A typical autogain sort for phase 2...

*FORMATS
ge[1:35] (e20,e4,ft,co,bgoe,bgot,hitpat)
clovers1[81:104] (bgop, A1, A2tag:3,A2dat:13, A3)
clovers2[111:134] (bgop, A1, A2tag:3,A2dat:13, A3,
 B1, B2tag:3,B2dat:13, B3)
*DATA
!! gain coefficients calculated
!! from Eu152 source spectra for v/c=0.0105
GAINARRAY gphase1 !! phase1 detectors
 1 (3.054180 0.985850 0.000000)
 2 (4.106800 1.053940 0.000001)
 3 (3.101520 0.888870 0.000000)
 ...
GAINARRAY segA !! segment A
 81 (-5.956440 0.968458 0.000000)
 82 (-2.043540 0.912272 0.000000)
 83 (1.866570 1.023430 0.000000)
 ...
GAINARRAY segB !! segment B
 81 (-4.002160 0.922770 0.000000)
 82 (-4.108340 0.908958 0.000000)
 83 (-3.820860 1.028980 0.000000)
 ...
GAINARRAY segC !! segment C
 81 (-0.804466 0.927298 0.000000)
 82 (-2.431520 0.922218 0.000000)
 83 (-1.492300 1.027120 0.000000)
 ...
GAINARRAY segD !! segment D
 81 (-8.195100 0.950084 0.000000)
 82 (0.832342 0.884106 0.000000)
 83 (-1.531620 1.039610 0.000001)
 ...
GAINARRAY segAmod
GAINARRAY segBmod
GAINARRAY segCmod
GAINARRAY segDmod

!!!
!!
!! EUROGAM PHASE2 ARRAY CLOVER ANGLES
!! USED BY AUTOGAIN ROUTINE TO CORRECT GAIN COEFFICIENTS TO ADDBACK
!! CLOVER DATA
!!
!!!
VALUEARRAY eurogam[81:104] !! clover midpoint angles
 104.5 75.5 104.5 75.5 104.5 75.5 104.5 75.5 104.5 75.5 104.5 75.5
 75.5 104.5 75.5 104.5 75.5 104.5 75.5 104.5 75.5 104.5 75.5 104.5
VALUEARRAY deltAB[81:104] !! delta angles for segments A and B
 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5
 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5
VALUEARRAY deltCD[81:104] !! delta angles for segments C and D
 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5
 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5

*SPECTRA
!!!
!!

Data file examples

77

!! DECLARE SPECTRA FOR USE IN *AUTOGAIN SECTION
!!
!!!
xautog[1:35] 4096 32
xautoa[81:104] 4096 32
xautob[81:104] 4096 32
xautoc[81:104] 4096 32
xautod[81:104] 4096 32

!!!
!!
!! DECLARE SPECTRA FOR USE IN *COMMANDS SECTION
!!
!!!
gamtot1 4096 32
gamtot2 4096 32
cl2ab 4096 32
cl2ac 4096 32
cl2ad 4096 32
cl2bc 4096 32
cl2bd 4096 32
cl2cd 4096 32

*AUTOGAIN
!!!
!!
!! NUMBER OF BLOCKS AFTER WHICH TO CALCULATE GAINS OR CHECK DRIFTS
!!
!!!
sample 15000

!!!
!!
!! CHANGE PEAK VALUES TO CORRESPOND TO 2 PEAK POSITIONS IN YOUR DATA
!! ...FOR 4MeV GAIN COEFFICIENTS
!!
!!!
init gphase1 from xautog centroids 393.0 8.0 735 10.0
init segA from xautoa centroids 393.0 8.0 735 10.0
init segB from xautob centroids 393.0 8.0 735 10.0
init segC from xautoc centroids 393.0 8.0 735 10.0
init segD from xautod centroids 393.0 8.0 735 10.0

!!!
!!
!! VOVERC FOR EXPERIMENT (0 < voverc < 1.0)
!!
!!!
voverc 0.0105

!!!
!!
!! CORRECT GAINS TO USE FOR ADDBACK WHENEVER AUTOGAINED COEFFICIENTS
!! ARE SHIFTED
!!
!!!
copygain from segA[81:104] to segAmod[81:104] angles eurogam deltas deltAB
copygain from segB[81:104] to segBmod[81:104] angles eurogam deltas deltAB
copygain from segC[81:104] to segCmod[81:104] angles eurogam deltas deltCD
copygain from segD[81:104] to segDmod[81:104] angles eurogam deltas deltCD

createlist gelist from ge
inc xautog($auto=gelist.e4) indexed $auto

Data file examples

78

createlist clist1 from clovers1
loopif $c1=clist1.a2dat valid
 {
 select ($c1.a2tag)
 (1) { !! segment A
 inc xautoa($c1.a2dat) indexed $c1
 }
 (2) { !! segment B
 inc xautob($c1.a2dat) indexed $c1
 }
 (3) { !! segment C
 inc xautoc($c1.a2dat) indexed $c1
 }
 (4) { !! segment D
 inc xautod($c1.a2dat) indexed $c1
 }
 }

!!---
!!
!! THESE COMMANDS ARE EXECUTED FOR EVERY EVENT
!!
!!---
*COMMANDS

!!!
!!
!! GAIN MATCH PHASE 1 DETECTORS
!!
!!!
gain gelist.e4 gphase1

!!!
!!
!! GAIN MATCH CLOVER DETECTORS WITH SINGLE HITS
!!
!!!
loopif $c1=clist1.a2dat gt 0
 {
 groupno = group($c1)
 select ($c1.a2tag)
 (1) { !! segment A
 gain $c1.a2dat segA indexed $c1
 }
 (2) { !! segment B
 gain $c1.a2dat segB indexed $c1
 }
 (3) { !! segment C
 gain $c1.a2dat segC indexed $c1
 }
 (4) { !! segment D
 gain $c1.a2dat segD indexed $c1
 }
 }

loopif $c1=clist1.a2dat gt 0 newlistx=clist1a
 {
 inc gamtot1($c1.a2dat)
 }

!!!
!!
!! GAIN MATCH CLOVER DETECTORS WITH DOUBLE HITS
!!

Data file examples

79

!! simple coeffs : A-B, C-D
!! corrected coeffs : A-C, A-D, B-C, B-D
!!
!!!
createlist clist2 from clovers2
loopif $c2=clist2.a2dat gt 0
 {
 if ($c2.b2dat) gt 0
 {
 gaingrp = group($c2) - 30
 sum = 0
 select ($c2.a2tag,$c2.b2tag)
 (1,2) { !! A-B
 gain $c2.a2dat segA indexed gaingrp
 gain $c2.b2dat segB indexed gaingrp
 sum = $c2.a2dat + $c2.b2dat
 inc cl2ab(sum)
 }
 (1,3) { !! A-C
 gain $c2.a2dat segAmod indexed gaingrp
 gain $c2.b2dat segCmod indexed gaingrp
 sum = $c2.a2dat + $c2.b2dat
 inc cl2ac(sum)
 }
 (1,4) { !! A-D
 gain $c2.a2dat segAmod indexed gaingrp
 gain $c2.b2dat segDmod indexed gaingrp
 sum = $c2.a2dat + $c2.b2dat
 inc cl2ad(sum)
 }
 (2,3) { !! B-C
 gain $c2.a2dat segBmod indexed gaingrp
 gain $c2.b2dat segCmod indexed gaingrp
 sum = $c2.a2dat + $c2.b2dat
 inc cl2bc(sum)
 }
 (2,4) { !! B-D
 gain $c2.a2dat segBmod indexed gaingrp
 gain $c2.b2dat segDmod indexed gaingrp
 sum = $c2.a2dat + $c2.b2dat
 inc cl2bd(sum)
 }
 (3,4) { !! C-D
 gain $c2.a2dat segC indexed gaingrp
 gain $c2.b2dat segD indexed gaingrp
 sum = $c2.a2dat + $c2.b2dat
 inc cl2cd(sum)
 }
 inc gamtot2(sum)
 }
 }
 ...

Data file examples

80

Auto-gained correlation sort
This example illustrates an offline angular correlation sort where the germaniums have been divided
into separate groups dependent on the angle of the detector in the array. The germanium data is auto-
gain matched.

*FORMATS
TRIGGER[255] (TYPE,MRAW,MSUP)
GERM158[1:5] (GE20,GE4,GET,GETBD)
GERM134[6,11,13,17,19,23,25,29,35,36] (GE20,GE4,GET,GETBD)
GERM108[8,10,14,16,20,22,26,28,32,34] (GE20,GE4,GET,GETBD)
GERM90[12,15,21,27,33,37,40,46,49,52] (GE20,GE4,GET,GETBD)
GERM72[38,39,41,42,44,45,47,48,50,51] (GE20,GE4,GET,GETBD)

*DATA
GAINARRAY E4GAINS

*SPECTRA
GAINSP[1:54] 4096 32
GG158158 3000 2D
GG90158 3000 2D
GG134134 3000 2D
GG90134 3000 2D

*AUTOGAIN
SAMPLE 20000
PEAKAREA 50
DEVIATION 1.0
INIT E4GAINS FROM GAINSP CENTROIDS 331.4 3 891.0 4
PEAKS
1 654 10 1758 15
2 634 10 1723 15
3 532 10 1440 15
4 607 10 1637 15
 ...
48 596 10 1585 15
49 671 10 1811 15
50 605 10 1627 15
51 929 10 2257 15
52 654 10 1765 15
CREATELIST GE158 FROM GERM158
INC GAINSP($A=GE158.GE4) INDEXED $A
CREATELIST GE134 FROM GERM134
INC GAINSP($B=GE134.GE4) INDEXED $B
! ignore this angle
!CREATELIST GE108 FROM GERM108
!INC GAINSP($C=GE108.GE4) INDEXED $C
CREATELIST GE90 FROM GERM90
INC GAINSP($D=GE90.GE4) INDEXED $D
! ignore this angle
! CREATELIST GE72 FROM GERM72
! INC GAINSP($E=GE158.GE4) INDEXED $E

*COMMANDS
GAIN GE158.GE4 E4GAINS
GAIN GE134.GE4 E4GAINS
! GAIN GE108.GE4 E4GAINS
GAIN GE90.GE4 E4GAINS
! GAIN GE72.GE4 E4GAINS

LOOPEXTRACT GE90.GE4 INTO RIGHT
{

Data file examples

81

 LOOPEXTRACT GE158.GE4 INTO BACK
 {
 INC GG90158(BACK,RIGHT)
 }
}
LOOPEXTRACT GE158.GE4 INTO BACK1 BACK2
{
 INC GG158158(BACK1,BACK2)
 INC GG158158(BACK2,BACK1) ! make symmetric
 LOOPEXTRACT GE90.GE4 INTO RIGHT
 {
 INC GG90158(BACK1,RIGHT)
 INC GG90158(BACK2,RIGHT)
 }
}

LOOPEXTRACT GE90.GE4 INTO RIGHT
{
 LOOPEXTRACT GE134.GE4 INTO BACK
 {
 INC GG90134(BACK,RIGHT)
 }
}
LOOPEXTRACT GE134.GE4 INTO BACK1 BACK2
{
 INC GG134134(BACK1,BACK2)
 INC GG134134(BACK2,BACK1) ! make symmetric
 LOOPEXTRACT GE90.GE4 INTO RIGHT
 {
 INC GG90134(BACK1,RIGHT)
 INC GG90134(BACK2,RIGHT)
 }
}

END

*RUNFILES
XE122 RUN1
XE122 RUN2
*FINISH

Data file examples

82

Quadsort
This example illustrates an offline double gated sort updating a 2D matrix. The update algorithm is
designed to produce spikeless spectra when slices and projections of the matrix are made. The data
has been compressed so that all groups have a single item represented the gain matched energy value.
The tag bits have been preserved in the first 3 bits of each data word.

! compressed data sortfile
! double gates updating 2D matrix
!
*FORMATS
gam[1:134] (tag:3, e4:13)

*DATA

!! gates for energy=e4/2
GATEMAP 1D gates1 [2050]
(672 680) (1165 1175) (1346 1358)
(1474 1486) (1544 1556) (1686 1698)
(1566 1578) (2036 2048) (998 1006)
(1239 1249) (1433 1443)

*SPECTRA
!== sort spectra ======
mat2d 4096 2D

*COMMANDS

CREATELIST gamlist FROM gam

LOOPIF $c=gamlist.e4 VALID
 $c.e4=$c.e4/2

if (NUMBER(gamlist)) LT 4
 ENDEVENT

!! double gated 2D update
!!
!! Use LOOPIF to decide whether the event satisfies 2, 3 or 4 gates
!! Then loop over the appropriate words in event to update matrix
!! and exit loop
!!
!! Update Algorithm:
!! For m-dim update and p gates, words which satisfy gates are g parameters,
!! all others are x parameters. Have 3 possible cases:
!! 1. satisfy exactly p gates -- update m-tuples from x params
!! 2. satisfy at least p+m gates -- update m-tuples from g+x params
!! 3. satisfy p+k gates, k<= m -- update m-tuples which involve <= k g params
}
!!
!! for this case:
!! 1. satisfy exactly 2 gates -- update doubles from listp2
!! 2. satisfy at least 4 gates -- update doubles from gamlist
!! 3. satisfy exactly 3 gates -- update g params with singles from listp3
!!
LOOPIF gamlist.e4 GATEDBY gates1 NEWLISTX=listp1
 {
 !! >=1 gate
 LOOPIF listp1.e4 GATEDBY gates1 NEWLISTX=listp2
 {
 !! >=2 gates
 LOOPIF listp2.e4 GATEDBY gates1 NEWLISTX=listp3

Data file examples

83

 {
 !! >=3 gates
 LOOPIF listp3.e4 GATEDBY gates1
 {
 !! >=4 gates
!! ...at least 4 gates satisfied in gamlist -- update all parameters
 INC mat2d(gamlist.e4,gamlist.e4)
 GOTO endloop1
 }
 LOOPFAIL
 {
 !! =3 gates
!! ...no gates satisfied in listp3
 LOOPIF $a=gamlist.e4 GATEDBY gates1
 {
 INC mat2d($a.e4,listp3.e4)
 INC mat2d(listp3.e4,$a.e4)
 }
 INC mat2d(listp3.e4,listp3.e4)
 GOTO endloop1
 }
 }
 LOOPFAIL
 {
 !! =2 gates
!! ...no gates satisfied in listp2 so listp2 contains just the x parameters
 INC mat2d(listp2.e4,listp2.e4)
 GOTO endloop1
 }
 }
 }

LABEL endloop1

*RUNFILES
COMP1 RUN1
COMP1 RUN2
COMP2 RUN3

*FINISH

Data file examples

84

Quinsort
This example is similar to the previous one except that it contains a triple gate instead of a double one.

! compressed data sortfile
! triple gates updating 2D matrix
!
*FORMATS
gam[1:134] (tag:3, e4:13)

*DATA

!! gates for energy=e4/2
GATEMAP 1D gates1 [2050]
(672 680) (1165 1175) (1346 1358)
(1474 1486) (1544 1556) (1686 1698)
(1566 1578) (2036 2048) (998 1006)
(1239 1249) (1433 1443)

*SPECTRA
!== sort spectra ======
triple2d 4096 2D

*COMMANDS

CREATELIST gamlist FROM gam

LOOPIF $c=gamlist.e4 VALID
 $c.e4=$c.e4/2

if (NUMBER(gamlist)) LT 5
 ENDEVENT

!! triple gated 2D update
!!
!! Use LOOPIF to decide whether the event satisfies 3, 4 or 5 gates
!! Then loop over the appropriate words in event to update matrix
!! and exit loop
!!
!! Update Algorithm:
!! For m-dim update and p gates, words which satisfy gates are g parameters,
!! all others are x parameters. Have 3 possible cases:
!! 1. satisfy exactly p gates -- update m-tuples from x params
!! 2. satisfy at least p+m gates -- update m-tuples from g+x params
!! 3. satisfy p+k gates, k<= m -- update m-tuples which involve <= k g params
}
!!
!! for this case:
!! 1. satisfy exactly 3 gates -- update doubles from listp3
!! 2. satisfy at least 5 gates -- update doubles from gamlist
!! 3. satisfy exactly 4 gates -- update g params with singles from listp4
!!
LOOPIF gamlist.e4 GATEDBY gates1 NEWLISTX=listp1
 {
 !! >=1 gate
 LOOPIF listp1.e4 GATEDBY gates1 NEWLISTX=listp2
 {
 !! >=2 gates
 LOOPIF listp2.e4 GATEDBY gates1 NEWLISTX=listp3
 {
 !! >=3 gates
 LOOPIF listp3.e4 GATEDBY gates1 NEWLISTX=listp4

Data file examples

85

 {
 !! >=4 gates
 LOOPIF listp4.e4 GATEDBY gates1
 {
!! ...at least 5 gates satisfied in gamlist -- update all parameters
 INC triple2d(gamlist.e4,gamlist.e4)
 GOTO endloop1
 }
 LOOPFAIL
 {
 !! =4 gates
!! ...no gates satisfied in listp4
 LOOPIF $a=gamlist.e4 GATEDBY gates1
 {
 INC triple2d($a.e4,listp4.e4)
 INC triple2d(listp4.e4,$a.e4)
 }
 INC triple2d(listp4.e4,listp4.e4)
 GOTO endloop1
 }
 }
 LOOPFAIL
 {
 !! =3 gates
!! ...no gates satisfied in listp3 so listp3 contains just the x parameters
 INC triple2d(listp3.e4,listp3.e4)
 GOTO endloop1
 }
 }
 }
 }

LABEL endloop1

*RUNFILES
COMP1 RUN1
COMP1 RUN2
COMP2 RUN3

*FINISH

Data file examples

86

Pulse Processing
This example shows a simple pulse processing code example.

*FORMATS !##

grt[1:63] (e1,e2) ! Read GRT4 energy value from MWD
posxy[255] (x,y,nstep) ! Position table
fadcs[260:350] (pulse(250)) ! GRT4 (14 bits 80Mhz)

*DATA !##

gatemap 2D coincidence[512,512]
(181 155 186 160 198 148 203 132 189 125 182 136)

valuearray pulse[512] ! Initialise pulseshape array

valuearray grtenergies[1:37] ! Initialise energy array
-1 -1

valuearray grtbases[1:37] ! Initialise base array
-1 -1

*SPECTRA !##

fadchiti 128 32 ! FADC hit pattern
fadchito 128 32 ! FADC hit pattern
grtid 256 32 ! GRT ID
foldf 128 32 ! FADC fold (should be 1)
foldgrt 128 32 ! Fold grt
multge 128 32 ! Segment multiplicity
gehighi[1:40] 8192 32 ! Energy
grtenergyi[1:40] 8192 32 ! Energy from grt4
grttot 8192 32

! ============ Pulse Shapes ================
pulseshape[1:40] 512 2D 32 ! Shapes
pulses[1:37] 256 32
! ============ Position Table ==============

posx 4096 32 ! x position (ungated)
posy 4096 32 ! y position (ungated)
position 128 2D 32 ! Raw position matrix

*COMMANDS !###

!---
! Reinitialise the arrays each event
!---

doloop loop1 from 1 to 37 step 1
 {
 grtenergies(loop1) = -1
 }

!---
! Increment the position matrix: density of photon interaction
!---

inc posx(posxy.x) ! Position x (vertical)
inc posy(posxy.y) ! Position y (horizontal)
posxx = (posxy.x/20) ! Step corresponds to the scan step

Data file examples

87

posyy = (posxy.y/20) !
inc position(posxx,posyy)

!---
! Now let us look at the data
!---

createlist fadclist from fadcs
mult = number(fadclist)
inc foldf(mult)

loopif $f = fadclist valid
 {
 mult = 0
 energy = 0
 adcvalue = 0

 numfadc = group($f)
 numfadc = numfadc - 259 ! Renumber 1->37
 numbase = numfadc
 inc fadchiti(numfadc)

 ! User routine to calculate energy ...
 !---
 exec fadc_12bit $f numfadc energy init 0
 !---

 inc fadchito(numfadc) ! Output hit pattern

 if numbase lt 37
 {
 doloop loop1 from 1 to 250 step 1 ! Generate pulse histogram
 {
 a = $f.pulse[loop1]
 a = ((a/15)+50)
 inc pulseshape(loop1,a) indexed numbase
 set pulses(loop1) indexed numbase = a
 }
 }

 grtbases(numbase) = adcvalue

 if numfadc le 37
 {
 inc gehighi(energy) indexed numfadc
 }

} ! Close main loop

multgrt = 0
createlist grtlist from grt
multgrt = number(grtlist)
inc foldgrt(multgrt)

loopif $g = grtlist valid
 {
 groupno = group($g)
 groupno = groupno - 3
 inc grtid(groupno)

 temp = $g.e2 / 4
 if temp gt 5 ! Arbitrary 0 cutoff
 {
 inc grtenergyi(temp) indexed groupno ! Raw energu

Data file examples

88

 grtenergies(groupno) = temp ! Store the energies
 }
 else
 {
 grtenergies(groupno) = 0 ! Store the energies
 }
 }

! ==
! ============ Now lets Analyse the Data =================
! ==

mult = 0
doloop loop1 from 1 to 36 step 1
{
 temp = grtenergies(loop1)
 if temp ge 5
 {
 mult = mult + 1
 hitsegment = loop1
 inc grttot(temp)
 }
}
inc multge(mult) ! Increment segment multiplicity

end

*RUNFILES !###

DISC /net/npr3/d1/CALIB/Run6_0

*FINISH !###

	MTsort Language - EDOC033
	Table of Contents
	Introduction
	Feedback

	Data File Format
	General Structure
	Notation
	File Inclusion

	*FORMATS
	Single Parameter Format
	Group Parameter Format

	*TRIGGERS
	*DATA
	Sortwords
	Pre-defined Sortwords
	Gates
	Bitmask gates
	1D gates
	2D gates
	Elliptical gates

	Data arrays
	Value arrays
	Gate arrays
	Gain arrays
	Arrays of arrays

	*SPECTRA
	*AUTOGAIN
	Declarations
	Commands

	*COMMANDS
	List of Commands
	Parameter Lists
	Simple Spectrum update commands
	Indexed Spectrum update commands
	Incbits command
	Createlist command
	Copylist command
	Extract command
	Loopextract command
	If...else... command (single sortword environment)}
	Validation test operator (VALID)
	Comparison operators (EQ,NE,GE,LE,GT,LT)
	Filtering operators (PASSES,FAILS)
	Masking operator (MASKEDBY)
	Gate-testing operator (GATEDBY)

	Loopif...loopfail... command (parameter-list environment)}
	Validation test operator (VALID)
	Comparison operators (EQ,NE,GE,LE,GT,LT)
	Filtering operators (PASSES,FAILS)
	Masking operator (MASKEDBY)
	Gate-testing operator (GATEDBY)

	Select command
	Goto command
	Arithmetic operations
	Arithmetic Operators
	Maths functions
	Command Functions

	Gain command
	Invalidate command
	Groupfilter command
	Order command
	Print command
	Routines
	Exec Command
	Synchronization

	Doloop command
	Output command
	Endevent command
	End command
	Pause command

	*RUNFILES (offline analysis only)
	Constraints
	Reserved words
	Predefined sortwords
	Maximum values

	Data file examples
	Eurogam phase 2 autogain sort
	Auto-gained correlation sort
	Quadsort
	Quinsort
	Pulse Processing

