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1: Nucleon-Nucleon Force

1.1 The Pauli (Iso)Spin Matrix

Matrix mechanics was formulated by Born,
Heisenberg, and Jordan (1925) — introduction of
commutation relations:

[Mx,My] = −ih̄Mz, cyclic, (1)

for components of angular momentum M . For
intrinsic spin (takes only two values: up or down):

s =
1
2
h̄σ, (2)

where the components of σ are the Pauli spin
matrices:

σ1 =

⎛
⎝ 0 1

1 0

⎞
⎠ ; σ2 =

⎛
⎝ 0 −i

i 0

⎞
⎠ ; σ3 =

⎛
⎝ 1 0

0 −1

⎞
⎠

These have some interesting relations:

σ1σ2 = iσ3 ; σ2σ1 = −iσ3 ; σ2σ3 = iσ1,

and σ2
1 = σ2

2 = σ2
3 = 1.
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In the fixed (quantised) 3-direction:

s3

⎛
⎝ ψ1

ψ2

⎞
⎠ =

h̄

2

⎛
⎝ ψ1

−ψ2

⎞
⎠ . (3)

The two-component wavefunction satisfies a
Schrödinger equation of the form:

Hψ = ih̄
∂ψ

∂t
, (4)

where H is a 2 × 2 matrix and ψ is a 1 × 2 matrix
(column vector).

In analogy, the Pauli Isospin Matrix τ = 2t is
defined in an analogous manner, i.e.

τ1 =

⎛
⎝ 0 1

1 0

⎞
⎠ ; τ2 =

⎛
⎝ 0 −i

i 0

⎞
⎠ ; τ3 =

⎛
⎝ 1 0

0 −1

⎞
⎠

with τ2
1 = τ2

2 = τ2
3 = 1.

Also:

τ± =
1
2

(τ1 ± iτ2) , (5)

with

τ+ =

⎛
⎝ 0 1

0 0

⎞
⎠ ; τ− =

⎛
⎝ 0 0

1 0

⎞
⎠
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τ+ turns a neutron into a proton, and
τ− turns a proton into a neutron, i.e.

τ+|n〉 = |p〉 ; τ−|p〉 = |n〉; (6)

τ+|p〉 = τ−|n〉 = 0.

1.2 Addition of (Iso)Spin

Eigenvalue equation with s = 1
2 (i.e. s = 1

2):

s2ψ = s(s+ 1)h̄2ψ (7)

=
1
2

(
1
2

+ 1
)
h̄2ψ =

3
4
h̄2ψ

Therefore:

s2 =
3
4
h̄2

sz = ±1
2
h̄ proton or neutron

— projection of intrinsic spin of nucleon on z-axis.
Define σh̄ = 2s where σ is the Pauli Spin Matrix.
Then:

σ2h̄2 = 4s2 = 3h̄2 (8)

and therefore:

σ2 = 3 (9)
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Figure 1: Addition of two vectors

�A

�B
� A

 + � B

(σA + σB)2 = σ2
A + σ2

B + 2σA.σB (10)

4S2/h̄2 = 3 + 3 + 2σA.σB (11)

Here S =
∑
si

Thus if S2 = 0 (i.e. S = 0 singlet state) then:

σA.σB = −3 (12)

and if S2/h̄2 = 1 = S(S + 1)/h̄2 = 2 (i.e. S = 1
triplet state) then:

σA.σB = 1 (13)
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In analogy to spin (up and down in real space) we
can apply the same formalism to describe the
nucleon (up and down in an abstract isospin space).

tz = −1
2

proton down (14)

tz = +
1
2

neutron up (15)

t is the vector in isospin space.

For the nucleus the total isospin is T =
∑
ti and

Tz = 1
2(N − Z)

In analogy with spin:

t2 =
3
4

(16)

and τ = 2t where τ is the Pauli Isospin Matrix.

For two nucleons A and B if T 2 = 0 (i.e. T = 0
singlet state) then:

τA.τB = −3 (17)

and if T 2 = T (T + 1) = 2 (i.e. T = 1 triplet state)
then:

τA.τB = 1 (18)

E.S. Paul PHYS490: Advanced Nuclear Physics Slide 5

In 1932 the neutron was discovered. In the same
year Heisenberg introduced a proton-neutron (p-n)
potential for particles A and B of the form:

VAB = PABF (rAB) ; rAB = |xA − xB| , (19)

where:

PAB = τ
(A)
+ τ

(B)
− + τ

(A)
− τ

(B)
+ . (20)

Heisenberg showed that the nucleus as a p-n system
system is amenable to a non-relativistic quantum
mechanical treatment.

1.3 General Properties of the

Nucleon-Nucleon Force

To lowest order, the interaction between two
nucleons consists of an attractive central potential
V (r). However the following points must be noted:
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• Force is spin dependent:

Evidence comes from, for example, the scattering of
low energy neutrons from ortho (I = 1 i.e. spins of
protons parallel) and para H2 (I = 0 i.e. spins of
protons antiparallel). The scattering cross-section
from ortho-hydrogen, σortho is 30 times σpara. Also
the S = 0 singlet state of the deuteron is unbound
— The interaction must depend on the spins σA

and σB of the nucleons.

Symmetry considerations restrict the possible form
of the potential. Angular momentum is a
pseudovector that does not invert under parity
reversal (r → −r). Under time reversal (t→ −t),
all motions are reversed — terms such as σA and
σB would violate time-reversal symmetry and are
forbidden. Terms such as σ2

A, σ2
B, or σA.σB are

allowed. The last term (σA.σB) is the simplest
involving both nucleon spins.

• Force is charge symmetric:

The cross section for neutron-neutron scattering,
σnn, is almost the same as that for proton-proton
scattering, σpp. To compare these the contribution
from the Coulomb force has to be removed from σpp.
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Note that both p-p and n-n scattering only involve
π0 exchange (see below).

• Force is nearly charge independent:

The cross-section for neutron-proton scattering,
σnp, is similar to σnn and σpp. The difference arises
from the additional exchange of the π± which
contributes to this interaction (Fig. 3). The π±

meson has a different mass to the π0.

• The nucleon-nucleon interaction has a
non-central term:

A tensor potential mixes states of different �
(deuteron ground-state). Only terms that relate r
to σ can contribute, such as σ.r or σ ∧ r, i.e.
(σA.r)(σB .r) or (σA ∧ r).(σB ∧ r). From vector
identities, the second form can be written in terms
of the first form plus a term σA.σB. Since this has
already been useed for the spin dependence, we use
VT (r)SAB where:

SAB = 3
(σA.r)(σB.r)

r2
− σA.σB . (21)

This averages to zero over all angles.
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• The nucleon-nucleon interaction may also depend
on the relative velocity or momentum of the nucleons:

Forces dependent on velocity or momentum
(vectors) cannot be represented by a scalar
potential. The simplest form that does not violate
parity or time-reversal invariance is:

V (r)(r ∧ p).S, (22)

where S = sA + sB . The relative angular
momentum of the nucleons is � = r ∧ p and hence
the potential becomes:

Vso(r)�.S, (23)

in analogy to the spin-orbit potential in atomic
physics. Evidence — scattered nucleons can have
their spins polarised in certain directions.

1.4 Repulsive Core

The repulsive core (Pauli Exclusion Principle) leads
to a constant average separation between two
nucleons, and the nuclear volume is proportional to
the number of nucleons. It then follows that the
radius is proportional to A1/3.
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Figure 2: Repulsive core

Radius of nucleon: ∼ 1fm; Radius of hard core:
∼ 0.2fm; Nucleon mean free path: ∼ 7fm!
Volume of hard cores is only 2% of nuclear volume.

1.5 Exchange-Force Model

Evidence — (1) saturation of nuclear forces:
approximately constant nuclear density and binding
energy per nucleon as we go to heavier nuclei. A
nucleon atracts only a small number of near
neighbours, but repels at small distances to keep
those neighbours from getting too close. This is
analogous to a diatomic molecule where the
electrons are shared or exchanged between the two
atoms which achieve an equilibrium separation.
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(2) Strong backward peaks in n-p scattering can be
explained if the neutron and proton exchange places
(π± exchange). The lightest of the mesons — the
π-meson or pion is responsible for the major portion
of the longer range (1.0 − 1.5 fm) part of the
nucleon-nucleon potential.
Masses — π±: 139.6 MeV/c2, π0: 135.0 MeV/c2.
At shorter ranges (0.5 − 1.0 fm) two-pion exchange
is probably responsible for the nuclear binding. At
much shorter ranges (0.25fm) the exchange of
ω-mesons (mass: 783 MeV/c2) may contribute to
the repulsive core; ρ-mesons (mass: 769 MeV/c2)
may provide the spin-orbit part of the interaction.

1.6 One Pion Exchange Potential

Figure 3: Pion exchange

p

n

p

n
�

0
�

±

n
p

p
n
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The origin of the nuclear force arises at the
fundamental level from the exchange of gluons
between the constituent quarks of the nucleons, but
at low energies (i.e. < 1 GeV/ nucleon), i.e.
interaction distance > 1 fm the interaction can be
regarded approximately as being mediated by the
exchange of π mesons.

At large distances the form of the potential is
constructed as arising from the exchange of one π
meson (hence OPEP, where pion = π meson) so as
to reproduce the known spin and charge properties
of the force.

The form of this potential is

VOPEP = (24)

g2
s

(
1
3
σA.σB + SAB

[
1
3

+
1
µr

+
1

(µr)2

])
τA.τB

µ2e−µr

r

where µ = mπc/h̄, and

SAB = 3(σA.r)(σB .r)/r
2 − σA.σB (25)
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1.7 The Deuteron

The deuteron consists of a bound proton-neutron
system. Its ground state is the only state which is
bound; the first excited state is unbound (Fig. 4).

Figure 4: Two-nucleon states

0 0+ 1 1   2.32n

MeV I�
�Tz T

0+ 0 1   0 0+ -1 12
2 He

0 1+ 0 02
1H

deuteron

The ground state has total angular momentum and
parity of Iπ = 1+.

Since

I = L+ S (26)

and S = 1 (i.e. the spins of the proton and neutron
are in the same direction) for the ground state
(S = 0 for the unbound excited state) then L = 0 or
2.

The deuteron is not a spherical nucleus.
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In the standard proton-neutron picture of this
simplest nucleus, its shape is largely determined by
pion exchange which leads to strong noncentral
tensor interactions. Its shape has been measured at
high momentum transfers (q2) corresponding to
distances of the order of the proton radius.

Figure 5: The deuteron

Evidence for L admixture comes from the measured
electric quadrupole moment of Q0 = 2.82 mb (from
the hyperfine spectrum of deuterium). If the total
wavefunction is written as

ψ = αψ(3S1) + βψ(3D1) (27)

with α2 + β2 = 1.

E.S. Paul PHYS490: Advanced Nuclear Physics Slide 14



In this expression the notation is 2S+1LI , i.e. the
same as that used in atomic spectroscopy
(S → L = 0, P → L = 1, D → L = 2).

The value of β can be obtained from the measured
electromagnetic moments, and is about 0.02–0.08.
Since it is non-zero then the potential does not
commute with L, i.e. [V,L] �= 0, otherwise the
ground state would have a definite L value (e.g. 0).

This provides evidence that the n-p potential
depends not only on the separation r but on the
orientation of the intrinsic spins to r, and accounts
for the SAB = 3(σA.r)(σB .r)/r2 − σA.σB term
above. This term SAB is called the tensor term.

The other members of the two-nucleon system are
also shown in Fig. 4. The lowest energy levels of the
di-neutron (2n) and 2

2He and the first excited level
of the deuteron (21H) are all unbound and have Tz

values of 1, –1, and 0: they belong to the T = 1
triplet. The ground state has T = 0 and is bound.

If the nuclear force depended on −(τA.τB) alone, as
speculated by Heisenberg in analogy to the H+

2

molecule, then the order of the T = 0 and T = 1
levels in the deuteron would have to be reversed.
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1.8 Range of Nuclear Force

The range of an interaction is related to the mass of
the exchanged particle. The Heisenberg uncertainty
principle gives

∆E∆t ≈ h̄ (28)

A particle can only create another particle of mass
m for a time t ≈ h̄/mc2, during which interval the
created particle can travel at most a distance ct.
Taking ct as an estimate of the range of the
interaction, R, gives:

R ≈ h̄/mc (29)

This predicts that the force between two neutrons
arising from the exchange of a π meson, which has a
mass of ∼ 140 MeV/c2, has a range R ≈ 1.4 fm, in
good agreement with experiment. Analysis of high
energy nucleon-nucleon scattering data reveals the
presence of a repulsive core of ∼ 0.5 fm. In terms of
meson exchange theory this can arise from the
exchange of a heavier vector mesons such as the
ρ-meson and the ω-meson having Iπ = 1−.
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2: Nuclear Behaviour

2.1 Mirror Nuclei

We have already seen that the force between two
nucleons has the property of charge symmetry and
charge independence. Fig. 6 shows the energy levels
in the nuclei 22

10Ne, 22
11Na and 22

12Mg. The two nuclei
22
10Ne and 22

12Mg are examples of mirror nuclei, i.e.
the number of protons in one is equal to the number
of neutrons in the other.

Figure 6: Mirror nuclei: 22Ne and 22Mg
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The similarity in the level schemes of mirror nuclei
reflects the equality of the neutron-neutron and
proton-proton force when the nucleons are in the
same space-spin state, i.e. charge symmetry. The
similarity between the levels in 22

10Ne and 22
12Mg and

the levels at 0.657, 1.952 and 4.071 MeV in 22
11Na,

which has a different number of neutron-proton
pairs, implies charge independence.

This is an example of the similarity of the
behaviour of the nucleons in the nucleus to that of
the bare nucleon-nucleon force.

The above observation can be expressed in terms of
isospin dependence of the nuclear force: the energy
only depends on the total isospin T and not on its
third component Tz where:

Tz =
∑

all nucleons

tz (30)

where the summation is over all nucleons. Thus the
comparable states in the three nuclei have Tz = +1,
0, –1, respectively, and associated with T = 1. The
ground state (and other states) in 22

11Na has T = 0
with Tz = 0.
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This is actually a simplification because we have
ignored the fact that the ground state masses of
these nuclei are different. This arises from:

• the neutron-proton mass difference
This quantity depends on Tz of the nucleus.

• the Coulomb energy difference
The Coulomb energy EC depends on the
average value of

∑
p

e2

4πε0rij
(31)

In isospin formalism,

EC =
∑

all nucleons

(
1
2
− tzi

)(
1
2
− tzj

)
e2

4πε0rij

=
∑(

1
4
− (tzi + tzj )

2
+ tzitzj

)
e2

4πε0rij
(32)

Since
∑

(tzi + tzj) ∼ Tz and
∑
tzitzj ∼ (Tz)2 then

the energy difference arising from these two effects
is given by:

E = a+ bTz + c(Tz)2 (33)
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2.2 Isospin Substates

Again by analogy with spin, an isospin T state has
(2T + 1) substates. For example, T = 2 corresponds
to a vector of length

√
6 with components

−2 ≤ Tz ≤ +2. The substates correspond to states
in different nuclei, as shown in Fig. 7, for the
A = 12 isobars:

Figure 7: Isospin substates
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2.3 Isobaric Analogue States

Consider an odd-A nucleus made up of Z protons
and N neutrons. A mirror nucleus is made by
interchanging the numbers of protons and neutrons.
At low mass, we can start with an N = Z nucleus
(A, N , Z) and add either one proton (A+ 1, N ,
Z + 1) or one neutron (A+ 1, N + 1, Z). The
spectrum of proton states in the first nucleus should
be equal to the spectrum of neutron states in the
second, reflecting the charge independence of the
nuclear force.

Figure 8: Isobaric analogue states
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In the example of the mirror nuclei 21
10Ne11 and

21
11Na10, we have set the ground states to be equal
by taking into account the neutron-proton mass
difference (1.293 MeV ). The levels for this T = 1/2
system form isodoublets with Tz = ±1/2. The only
differences in the excitation energies should arise
from the Coulomb energy (extra proton in 21Na).

Next consider the A = 18 isobars. For T = 0 there
is only an isosinglet state, but for T = 1 we can
have three substates: Tz = −1, 0, +1 – isotriplets.
At even higher excitation energy, T = 2 states are
possible with five substates – we have to include
18
7N11 and 18

11Na7.

Figure 9: Isotriplets
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2.4 Independent Particle Model

In principle, if the form of the nucleon-nucleon force
is known for bare nucleons, then the energy of the
nucleon moving inside a nucleus can be calculated.
This is a very difficult problem to solve as the
nucleon interacts simultaneously with all the other
nucleons.

Figure 10: Nuclear potential
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A schematic description of the nucleon energy as a
function of nucleon separation is given in the
Fig. 10.

The short range interaction between nucleons
means that in a nucleus each nucleon moves in an
average potential. The average separation of the
nucleons, ∼ 2.4 fm, is larger than the range of the
nuclear force (∼ 1.4 fm).

This ensures that the average potential, which
results from the sum of all the nucleon-nucleon
interactions, is hardly affected by the individual
behaviour of the bulk of the nucleons. Nucleons
cannot easily change their state unless these states
are close to the Fermi surface (see below); this
inhibition arises because of the Pauli exclusion
principle.

The simplest model assumes that there is only an
average potential governing the behaviour of the
nucleons. The crudest approximation is to assume
that each nucleon (labelled by the suffix i) sees the
potential energy Ui(ri) arising from pair forces
given by (Fig. 11):
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Figure 11: Energy levels (ignoring proton Coulomb
energy)
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Ui(ri) = −V0 for r < R, the nuclear radius
and Ui(ri) = 0 for r > R.
Hence the Hamiltonian is

H =
∑

i

Ti +
1
2

∑
i

Ui(ri) =
∑

i

Ti − 1
2

∑
i

V0 (34)

where the factor 1
2 arises to avoid counting the

potential energies of pairs of nucleons twice.

The energy, E = 〈H〉, of the nucleus is given by:

E =
∑

i

〈Ti〉 − 1
2

∑
i

〈V0〉 =
∑

i

〈Ti〉 − 1
2

∑
i

V0 (35)
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2.5 Degenerate Fermi Gas Model

A simple model in which nucleons are placed in a
volume V = 4πR3/3 and the interactions between
them are ignored. The first nucleon will occupy the
lowest energy state of the nuclear “box” and further
nucleons must occupy higher energy states due to
the Pauli exclusion principle.

In the limit of large volume, the number of states
available for nucleon (fermion) occupation with
momentum between p and p+ dp is:

dN(p) =
2V 4πp2dp

(2πh̄)3
=
V p2dp

π2h̄3 (36)

where the factor 2 allows the two possible spin
orientations of the nucleon. The total number of
states available in the volume V with momentum
below pF is:

N =
∫
dN =

V

π2h̄3

∫ pK

0
p2dp =

V p3
F

3π2h̄3 (37)

pF (= h̄kF ) is the Fermi momentum of the system
and corresponds to the energy of the last nucleon.
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A Fermi sea is formed. The sea is filled up to the
energy corresponding to the Fermi momentum

EF =
p2

F

2m
=
h̄2k2

F

2m
; (38)

above this energy it is empty (see Fig. 11). The
ground state represents a degenerate Fermi gas.

The energy of the nucleus is given by Equation 35.
In this model,

∑〈Ti〉 = 3
5TFA where TF is the

kinetic energy at the Fermi level. The potential
energies are the same for each nucleon (−V0) so that∑
V0 = V0A. The energy of the nucleus is then:

E =
3
5
TFA− 1

2
V0A (39)

and the binding energy per nucleon, B, is given by:

B = −E/A = −3
5
TF +

1
2
V0 (40)

The nuclear separation energy, S, is the difference
between the energy of a nucleon outside the nucleus
(0 in this model) and the energy of the Fermi level
(TF − V0), so that:

S = −TF + V0 (41)

= AB(A,Z) − (A− 1)B(A− 1, Z)
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Now the nuclear force has the property of saturation
so that B(A,Z) is independent of A. This is a
consequence of the Pauli exclusion principle, the
spin and isospin dependence of the nuclear force
and (less important) the repulsive core.

Thus

S = AB − (A− 1)B = B = −TF + V0 (42)

so that

TF =
5
4
V0 (43)

and therefore

S = B = −1
5
TF (44)

This is incorrect since for nuclei S > 0 ! We have to
include a momentum dependence of the potential
well which partially accounts for the non-central
behaviour of the nuclear force. This implies that a
nucleon has an effective mass (m∗) so that m∗ > mn

when moving in a nucleus.
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2.6 Some nuclear quantities

Number density (A/V ) (measured):

ρ(0) ≈ 0.17 fm−3

≈ 1.5 × 1018 kg/m3 (45)

For comparison, the the density of lead is
11.3 × 10−3 kg/m3 and the Crab pulsar density is
∼ 1011 − 1013 kg/m3 — a neutron star can be
thought of as macroscopic nuclear matter.

Fermi Momentum:

pF

h̄
= kF ≈ 1.4 fm−1 (46)

Fermi Energy:

EF ≈ 37 MeV (47)

Kinetic Energy of a nucleon in the nucleus:

3
5
EF ≈ 25 MeV (48)

This corresponds to a velocity (v/c)2 ≈ 0.1.
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3: Forms of Mean Potential

3.1 Single-Particle Shell Model

Assumption: Ignore the detailed interactions
between nucleons — each particle moves in a state
independent of the other particles. The mean field
force is the average smoothed-out interaction with
all the other particles. Each nucleon then only
experiences a central force.

Figure 12: Mean field potential
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We have established that the nucleons moves in a
mean potential. There are essentially two
approaches to the determination of the potential:
one in which an empirical form of potential is
assumed (e.g. square well, harmonic oscillator,
Woods-Saxon) and one in which the mean field is
generated self-consistently from the nucleon-nucleon
interaction.

3.2 Square Well Potential

This is the simplest form of potential (see Fig. 13)
in which

VSW(r) = −U0 for r ≤ R

VSW(r) = ∞ for r > R

Since we have a spherically symmetric potential
(this is the same approach for the more complex
forms of potential) we separate the angular
dependence of the wave function from the radial
part (remember the nucleons move in three
dimensions):
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Figure 13: Square well potential

V
SW 

(r)

0

UO

R

r

ψ(r, θ, φ) = Rn�(r)Y�m(θ, φ) (49)

The radial equation is:

d2R(r)
dr2

+
2
r

dR(r)
r

+
[
2m
h̄2 (E + U0) − �(�+ 1)

r2

]
R(r) = 0

(50)

The solutions are Bessel functions which satisfy the
boundary condition Rn�(R) = 0 and the energies
are given by:

En� =

(
h̄2

2mR2
ξ2n�

)
− U0 (51)
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The quantum numbers are n, � and m where
m = −�, −�+ 1, ..., 0, ..., �− 1, �, i.e. 2(2�+ 1)
degeneracy (2 spin orientations).

Table 1: Square well shell closures

n(�) � 2(2�+ 1) total ξn�

1s 0 2 2 3.14

1p 1 6 8 4.49

1d 2 10 18 5.76

2s 0 2 20 6.28

1f 3 14 34 6.99

Note that for � = 0:

En� =
n2h2

8mR2
− U0 (52)

3.3 Harmonic Oscillator

Fig. 14 shows the form of the potential in this case.
The advantage of the harmonic oscillator,
VHO(r) = −U0 + 1

2mω
2r2, is that it is easy to

handle analytically.
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Figure 14: Harmonic oscillator potential

VHO (r)

0

r

UO

The radial equation is:

d2R(r)
dr2

+
2
r

dR(r)
r

+

[
2m
h̄2

(
E + U0 − mω2

2
r2

)

−�(�+ 1)
r2

]
R(r) = 0 (53)

The solutions are Laguerre polynomials, with
energy levels:

E = h̄ω

(
N +

3
2

)
− U0 (54)

For each oscillator quantum number N there are
quantum numbers n� which satisfy:

2(n− 1) + � = N, N ≥ 0, n ≥ 1, 0 ≤ � ≤ N (55)
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Table 2: Harmonic oscillator shell closures

N n � n(�) 2(2�+ 1) total

0 1 0 1s 2 2

1 1 1 1p 6 8

2 2,1 0,2 2s,1d 2+10 20

3 2,1 1,3 2p,1f 6+14 40

4 3,2,1 0,2,4 3s,2d,1g 2+10+18 70

5 3,2,1 1,3,5 3p,2f,1h 6+14+22 112

Note the parity for each oscillator shell is
(−1)N = (−1)�.
The harmonic oscillator correctly predicts shell
closures for 4

2He2, 16
8O8, and 40

20Ca20 but does not
reproduce higher ones.

3.4 Spin-Orbit Coupling

In order to account for the correct nucleon numbers
at which the higher shell closures occur, a spin-orbit
term is introduced to the nuclear potential.
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In the case of the modified harmonic oscillator:

V ′
HO(r) = −U0 +

1
2
mω2r2 − 2

h̄2α�.s (56)

Since

�.s =
h̄2

2

[
j(j + 1) − �(�+ 1) − 3

4

]
(57)

then the energy is modified by an additional term:

−α� if j = �+
1
2

(58)

+α(�+ 1) if j = �− 1
2

(59)

3.5 Woods-Saxon + Spin-Orbit

Usually finite potential forms are used so that
V (r) → 0 if r � R. The Woods-Saxon potential is
considered to be the most realistic, see Fig. 15.

It has the following radial dependence:

VWS(r) =
U0

t
+
U�s

r20

1
r

d

dr

(
1
t

)
�.s (60)

where t = 1 + exp [(r −R0)/a] and R0 = r0A
1
3
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Figure 15: Woods-Saxon potential
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3.6 Residual Interaction

The residual interaction v between nucleons is the
difference between the actual two-nucleon potential
Vα experienced by a nucleon in a state α and the
average potential. The matrix elements of v,
〈α|v|β〉, are only appreciable near the Fermi surface.
The interaction v is a two-body operator because it
changes the state of two nucleons.
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It could be treated in a number of ways

• from the free two-nucleon potential.
DIFFICULT!

• treated as free parameters to be deduced from
experimental data on energy levels and angular
momenta of many nuclei.

• parameterised using physical intuition. The
interaction depends on the radial separation
(ri − rj) which can be expanded in a multipole
expansion:

(ri − rj) =
∑

v�(rirj)
∑
m

Y�m(θ, φ)Y ∗
�m(θ, φ)

(61)

For example, if it is assumed that the interaction
takes place near the Fermi surface, i.e. near r = R

then v�(rirj) → v�(R).

In common use is the quadrupole + pairing
interaction. Here it is assumed that v�(rirj) = χr�

ir
�
j

so that:

(ri − rj) = χ
∑
�m

M�m(i)M∗
�m(j) (62)
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M�m(i) is the multipole operator defined by:

M�m(i) = r�
iY�m(θiφi) (63)

The quadrupole-quadrupole term (i.e. � = 2) is the
most important correction to a spherical field, and
is relatively long-range.

The pairing interaction is the important short-range
component, see Fig. 16

Figure 16: Pairing interaction
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It leads to greater binding between the nucleons if
their angular momenta are coupled to zero since in
this state the nucleons have the maximum spacial
overlap (note they that cannot have the same
magnetic substate because of the Pauli principle).
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This is achieved by using the approximation that:

〈j2JM |v|j2J ′M ′〉 = δJJ ′δMM ′δJ0 (64)

for nucleons in the same subshell (i.e. same j) i.e.
the interaction only occurs in the J = 0 state.

3.7 Hartree Fock

The philosophy here is that the nuclear potential is
self consistent. That is, we calculate the nucleon
distribution (i.e. the nuclear density) from the net
potential, and then evaluate the net potential from
the nucleon-nucleon interaction. Then the potential
is self-consistent if the one with which we end up
with is the same as the one we start with.

The net potential is written as the sum of the
two-body potentials:

U(ri) =
∑
j

V (ri, rj) =
∫
ρ(r′)V (r, r′)dr′ (65)

where the summation over all interactions is
replaced by an integral weighted by the nucleon
density distribution ρ(r).
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The nucleon density distribution ρ(r) is given by:

ρ(r) =
∑

ψ∗(r)ψ(r) (66)

where ψ is the wavefunction of the particle at r.
The summation is over all individually occupied
orbits. Thus the net (one-body) potential becomes:

U(r) =
∑∫

ψ∗(r)V (r, r′)ψ(r)dr′ (67)

which is substituted into the one-body Schrödinger
equation to solve for ψ, for all orbits. The
procedure is to start with trial wavefunctions and
then iterate until U (or ρ, or ψ) does not change.
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4: Nuclear Deformation

The experimental observation of large electric
quadrupole moments and low-lying rotational bands
suggests that nuclei can be deformed in their ground
state. The origin of deformation lies in the long
range component of the nucleon-nucleon residual
interaction (the quadrupole-quadrupole interaction)
which gives additional binding energy to nuclei
which lie between the closed shells if the nucleus is
deformed. In contrast, the short range component
(pairing interaction) prefers spherical shapes.

4.1 Geometric Descriptions

The general shape of a nucleus (see Fig. 17) can be
expressed in terms of the spherical harmonics
Yλµ(θ, φ):

R = R0

⎡
⎣1 +

∞∑
λ=0

λ∑
µ=−λ

aλµYλµ(θ, φ)

⎤
⎦ (68)
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Figure 17: Description of the nuclear shape
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Figure 18: Nuclear deformations
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The λ = 1 term describes displacement of the mass
centre and therefore cannot give rise to excitation of
the nucleus – ignore this. The λ = 2 term is the
most important, and describes quadrupole
deformation.
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The next higher order terms, λ = 3, 4, describe
octupole and hexadecapole deformation, see Fig 18.

For quadrupole deformation, the equation reduces
to:

R = R0

⎡
⎣1 +

2∑
µ=−2

a2µY2µ(θ, φ)

⎤
⎦ (69)

Figure 19: Principal axes
x

1

y
3

z2

If the principal (i.e. x,y,z) axes are made to be
coincident with the nuclear axes (1, 2, 3), see
Fig. 19, then a2 1 = a2−1 = 0 and a2 2 = a2−2
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We define

a2 0 = β cos γ (70)

a2 2 =
1√
2
β sin γ (71)

so that

δRK = RK −R0 =
√

5
4π
R0β cos

(
γ −K

2π
3

)
(72)

If γ = 0 then R1 = R2 and R3 > R0, i.e. prolate
spheroid. In this case we have:

δR1,2 = −1
2

√
5
4π
R0β

δR3 =
√

5
4π
R0β (73)

If R3 < R0 this describes an oblate spheroid

If γ �= nπ/3 where n is an integer then we have a
triaxial shape with R1 �= R2 �= R3
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4.2 Theoretical Nuclear Deformations

Various calculated nuclear shapes are shown below
from Möller and Nix (Los Alamos). The top row
shows ground-state deformations. At the bottom
left is a fission isomer trapped in a secondary
energy minimum, whilea mass-asymmetric shape of
a nucleus on the way to fission is shown to the
bottom right.

Figure 20: Theoretical nuclear shapes
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4.3 Ground-State Deformations

Theoretical ground-state quadrupole deformations
are shown below, from Möller and Nix (Los
Alamos). Note that low deformation occurs around
the magic numbers and maximal deformation in
midshell regions.

Figure 21: Deformation systematics
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4.4 Nilsson Model

To introduce nuclear deformation Nilsson modified
the the harmonic oscillator potential to become
anisotropic:

V (r) =
1
2
m

(
ω2

1x
2 + ω2

2y
2 + ω2

3z
2
)

(74)

so that

ωKRK = ω0R0 (75)

If axial symmetry is assumed (i.e. γ = 0) then the
deformation is described by ε where

ε = (ω1,2 − ω3)/ω0 (76)

Therefore, using Equations (73) and (75):

ε =

(
ω0R0

R1,2
− ω0R0

R3

)
/ω0 =

(R3 −R1,2)R0

R1,2R3

=
(δR3 − δR1,2)R0

R2
0

=
3
2

√
5
4π
β ≈ 0.95 β (77)

so that ε ≈ β.
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In order to reproduce the observed nuclear
behaviour the empirical potential energy term has
to include two extra terms and becomes:

V (r) =
1
2
m

(
ω2

1x
2 + ω2

2y
2 + ω2

3z
2
)
− C�.s −D�2

(78)
The C�.s term is the spin-orbit term introduced
already to account for the observed nuclear shell
structure. The D�2 term has the effect of flattening
the potential well to make it look more like the
actual nuclear shape. Without these additional
terms the Nilsson energy levels are:

h̄ω1

(
n1 +

1
2

)
+ h̄ω2

(
n2 +

1
2

)
+ h̄ω3

(
n3 +

1
2

)

=
[(
N +

3
2

)
− ε

(
n3 − N

3

)
+

1
9
ε2

(
N +

3
2

)]
h̄ω0(79)

where N = n1 + n2 + n3 is the oscillator quantum
number (see Equation 54), and n3 describes the
z-axis component, etc. In addition to N and n3 the
quantum numbers �z = Λ, sz = Σ = ±1

2 and
jz = Ω = Λ + Σ are also used. These are the
projections of �, s and j of a single nucleon on the
nuclear z-axis. The parity is (−1)� and the labels of
the energy levels in the Nilsson scheme: Ωπ[Nn3Λ].
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Figure 22: Nilsson diagram
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Note that many degeneracies are lifted for a
deformed nucleus, i.e. ε �= 0
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Because of the additional �.s and �2 terms the
physical quantities labelled by n3 and Λ are not
constants of motion, only approximately so. They
are called asymptotic quantum numbers as they
become “good” only as ε→ ∞. The quantum
numbers Ω, π and N are always good labels
provided (i) the nucleus is not rotating, (ii) there
are no residual interactions.

The following observations can be made from the
Fig. 22:

• each spherical level, labelled by (�)j at ε = 0, is
split into (2j + 1)/2 levels, i.e.

Ω = ±1
2
, ±3

2
, ..., ±j (80)

• the remaining ±Ω degeneracy means that each
deformed level can accommodate 2 neutrons or
2 protons.

• orbits with lower Ω are shifted downwards for
ε > 0 (prolate), upwards for ε < 0 (oblate).
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4.5 Large Deformations

If ε becomes large then the �.s and �2 terms can be
neglected relative to deformation effects and the
energy levels are given by Equation 79 (see Fig. 23).

Figure 23: Deformed shell gaps
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Fig. 23 shows that if ω3 and ω1,2 are in the ratio of
integers, i.e.

ω3/ω1,2 = p/q (81)

then large degeneracies become apparent and
deformed shell effects emerge. This is the origin of
superdeformed shapes which have favourable
energies at a p/q ratio of 1/2 (see Section 5.3).

This corresponds to a long-to-short axis ratio of

R3 : R1,2 = 2 : 1 with ε ≈ 0.60

Other favourable shapes occur at an axis ratio of
3:2 (ε ≈ 0.37) and searches are currently being
made for nuclei with a hyperdeformed shape:

R3 : R1,2 = 3 : 1 with ε ≈ 0.86

What next? megadeformation!
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5: Hybrid Models

5.1 Deformed Liquid Drop

In the assumption that the nucleus behaves as a
charged, liquid drop the semi-empirical expression
can be obtained for the total nuclear energy:

E(A,Z) = −aVA+ aSA
2/3 + aCZ

2A−1/3 (82)

where aV , aS , and aC are the coefficients of the
volume, surface and Coulomb energies, respectively.
To correct for deformation the nuclear radius R0 is
replaced by:

R3 = R0(1 + δ)

R1,2 = R0

(
1 − 1

2
δ

)
(83)

where

δ =
√

5
4π
β =

2
3
ε (84)

(see Equation 77).
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It can be shown that the above expression for the
energy becomes (for small values of δ):

E(δ,A,Z) = −aVA+ aSA
2/3

(
1 +

2
5
δ2

)

+aCZ
2A−1/3

(
1 − 1

5
δ2

)
(85)

Figure 24: Deformed–spherical energies
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A plot of ∆E(δ) = E(δ) − E(δ = 0) is shown in
Fig. 24. This predicts that the nucleus is always
spherical (i.e. ∆E > 0 for δ > 0) unless Z2/A > 49
in which case the nucleus prefers infinite
deformation (i.e. it fissions).

This is clearly wrong!
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5.2 Shell Correction - Strutinsky

Method

The liquid drop model can be extended to take into
account shell-model effects, i.e. effects which arise
from the individual nucleon motion. Additional
terms arising from the symmetry energy (which
prefers Z = N) and the pairing energy (∆, 0, −∆
for even-even, odd-even and odd-odd nuclei) can be
added to the above expression. Alternatively the
total energy can be calculated using mean field
potentials, either self consistently (the Hartree Fock
method) or using empirical potentials such as
Nilsson and Woods-Saxon. This is not the sum of
the individual eigenvalues ei because the potential
energy of each nucleon would be counted twice. The
eigenvalue for each nucleon is:

ei = 〈Ti〉 + 〈
∑
j �=i

Vij〉 (86)

and the total energy E is:
∑

〈Ti〉 + 〈1
2

∑
i,j �=i

Vij〉 =
1
2

∑
ei +

1
2

∑
〈Ti〉 (87)
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For particles moving in the harmonic oscillator
potential it can be shown that:

〈Ti〉 = 〈Vi〉 =
∑
i,j �=i

Vij (88)

so that:

E =
3
4

∑
ei (89)

This method has difficulty in producing the correct
energy because errors in the individual values of ei
give large errors in the summation. To obtain both
the global (liquid drop) and local (shell-model)
variations with δ, Z and A more accurately,
Strutinsky developed a method to combine the best
properties of both models. He achieved this by
considering the behaviour of the level density, ρ(e)
(e is the nucleon energy) in the two models.

Fig. 25 shows the level densities at the Fermi surface
ρF(e) without and with single particle effects.
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Figure 25: Level densities at the Fermi surface
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If there are no single particle effects (Fig. 25(a))
then the spacing of the energy levels is uniform and
ρF(e) = ρAV (e), the average value. This is the
liquid drop prediction. In Figs. 25(b) and (c) the
level densities are non-uniform because of single
particle effects.

The values of both ρAV(e) and ρF(e) can be
calculated using (for example) the Nilsson model by
averaging over a large (5–10 MeV) and small (1–2
MeV) energy interval respectively. A change in
nuclear binding will arise from the value of
ρAV(e)− ρF(e) — negative in Fig. 25(b) and positive
in Fig. 25(c). The calculated fluctuating energy
correction is then added to the liquid drop energy.
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Figure 26: Shell-correction energies
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Fig. 26 shows the variation of the shell correction
energy with δ and N in the form of a contour plot.

The spherical shell gaps 20, 28, 50, 82, 126 and 184
can be seen for ε = 0, but in general the minimum
in energy will occur for non-zero values of ε. In
addition, there are deformed shell gaps which occur
at 16, 44, 84, 112 and 144 for ε = 0.6. The single
particle model used to calculate the fluctuating
correction is more sophisticated than that used in
Section 4.5 and the superdeformed shell gaps lie
closer to those observed experimentally.
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5.3 Fission Isomers

If the increase in liquid drop energy for increasing
deformation, ∆E(δ), is small enough (e.g.
Z2/A > 35) then any secondary minimum in the
total energy arising from the shell correction will
become similar in energy to the first minimum.

Fig. 27 shows the variation in total nuclear energy
with deformation for the nucleus 240Pu. For this
nucleus two minima in the energy are seen, both
occuring for non-zero deformations.

Figure 27: Potential energy versus deformation
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The ‘second’ minimum, which corresponds to a
superdeformed nuclear state, can decay by
penetration through the outer barrier to fission
rather than by penetrating the inner barrier to the
ground state. The first and second minimum states
are said to coexist, i.e. the nucleus can exist in
either state, each having very different deformation
to each other.

The fission lifetime for the second minimum is much
shorter than for the first minimum but is much
longer than the lifetime of excited states built upon
it. For this reason it is called a fission isomer where
‘isomeric’ means long-lived.

Evidence for the large deformation of the second
minimum has come from direct measurement of its
electric quadrupole moment.
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The electric multipole moments are given by:

Mλ =
Z∑

k=1

rλ
kYλ0(θk) (90)

where (rk, θk, φk) are the co-ordinates of the kth

proton and Yλ0 is a spherical harmonic of order λ.

The electric quadrupole moment is:

M2 =
Z∑

k=1

r2kY20(θk) =
√

5
16π

∑
r2k

(
3 cos2 θk − 1

)

=
√

5
16π

∑(
3z2

k − r2k

)
(91)

since cos θ = z/r.

For a nuclear shape having quadrupole mass
deformation, we assume that the protons are
uniformly distributed throughout the nucleus.
Equation 91 is integrated over the spheroidal shape
of the nucleus, giving

M2 =
1√
20π

Z
(
R2

3 −R2
1,2

)
≈ 3

4π
ZR2

0β (92)
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By convention, we define the intrinsic quadrupole
moment, Q0, as:

Q0 =
√

16π
5

M2 =
3√
5π
ZR2

0β =
6
5
ZR2

0δ (93)

The measurement of Q0 can be achieved in a
number of ways. For example it is directly related
to the probability of the emission of a photon in the
decay of an excited nuclear state within a rotational
band which is characteristic of the deformed
structure. From this measurement the nuclear
deformation β can be extracted.
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6: Nuclear Excitation

6.1 Spherical Nuclei

Figure 28: Level schemes: even-even nuclei

7.12
6.92

6.13
6.05

1-

2+

3-

0+

0 0+

3.71 5-

3.48 4-

3.20 5-

2.61 3-

0 0+

16O8
208Pb82

MeV I�

I�MeV

Fig. 28 shows the energy levels of two nuclei, 16O
and 208Pb. Note that in common with all even-even
nuclei their ground states have angular momentum
I and parity π of 0+, a consequence of nuclear
pairing.
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These particular nuclei, in common with all closed
shell nuclei are spherical in their ground state so
that excitations can only occur by breaking pairs of
nucleons or by vibrations. The energy difference
between the ground state and the lowest excited
states is a rough measure of the pairing energy. For
odd mass nuclei which are one nucleon added or
removed to the closed shell, the low-lying energy
levels (Fig. 29) represent the single particle
excitation in either direction from the Fermi surface.

Figure 29: Level schemes: odd-A nuclei
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The configuration of the low-lying levels are written
as (π(�)j)nIπ (odd-Z) or (ν(�)j)nIπ (odd-N), e.g.:
17O is (ν(�)j)1Iπ for a closed shell + one neutron,
207Tl is (π(�)j)−1Iπ for closed shell + 1 proton hole.
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In this case the total angular momentum I of the
nucleus equals the angular momentum of the odd
particle j. Higher excitations can occur by breaking
pairs of nucleons e.g. (νp 3

2
)−1(νd 5

2
)2 3

2
− for the 4.55

MeV level in 17O would be a 1-hole 2-particle state.

6.2 Vibrations

From the liquid drop dependence on deformation
(see Equation 85) we can estimate the restoring
force if the nucleus is deformed from its equilibrium
shape along the symmetry (z-)axis:

F = − dE
dR3

= −dE
dδ

dδ

dR3
= −dE

dδ

1
R0

= −
(

4
5
aSA

2/3 − 2
5
aCZ

2A−1/3
)
δ

R0
(94)

The vibration can be any distortion in the nuclear
shape since (see Equations 68 and 83):

δ ∝ R−R0

R0
=

∑
λ

∑
µ

aλµYλµ(θ, φ) (95)
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At low energy the most important are oscillations in

• a20 (β-vibrations – oscillations along the
symmetry axis)

• a22 (γ-vibrations – oscillations perpendicular to
the symmetry axis)

• a30 (octupole vibrations)

Figure 30: Nuclear vibrations
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�-vibration
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The energy levels of the vibrating system are those
of the 1-D harmonic oscillator and are:
0, h̄ω, 2h̄ω, ...
These correspond to excitations of 0, 1, 2 ...
phonons.
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For a given mode of vibration, each phonon has an
associated angular momentum and parity:
quadrupole phonons have 2+ and octupole phonons
have 3−. For a pure vibrator the energy levels
corresponding to the ways the n phonons are
combined have the same energy nh̄ω; for real nuclei
this degeneracy is removed, see Fig. 31.

Figure 31: Realistic vibrational levels
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Note that the γ-vibration can only occur for a
deformed system.
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6.3 Rotations of a Deformed System

Examination of the low-lying energy levels of
deformed even-even nuclei which lie far from closed
shells reveal a regular sequence of levels whose
energy is much lower than the pairing energy. This
arises from nuclear rotation. The Hamiltonian
corresponding to the rotation of the deformed
system is:

Hrot =
h̄2

2J R2 =
h̄2

2J (I − J)2 (96)

where J is the moment of inertia, R is the
rotational angular momentum and J is additional
angular momentum generated by for example, the
odd particle in an odd-A nucleus, or by vibrations.
All angular momenta are in units of h̄. For an
even-even nucleus with no vibrations J = 0 and
I = R. Fig. 32 shows how these angular momentum
vectors are oriented in space.
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Figure 32: Nuclear angular-momentum vectors
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Note that for an axially-symmetric system rotation
cannot occur around the symmetry (z-)axis so R is
along the x- or y-axis. These are equivalent and the
x-axis is usually selected.

The rotational Hamiltonian can be expanded:

R2 = (I − J)2 = I2 − 2I.J + J2

= I2 + J2 − 2K2 − (I+J− + I−J+) (97)

where I± = Ix ± iIy, J± = Jx ± iJy and
Jz = Iz = ±K.
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The quantity K is the projection of I along the
symmetry axis. (Rz = 0 as already discussed). The
coupling term (I+J− + I−J+) corresponds to the
Coriolis force and couples J to R. The operators I±
can however only link states with K differing by
±1. This Coriolis coupling term can be ignored
provided:

• rotational bands with ∆K = 1, corresponding
to different intrinsic excitation, lie far apart in
energy;

• the band does not have K = ±1
2

Neglecting the coupling term gives the following
expression for the excitation energies:

Erot =
h̄2

2J
[
I(I + 1) + J(J + 1) − 2K2

]
I = K,K + 1,K + 2, ... (98)

In the absence of the Coriolis effects K is a constant
of motion; since J is also constant then

Erot = EK+
h̄2

2J I(I+1), I = K,K+1,K+2, ... (99)

where EK is the energy of the lowest member of the
rotational band having I = K, the bandhead.
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6.4 Examples

The low lying energy levels of three nuclei illustrate
rotational structure.

6.4.1 232Th

Figure 33: 232Th level scheme
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Here the low-lying excitations are all collective (i.e.
rotational and vibrational).
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The following rotational bands can be seen in
Fig. 33:

Ground state band.
Kπ = 0+, Iπ = 0+, 2+, 4+, 6+, ...

β-band. Here Jπ = 2+, Kπ = 0+ so
Iπ = 0+, 2+, 4+, 6+, ...

γ-band. Here Jπ = 2+, Kπ = 2+ so
Iπ = 2+, 3+, 4+, 5+, 6+ ...

Octupole band. Here Jπ = 3−, Kπ = 0−, 1−, 2− or
3−. The lowest energy band has
Kπ = 0−, Iπ = 1−, 3−, 5−, 7−

Note that if Kπ = 0+ then the I values 1, 3, 5,...
are not present. Similarly the I values 0, 2, 4,...
disappear if Kπ = 0−. This is a consequence of the
nuclear wavefunction being identical under a
rotation of 180◦ (reflection symmetry about the
plane containing the x, y axes). This is the case for
232Th which has no octupole deformation, i.e.
β3 = 0.

E.S. Paul PHYS490: Advanced Nuclear Physics Slide 73

6.4.2 224Ra

Figure 34: 224Ra level scheme
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This nucleus is reflection asymmetric (i.e. β3 �= 0)
in its ground state: we say it has octupole
deformation. The nuclear wavefunction in its
‘intrinsic’ frame is not an eigenfunction of parity
(ψ2(x, y, z) �= ψ2(−x,−y,−z)). In the laboratory
frame (i.e. averaged over all nuclear orientations)
the levels have alternating parity

Kπ = 0+, Iπ = 0+, 1−, 2+, 3−, 4+, 5−, 6+, ...
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6.4.3 153
69Tm

Figure 35: 153Tm level scheme
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The low-lying excitations are rotational bands built
upon single proton excitations, so that K = jz = Ω.
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7: Rotating Systems

7.1 Moment of Inertia

The purely geometric model described earlier
assumes a given nuclear shape such as a deformed
liquid drop. Two questions arise:

• What is the moment of inertia of the nucleus?

• What is the effect of rotations on individual
nucleons?

Inglis showed in 1952 that for a Fermi gas of
nucleons the moment of inertia J around the x-axis
is given by:

Jx = 2
∑ |〈p|Îx|h〉|2

εp − εh
(100)

where the summation is over all possible 1-particle
1-hole excitations (see Fig. 36) in a deformed shell
model (DSM) potential such as the Nilsson
potential.
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Figure 36: Particle and hole levels

0

1

2

�
p

FERMI
LEVEL

E
s.

p.
 (M

eV
)

particle

hole

The quantities εp and εh are the energies of single
particle and single hole states respectively. The
operator Îx is the angular momentum operator
about the x-axis.

If, for example, the single particle Nilsson model is
used to calculate J using this expression, it gives
comparable values to the rigid-body value for the
moment-of-inertia of a deformed liquid drop:
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Jx =
2
5
muAR

2
0

[
1 +

1
2

√
5
4π
β

]
(101)

where mu is the nucleon mass and R0 is the nuclear
radius. These are much higher than the
experimental values, see Fig. 37

Figure 37: Nuclear moments of inertia
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The discrepancy lies in the residual interactions,
particularly the pairing term, which is ignored in
the simple deformed potential model. We have seen
that intrinsic excitation can only occur in even-even
nuclei by breaking pairs of nucleons, so the energy
level diagram becomes:
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Figure 38: Effect of pairing
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A rough estimate of the energy required to create a
particle-hole excitation is 2∆, where ∆ is the
pairing gap. Since the denominator in the formula
for J (see Equation 100) depends on (εp − εh), and
(εp − εh) ≈ 2∆ ≈ 2 MeV for mass 150 nuclei then J
must be reduced because of pairing.
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7.2 Cranking Model

The Deformed Shell Model (e.g. Nilsson Model) can
be modified to take into account pairing. To
include rotational effects it is convenient to
subtract the effects of rotational forces (Coriolis and
centripetal) which occur when the nucleus rotates
with frequency ω about the x-axis. Classically, the
‘potential’ energy of these forces is ω.I so that the
corresponding quantum operator is ωÎx where Îx is
the operator corresponding to the component of I
along the rotation axis. The Hamiltonian becomes:

Hω = HDSM − ωÎx (102)

which is the energy in the rotating frame - called
the Routhian. The energy of the system in this
frame is

Eω = E − ω〈Îx〉 (103)

where 〈Îx〉 is the expectation value of Îx. This is
the average value of Ix and is called the aligned
angular momentum.
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Two important relationships, which arise because E
is independent of ω and Eω is independent of I, are:

dEω

dω
= −〈Îx〉 (104)

and
dE

dI
= ω

d〈Îx〉
dI

(105)

Figure 39: Projections of the nuclear spin

K
Z

x

I

I
x

�

Since (see Fig. 39) I2
x = I2 −K2 we have

〈Îx〉 =
√
I(I + 1) −K2 h̄ (106)

If K = 0 then 〈Îx〉 =
√
I(I + 1) h̄ ≈ Ih̄ so that

(using Equation 105):

dE

dI
= ωh̄ (107)
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Using Equation 99, the energy of a rotational band
for K = 0 is:

E = E0 +
h̄2

2J I(I + 1) I = 0, 2, 4, ... (108)

so that
dE

dI
=

h̄2

2J (2I + 1) (109)

Since the energy of a transition ∆E between two
consecutive states in a rotational band with angular
momentum I + 1 and I − 1, respectively, is:

∆E =
h̄2

2J ({I + 1}{I + 2} − {I − 1}I) =
h̄2

2J (4I+2)

(110)
Thus, using Equation 109:

∆E = 2
dE

dI
(111)

and we therefore have the following relationship
between ω and ∆E:

ωh̄ = ∆E/2 (112)

E.S. Paul PHYS490: Advanced Nuclear Physics Slide 82



7.3 Backbending

Fig. 40 shows the behaviour of the moment of
inertia J with ω2 for two different nuclei 174Hf and
158Er.

Figure 40: Behaviour of moments of inertia
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J is derived using Equation 110, and ω using
Equation 112. Both exhibit the phenomenon that J
increases as ω increases.

The case of 158Er exhibits a more pronounced effect
called backbending, so called from the characteristic
‘S’ shape of the plot.
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This is the effect of two bands ‘crossing’, the ground
state band (labelled ‘g’ in the figure) and a ‘super’-
or s-band (labelled ‘s’):

Figure 41: Crossing bands
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The states which are actually observed are the
‘yrast’ states (thick line in the figure) which have
the lowest energy for a given value of I. The s-band
arises from a breaking of a particular pair of
nucleons (i 13

2
neutrons in the case of 158Er) in the

rotating core so that their angular momentum j
1
,

j
2
aligns with the rotation axis:
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Figure 42: Pair breaking

�

For the ground state band

Eg =
h̄2

2Jg
I(I + 1) (113)

For the s-band (see Equation 96)

Es =
h̄2

2Js
(I − J)2 + EJ (114)

where J = j
1
+ j

2
and EJ is the energy required to

break a pair of nucleons,

EJ ≈ 2∆ ≈ 24 . A− 1
2 (MeV) (115)

The aligned angular momentum of the s-band
increases by approximately j1 + j2 − 1 (= 12h̄ for
158Er).
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Figure 43: Rotational alignment
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The two bands will cross when Eg ≈ Es, which
occurs when I ≈ 12h̄. Equation 110 is not valid in
the band crossing region but we can still use it to
define an effective moment of inertia:

Jeff/h̄
2 = (2I + 1)/∆E ≈ I/ω (116)

The sharpness of the backbend depends on how
strongly the bands ‘interact’ with each other, i.e.
how much the wavefunctions of the states below the
crossing in the ground state band overlap with the
wavefunctions of the states above the crossing in
the s-band. The bigger the overlap, the smoother
the band crossing and the weaker the effect.
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8: Nuclei at Extremes of Spin

As the nucleus is rotated to states of higher and
higher angular momentum or spin I it tries to
assume the configuration which has the lowest
rotational energy (see Equation 96):

ER =
h̄2

2J R2 (117)

where I = R+ J and J arises from the angular
momenta of individual nucleons (or, less important
in this context, from vibrations). This can be
achieved by either reducing R or by increasing the
moment of inertia J , and the configuration chosen
depends on the value of I and proton and neutron
number of the nucleus. In either case the nuclear
pairing is broken by the effect of rotations.
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8.1 Generation of Angular Momentum

The two basic modes of nuclear spin generation are
shown below.

Figure 44: Collective and noncollective spin
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8.2 High Ix bands

We have seen how in nuclear backbending the value
of R is reduced by breaking a single pair of nucleons
and aligning their individual angular momentum
with the x-axis, so that (see Figs. 42 and 43)

Ix =
∑

jx +R (118)

is approximately a good quantum number; a given
nuclear state is described by a single value of Ix.

The alignment of broken pairs with the rotation
axis becomes easier if

• The particle angular momentum j is large and
its projection on the z-axis (Ω) is small, e.g. the
i 13

2
neutron which has Ω = 1

2 or Ω = 3
2 .

• the rotational Coriolis force is large. Since the
energy associated with this is proportional to
h̄2

2J then this occurs when J is small, i.e. the
nuclear deformation is small.

We deduce that alignment effects should be
prominent for nuclei which have a few nucleons
outside the closed shell, such as 158Er, which has 8
neutrons outside the closed neutron shell (N = 82).
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Figure 45: Aligned particles: band termination
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If we continue rotating the system to higher and
higher values of ω then more and more pairs of
nucleons will break and align their angular
momenta with the rotation axis. Since the aligned
particles move in equatorial orbits, this will
eventually give rise to an oblate nucleus rotating
around its axis of symmetry which is now the
x-axis. The total angular momentum I would arise
not from collective rotation of a prolate deformed
core, but the sum of the individual j

i
, see Fig. 45.
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Eventually we align all the np protons and nn

neutrons outside the closed shell so that

I =
np∑
i=1

ji(p) +
nn∑
i=1

ji(n) (119)

and the rotational band is said to terminate, see
Fig. 46.

Figure 46: Band termination at 46+ in 158Er
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At termination, 158Er can be considered as a
spherical core (14664Gd82) plus twelve (4 protons and
8 neutrons) aligned valence particles which generate
a maximum spin of 46+ (see Table 3).
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Table 3: Configuration of the 46+ state in 158Er

Subshell ji
∑
ji

π(h11/2)4 11/2, 9/2, 7/2, 5/2 32/2+

ν(i13/2)2 13/2, 11/2 24/2+

ν(h9/2)3 9/2, 7/2, 5/2 21/2−

ν(f7/2)3 7/2, 5/2, 3/2 15/2−

Iπ = 46+

8.3 High K (Iz) bands

If we have many paired nucleons outside the closed
shell in the ground state, then alignment with the
x-axis as the nucleus rotates becomes difficult
because the nucleons near the Fermi level have their
spin vector lying closer to the direction of the z-axis
than to the x-axis, i.e. Ω is no longer small (see
Section 4.4).

E.S. Paul PHYS490: Advanced Nuclear Physics Slide 92



Instead the nucleon angular momentum j continues
to align with the symmetry (z-)axis so that:

K = Iz =
∑

jz =
∑

Ωi (120)

is a good quantum number, see Fig. 47.

Figure 47: The K quantum number
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Again J is increased by breaking nucleon pairs so
that R is reduced. Fig. 48 shows the case of 172

72Hf100
where several high K bandheads can be seen.
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Figure 48: High-K bands in 172Hf
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For example, the Kπ = 8− band head is formed by
the breaking of a pair of protons so that they
occupy the Nilsson ‘configurations’

Ω[Nn3Λ] =
7
2
[404] and

9
2
[514] (121)

In this case
K =

7
2

+
9
2

= 8 (122)

and

π = (−1)N(1).(−1)N(2) = (−1)4.(−1)5 = −1 (123)

It is difficult for these rotational bands with high K
values to decay to bands with smaller K since the
nucleus has to change its angular momentum
orientation. The bandhead can become isomeric.
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For example the Kπ = 8− bandhead is isomeric and
which tries to decay to the Kπ = 0+ ground state
band by γ-emission.

The decay to the Kπ = 6+ band requires the
emission of an improbable M2 transition). The
lifetime (τ = 163 ns) of the bandhead is much longer
than those of the rotational states built upon it.

8.4 Superdeformation

We have already seen in Section 4.5 that shell
effects can give large energy corrections for large
values of prolate deformation, e.g when the
major/minor axis ratio is 2:1. Since the smooth
liquid drop contribution to the total nuclear energy
now includes the rotational energy, this can be
substantially reduced at high spin by increasing the
value of the moment of inertia, J , see
Equation 101. At sufficiently high angular
momentum (I ≈ 60h̄ for mass 150 nuclei) the
superdeformed second minimum can become
energetically favourable, see Fig. 49
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Figure 49: Superdeformed second minimum
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For such nuclei the rotational forces play the same
role as the Coulomb forces for heavy nuclei in
lowering the energy of the second minimum relative
to the first minimum (see Section 5.3).

The experimental signature of these
superdeformed shapes is a very regular sequence
of γ-rays whose energies are given by Equation 110.
Fig. 50 shows such a γ-ray spectrum for 152

66Dy86.
The superdeformed band spans a spin range
26 − 60h̄.
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Figure 50: Superdeformed band in 152Dy
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8.5 Shape Coexistence

For any given nuclear system at a given value of
angular momentum, a number of configurations
may exist, but only one is energetically favourable.
We can regard the configurations as co-existing.
Instead of a smooth (classical) transition from one
shape to another we say that there are minima in
the total nuclear potential energy corresponding to
each shape.
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At some critical value of angular momentum, the
shape having the lowest energy changes.

A typical example is 152
66Dy86 which has the

following coexisting structures:

1. prolate normal deformed (collective)

2. prolate superdeformed (collective)

3. oblate aligned (non-collective)

The last one is energetically favourable at low spin
and represents the ground state of 152Dy (see
Fig. 51).

As we move to the middle of both proton and
neutron shells, the prolate normal deformed shape
eventually becomes lowest in energy for the ground
state, and the superdeformed shapes become less
and less favourable even at very high spin.
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Figure 51: Shape coexistence in 152Dy
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8.6 Extremely High Spin: Jacobi

Instabilities

Jacobi (1834) realised that at a certain critical
angular momentum, the stable equilibrium shape of
a gravitating mass rotating synchronously (i.e. with
all mass elements sharing a common angular
velocity) changes abruptly from a slightly oblate
spheroid to a triaxial ellipsoid rotating about its
shortest axis.

Beringer and Knox (1961) suggested that a similar
phenomenon might occur in the case of atomic
nuclei idealised as charged incompressible liquid
drops endowed with a surface tension.

The critical angular momentum at which the Jacobi
transition takes place is:

L1 = 0.06029A7/6
√

40.83 − ζ, (124)

where the fissility ζ is defined:

ζ =
Z2

A

[
1 − 1.7826

(
A−2Z

A

)2
] . (125)
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The angular momentum at which the fission barrier
vanishes is:

L2 = 0.09108A7/6
√

36.34 − ζ. (126)

The region between L1 and L2 in the following
figure is where the triaxial Jacobi configurations are
predicted to exist. Note that the heavier nuclei
fission before the Jacobi transition is reached.

Figure 52: Critical angular momenta
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This figure shows the predicted γ-ray energies in a
rotational band as a function of spin. A giant
backbend in the γ-ray energies occurs at the Jacobi
transition — the originally increasing γ-ray energies
suddenly begin to decrease. This is the regime of
Jacobi shapes, associated with rapidly increasing
moments of inertia.

Figure 53: Calculated signal of the Jacobi transition
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9: Nuclei at Extremes of Isospin

Figure 54: The chart of the nuclides

Distribution of stable nuclei:
A N Z No. stable

even even even 166

odd odd 8

odd even odd 57

odd even 53∑
= 284

But remaining ∼ 2300 nuclei exist – particle bound
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We have extensive knowledge, both theoretical and
experimental, about the behaviour of nuclei near
the line of stability. Fig. 55 shows

1. the shell closures at N or Z = 2, 8, 20, 28, 50,
82 and (for N) 126

2. the stable elements versus Z and N

3. values of Z, N for which the binding energy is
zero, called the proton or neutron drip line

Figure 55: Chart of the nuclides
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9.1 Nucleon Driplines

A semiclassical approach (Bethe-Weizsäcker) was to
try to fit the following expression for nuclear
binding energy to experimental data:

m(N,Z) = NMn + ZMH − 1
c2
B(N,Z), (127)

leading to the semi-empirical mass formula:

B = avA− asA
2/3 − ac

Z2

A1/3
− ai

(N − Z)2

2A
+ aδA

−3/4.

Typical values (MeV) of the parameters are:

Volume term av = 15.760,

Surface term as = 17.810,

Coulomb term ac = 0.711,

Isospin term ai = 23.703,

Pairing term aδ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

34 even-even nuclei,

0 odd-even, even-odd,

−34 odd-odd.
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The last two terms take into account quantal
effects. This formula accounts very well for the
general trend of observed nuclear masses.

Using the semi-empirical mass formula, the heaviest
neutron isotope of a given element occurs when:(

∂B

∂N

)
Z=const

= 0, (128)

which defines the neutron dripline. Similarly, the
proton dripline occurs when:(

∂B

∂Z

)
N=const

= 0. (129)

The beta-stability line can be estimated from:(
∂m(N,A)

∂N

)
A=const

= 0, (130)

where

m(N,A)c2 = N(Mn −MH)c2 +AMHc
2 − avA

+asA
2/3 + ac

(A−N)2

A1/3
+ ai

(2N −A)2

2A
.

The solution yields:

N − Z =
acA

2/3 − (Mn −MH)c2

(2ai/A) + ac/A1/3
. (131)
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Nuclei somewhat neutron deficient of those at
stability (e.g. 152Dy which is 4 neutrons lighter
than the nearest stable isotope, 156Dy) have also
been investigated at high angular momentum (high
‘spin’ as discussed in Sections 8.4, 8.5) since they
can be formed by compound nucleus reactions.
Current directions of research aim to measure
nuclear properties where the proton and neutron
number (nuclear isospin) are very different from
those for stable nuclei.

9.2 Heavy N = Z Nuclei

We have seen that calculations which allow shell
corrections to the deformed liquid drop energy
(Section 5.2) give minima in the nuclear energy at
non-zero deformation. Close inspection of Fig. 26
reveals a minimum at N = 42 for ε = 0.4. If both
protons and neutrons have this number then the
shell correction becomes large enough so that the
minimum in the potential energy at this
deformation corresponds to the ground state.
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Such nuclei are very unstable and therefore difficult
to produce in the laboratory. As the nucleus Z
increases, the nuclei have to gain an excess of
neutrons over protons to counteract the large
Coulomb repulsion energy, so that when Z = 40,
the lightest stable zirconium isotope has N = 50.

Fig. 56 shows the γ-ray spectrum corresponding to
emission from excited states in 80

40Zr40, which is
formed by 1 in 105 decays of the compound nucleus
of 58Ni + 24Mg.

Figure 56: Gamma-ray spectrum of 80Zr
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In this experiment the mass of the Zr isotope is
measured from the deflection of the Zr atom in a
magnetic field, using

qe
dz

dt
× B = m

d2x

dt2
(132)

Here q is the charge state of the recoiling ionised
atom, which loses some of its outer electrons as it
moves through the target material.

The energies of the 2+ → 0+ transition are plotted
in Fig. 57 for various Z = N nuclei in this mass
region, and show that the most deformed nuclei
indeed have Z ∼ N ∼ 40.

Figure 57: Energies of 2+ states for Z = N nuclei
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This follows from empirical evidence that the
excitation energy of the first 2+ state in even-even
nuclei can be directly related to their deformation:
the smaller the energy, the larger the deformation.

Equation 98 predicts that

Erot(I = 2) − Erot(I = 0) = 3
h̄2

2J (133)

for rotational nuclei. The value of the nuclear
quadrupole deformation (ε or β) can be estimated
from the moment of inertia J since the two are
related (see Equation 101 for a rigid body).

9.3 Proton-Rich Nuclei: Proton

Radioactivity

The proton dripline is defined by the most massive
bound nucleus of every isotonic (N constant) chain.
For nuclei that lie above this line, the last proton
has a positive energy and, hence, is unbound. The
proton does not however escape from the nucleus
instantaneously as it must overcome the Coulomb
barrier by quantum tunneling.
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Systematics of these proton-emitting nuclei are
shown in Fig. 58.

Figure 58: Ground-state proton emitters

The proton decay probability is sensitive to the
energy and angular momentum of the proton.
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The half-lives of such proton radioactivity gives
useful information on the specific proton orbitals
near the Fermi surface. The half-lives are also
sensitive to the nuclear deformation — measured
half-lives in 131Eu and 141Ho could only be
understood if the nucleus was deformed — later
confirmed by the observation of rotational bands in
141Ho.

Figure 59: Rotating (deformed) proton emitter:
141Ho
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Fine Structure in Proton Decay

In 131Eu, proton decay has been observed to both
the ground state of 130Sm and to the first excited
state. This establishes the first 2+ state in 130Sm at
an energy of only 121 keV — this implies a large
moment of inertia and hence a large prolate
ground-state deformation for 130Sm.

Figure 60: Fine structure in proton decay: 131Eu
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9.4 Direct Two-Proton Decay

A new mode of nuclear decay, direct two-proton
emission, has been shown to occur in 18Ne. This
mode was predicted decades ago, but until recently,
experimental efforts had found only sequential
emission through an intermediate state — a
mechanism energetically forbidden in 18Ne.

Figure 61: Two-proton decay: 18Ne

The characterisation of the proton spectra will
provide new insight into two-particle correlations
and superconductivity in nuclei.
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9.5 Neutron-Rich Nuclei: The Physics of

Weak Binding

At present, the question of which combination of
protons and neutrons form a bound nucleus has not
been answered experimentally for most of the
nuclear chart because of the lack of experimental
access to most neutron-rich nuclei. These nuclei are
increasingly the focus of present and future
experimental and theoretical investigation, as they
promise to shed new light on the nuclear many-
body problem. They offer a unique terrestrial
laboratory for studying neutron-rich matter and
their properties represent invaluable input into
astrophysical problems.

9.6 Nuclear Haloes

By measuring large interaction cross-sections in
scattering experiments, it has been deduced that
the root-mean-square ‘radius’ of 11Li is much larger
than expected — implying a diffuse neutron halo
about the 9Li core.
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In 1985 a series of experiments by Tanihata and
others using radioactive ion beams of 800 MeV/u
found surprising large values of the interaction cross
sections for 6,8

2He4,6 and 11
3Li8. These results were

interpreted in terms of a long tail in the matter
distribution. Subsequent measurements revealed
that the electric quadrupole moment (see
Section 5.3) Q0 of 11Li is similar to that of the
‘normal’ sized 9Li so that the proton distributions
of the two nuclei must be similar. Therefore the
increase in radius observed by Tanihata must come
from a neutron tail or halo. A halo nucleus is one
in which the size of the two (or more) body system
is much larger than the range of the nuclear force
(1.4 fm). The simplest example is the weakly bound
deuteron (see Section 1.7) where the p-n separation
is 4 fm.

These nuclei cannot be described by mean field
theories such as the shell model or the Hartree Fock
method but require descriptions in terms of two-
and three- body systems. Such analysis of 11Li
suggests that it has a size similar to that of 48

20Ca.
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The nucleus 6He is described as a α + 2n
configuration in a two-body system where the
di-neutron orbits the α core. More exact three-body
descriptions allow both n – α – n and α + 2n
configurations to co-exist although the latter is
more favourable (see Fig. 62).

Figure 62: 6He configurations
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Since both 5He and the di-neutron are unbound,
such a system as 6He (or 11Li) is described as a
Borromean system - if one ring (≡ neutron or α) is
removed then the other two rings will fall apart, see
Fig. 63.

Figure 63: Borromean systems
a b

�

n

n

The discovery of halo nuclei has lead to a new form
of nuclear matter which can be studied in the
laboratory.
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Figure 64: The size of 11Li

The spatial extent of 11Li with 3 protons is similar
to that of 208Pb with 82 protons!
11Li is modelled as a 9Li core plus two valence
neutrons that spend more than half their time
outside the range of the nuclear force.

Figure 65: The halo nucleus 11Li
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Figure 66: Halo nuclei systematics

Neutron haloes have now been seen in nuclei as
heavy as 19

6C13. Nuclei with two neutrons in their
haloes, such as 11

3Li8 and 14
4Be10, have provided

insight into a new topology with a “Borromean”
property — the two-body subsystems of the stable
three-body system are themselves unstable.
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Apart from their interest to nuclear physicists, the
study of halo nuclei will have applications in the
solving of outstanding questions in Big Bang and
Stellar Nucleosynthesis, e.g.

• The formation of 12C which arises from
α + α → 8Be
8Be + α → Borromean 12C

γ→ ‘normal’ 12C

• The reaction 4He(2n,γ)6He(2n,γ)8He can bridge
the gaps at A=5 and A=8, which has been a
long standing problem in modern astrophysics.

• The solar neutrino problem whereby theory
always overestimates the measured neutrino
flux from the sun. Most high energy neutrinos
are produced from the formation of the proton
halo nucleus 8

5B.
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9.7 Changing Magic Numbers

The weak binding inherent in nuclei at the driplines
is likely to have a profound influence on the nuclear
properties, including the underlying shell structure.
In additon to changes in the radial behaviour of the
potential binding the nucleons together, the
spin-orbit force, which is crucial for determining the
magic shell closures, is expected to decrease near
the neutron dripline.

Magic closed-shell numbers (2, 8, 20, 28, 50, 82,...)
are well established for nuclei near the region of
β-stability. They are predicted by the spherical
shell model that approximates the nuclear potential
by a harmonic oscillator to which a strong spin-orbit
term �.s and a centrifugal term �2 are added.

The ordering of the proton (neutron) energy levels
strongly depends on the filling of neutron (proton)
orbitals through a Hartree-Fock self-energy
correction. A typical example is the relative
ordering of the 1g7/2 and 2d5/2 proton orbitals in

51Sb nuclei as a function of neutron number.
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Figure 67: 1g7/2 and 2d5/2 relative energies in Sb
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By studying shifts in single-particle energies in light
nuclei, it has been shown that the neutron magic
numbers at N = 8, 20 can be changed into
N = 6, 16, respectively. This is in agreement with
the changes observed in the ordering of shells for
neutron-rich light nuclei and seems to originate
from a strong attractive proton-neutron interaction
between spin-orbit partners.
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9.8 Nuclei at the Extremes of Mass and

Charge: Superheavies

Investigations of the heaviest nuclei probe the role
of the Coulomb force and its interplay with quantal
shell effects in determining the boundaries of the
nuclei landscape.

If nuclei behaved like two-fluid proton-neutron
droplets, elements with proton numbers beyond
Z ≈ 100 would not exist — the strong Coulomb
force would result in instantaneous fission. But
“superheavy” elements with atomic numbers as high
as Z = 112 have already been synthesised, and their
relative stability is a striking example of nuclear
shell structure, which provides the additional
binding energy needed to overcome the disruptive
Coulomb force.

Modern nuclear structure calculations not only
predict which combinations of protons and neutrons
can be made into heavy nuclei, but also indicate
that stability arises in specific cases from the ability
of the nucleus to deform.
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The liquid drop model predicts that if Z2/A > 49
then the fission barrier vanishes. This implies that
we cannot form nuclei (e.g. using compound nuclear
reactions) with Z > 100. However, nuclear models
predict that there are substantial shell correction
energies for the ground states of very heavy
deformed nuclei and also nuclei near the next
spherical shell closure beyond Z = 82 and N = 126
(superheavies), possibly at Z = 114 and N = 184.

Figure 68: Calculated fission-barrier heights
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With the shell correction, the barrier heights are
calculated to be sufficient to make both
superheavies and nuclei with Z ∼ 100 − 110 and
N ∼ 150 − 170 stable against fission. Fig. 68 shows
these calculated values (in MeV).

In fact these nuclei are unstable against α-decay,
and the α-decay half life (in s) is given empirically
by the relation:

log10(t 1
2
) = 1.61ZE

− 1
2

α − 1.61Z
2
3 − 28.9 (134)

In this Equation 134, Eα (in MeV) is the α decay
energy which is directly related to the mass
difference of the parent (Z, A) and daughter
(Z − 2, A− 4) nuclei. The α decay provides the
experimental technique whereby the heavy elements
can be identified, by measuring the chain of
α-decays until a known nucleus is reached, see
Fig. 69

Notice that the α lifetimes are very long (> 10−3 s)
on the nuclear time scale.
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Figure 69: α decay chain
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The heaviest element identified so far using this
technique is 277112165 by the Armbruster -
Munzenberg group at Darmstadt, Germany.

9.9 Superheavies at high spin

Recently spectral information has been obtained for
elements with Z > 100.
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Nuclei around nobelium:

Figure 70: The superheavy elements
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The ground-state rotational band of 254
102No152 has

been identified and its behaviour (energy spacing) is
consistent with a sizeable prolate deformation for
this nucleus — an axis ratio of 4:3 or β2 ≈ 0.3. In
addition, the fact that states up to 20h̄ of angular
momentum were observed underscores the
remarkable resilience of the shell effects against
centrifugal force and fission.

Figure 71: Ground-state rotational band in 254No
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10: Mesoscopic Systems

Microscopic — Mesoscopic︸ ︷︷ ︸ — Macroscopic

Large yet finite number of constituents.

10.1 Femtostructures and

Nanostructures

There is intense research today on quantum
nanostructures — grains, droplets or surface
structures, which confine a number of electrons
within a nanometre-size scale. Nuclei are
femtostructures. All these small systems share
common phenomena which appear on very different
energy scales — nuclear: MeV, molecular: eV,
solid-state: meV.

A central question is how the structure of
mesoscopic systems develops as a function of the
number of constituents. In nuclei, this evolution is
strongly mediated by the concept of shell structure,
arising from the basic aspects of the mean field and
the effects of the Pauli Exclusion Principle.
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Figure 72: Shell structures in nuclei and metal
clusters

Shell structure has also now been found in metallic
clusters and quantum dots and is the key to
understanding the structure of these systems.

10.2 The Quantality Parameter

B.R. Mottelson, Nucl. Phys. A649 (1999) 45c

The quantality parameter Λ = h̄2/Ma2V0 measures
the strength of the two-body attraction V0 expressed
in units of the quantal kinetic energy associated
with a localisation of a constituent particle of mass
M withan a distance a corresponding to the radius
of the force at maximum attraction.
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Table 4: Values of the quantality parameter

Constituents M V0 (eV) a (cm) Λ T=0

matter

3He 3 9 × 10−4 2.9 × 10−8 0.21 liquid

4He 4 9 × 10−4 2.9 × 10−8 0.16 liquid

H2 2 3 × 10−3 3.3 × 10−8 0.07 solid

Ne 20 3 × 10−3 3.1 × 10−8 0.007 solid

nuclei 1 1 × 108 9 × 10−14 0.4 liquid

For small Λ the quantal effect is small and the
ground state of the many body system will be, as in
classical mechanics, a configuration in which each
particle finds a static optimal position with respect
to its nearest neighbours. If Λ is large enough the
ground state may be a quantum liquid in which the
individual particles are delocalised and the
low-energy excitations (quasiparticles) have infinite
mean free path.

The Pauli Exclusion Principle gives nucleons
essentially mean free path and hence the behaviour
of the nucleus as a quantum liquid. However, if the
strength of the nuclear force was just 2–3 times
larger, nuclei could have been crystalline!
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Figure 73: Three types of Fermi liquid droplets
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10.3 Atomic Clusters as a Branch of

Nuclear Physics

S.G. Frauendorf and C. Guet, Ann. Rev. Nucl.
Part. Sci. 51 (2001) 219

The conduction electrons in clusters of simple metal
atoms are approximately independent and free.
Nucleons in nuclei also behave as delocalised and
independent fermions. This behaviour generates
analogies between metal clusters and nuclei. such as
shell structure, shapes, and vibrational modes.

Clusters are aggregates of atoms or molecules with
a well-defined size varying from a few constituents
to several tens of thousands. Cluster physics lies
between atomic and molecular physics, on the one
hand, and condensed matter physics, on the other.

The finite number of the constituents leads to novel
structural and thermodynamic properties with no
equivalent in bulk matter. Clusters are
distinguished from bulk matter insofar as their
properties are strongly affected by the existence of a
surface involving a large fraction of the number of
constituents.
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For example, in a cluster of 55 atoms of argon, more
than 30 are on its surface!

Quantum dots are nanometre-scale crystals that
were developed in the mid-1980s for optoelectronic
applications. They are composed of hundreds to
thousands of atoms of an inorganic semiconductor
material in which electron-hole pairs can be created
and confined. The size of quantum dots can be
tuned with nanometre precision during chemical
synthesis.

Both clusters and nuclei are characterised by a
constant density in the interior and a relatively thin
surface layer — the binding energy can be expanded
in powers of N−1/3. This is the liquid drop model —
the first terms of this expansion can be interpreted
as the energies of a droplet of charged liquid.
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10.4 The Spherical Droplet

The first terms in the expansion are:

ELD(N,Z) = fN + 4πσR2 +WZ + C
Z2e2

R
, (135)

= fN + bsurfN
2/3 +WZ + bcoulZ

2N−1/3, (136)

where R = rWSN
1/3 is the radius of the droplet, N

the number of atoms, and Z the net charge. The
first term is the volume energy, which contains the
binding energy per particle f of the bulk metal.
The second term is the surface energy, where σ is
the coefficient of surface tension. The third term
contains the work function W , which is the energy
required to remove one electron from the bulk
metal. The fourth term is the Coulomb energy.

In the case of nuclei, the charge is evenly
distributed because the symmetry energy keeps the
ratio of the neutron and proton densities roughly
constant. Thus, the energy of a homogeneously
charged droplet, for which C = 3/5, is a good
approximation. The density of charge added to a
cluster tends to accumulate in the surface — so for
a very large cluster C → 1/2.
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10.5 Shell Structures

Shell structure is the bunching of energy levels of a
particle in a two- or three-dimensional potential. In
the figure, the mass spectrum of Na clusters (top)
exhibits a shell structure similar to an electron in a
Woods-Saxon potential (bottom):

Figure 74: Shell structure of Na clusters
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Predicted shell structures — magic numbers:

Figure 75: Predicted level sequences
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10.6 Supershell Structures

Figure 76: Predicted cluster supershell structure

Nuclear theorists Balian and Bloch (1972) studied
the density of states in a spherical cavity and noted
that its oscillations as a function of energy (shell
structure) are enveloped by a long-wavelength
oscillation (beat pattern). Their work did not receive
much attention from nuclear physicists because the
effect is not observable in nuclei.
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Nuclei become unstable long before the first half
period of the long-wavelength oscillation is
completed. Nishioka et al. (1990) realised that such
supershell structure could also occur in metallic
clusters. Soon afterwards Pedersen et al. (1991)
demonstrated experimentally the existence of
supershell structure for Na clusters. The beat
structure has its first minimum at N ≈ 1000.

Figure 77: Experimental supershell structure of Na
clusters

Supershell structure was also found in Li and Ga
clusters, where the second beat could be identified.
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10.7 Mesoscopic Quantal Effects

Nuclear structure studies resolve the quantal levels
of individual nuclei. The interpretation is often
based on a comparison between theory and
experiment on this microscopic level. In cluster
physics, the experimental resolution does not permit
such an approach. The measured quantities are
averaged over thermal fluctuations and for heavier
clusters also over a certain interval of particle
number — a simplified description is then possible.

10.8 Periodic Orbit Theory (POT)

This describes the shell structure in terms of
classical orbits. We consider an infinitely deep
spherical square-well potential — the electrons
occupy all states up to the Fermi energy
eF = p2

F /2M . Their level density is averaged over a
certain energy interval Γ. The shell energy is:

ESH = eFN
1/6

∑
β

Aβ sin
(
pFLβ

h̄
+ νβ

)
D

(
Γτβ
h̄

)
,(137)

where D is a suppression factor.
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The sum runs over all families of classical periodic
orbits, where Lβ is the length of the orbit and
τβ = Lβ/vF is the revolution time. For sufficiently
large Γ, only the shortest orbits contribute to ESH

(finite D). The amplitudes Aβ are of the order of
one for these orbits, while the phases νβ are given
by the number of reflections on the surface.

The classical system corresponds to a point mass
inside a hollow sphere, of radius R, bouncing
elastically from the walls. The periodic orbits are
polygons. The important orbits are the triangle �
and the square �. They are the shortest orbits with
lengths L� = 5.19R and L� = 5.66R, respectively.
Since L� ≈ L�, we can also use A� ≈ A� ≈ A and
D� ≈ D� ≈ D. Using the addition theorem for sine
functions yields:

ESH = 2eFN1/6A×

sin

(
pFL

h̄
+ ν

)
cos

(
pF ∆L
h̄

+ ∆ν
)
D

(
Γτ
h̄

)
, (138)

L = (L� + L�)/2 = 5.42R, (139)

∆L = (L� − L�)/2 = 0.24R. (140)

The phases ν and ∆ν are defined analogously.
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Figure 78: Supershell structure from interfering peri-
odic orbits

The above figure shows that the superposition of
two oscillations (periodic orbits) with similar
frequencies results in a beat pattern.

The fast oscillation represents the basic shell
structure. Its minima appear at pFL = 2πn+ c.

The slow oscillation is the supershell structure. It
has a half-period pF ∆L = π which corresponds to
L/2∆L ≈ 12 shells. Due to the spin-orbit potential,
POT’s application to nuclei remains on a more
qualitative level than for metallic clusters.
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10.9 Deformation: Loss of Spherical

Symmetry

Deformation is a common concept for subatomic
and mesoscopic systems with many degrees of
freedom — nuclei, molecules, clusters. It appears in
field theory (Higgs mechanism), in the physics of
superconductors, in condensed matter physics and
other fields of physics. The microscopic mechanism
leading to the existence of deformed configurations,
spontaneous symmetry breaking, was first proposed
by Jahn and Teller (1937) for molecules.

Nuclei with incompletely filled shells tend to deform
because the level density near the Fermi surface is
high for a spherical shape. When the shape of the
potential is changed, the nucleonic levels rearrange,
such that the level density is reduced which results
in an energy gain — nuclear Jahn-Teller effect.
Nuclei can easily respond because they consist of
delocalised nucleons (liquid). The presence of heavy
discrete ions leads to a more varied response of
clusters. Nevertheless, similar shapes are predicted
for nuclei and clusters despite the very different
nature of the interactions between the constituents.
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Figure 79: Predicted metal-cluster and nuclear
shapes
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10.10 Vibrational Modes

Unlike nuclei, there is only clear evidence for
collective dipole vibrations in clusters.

Figure 80: Giant dipole resonances in clusters and
nuclei
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10.11 Differences between Clusters and

Nuclei

There is only one kind of nuclear matter. It has a
single equation of state — however, all materials
have their own equation of state.

In a cluster, as in bulk matter, it is the constituents
that determine the density and binding energy.

10.12 Phase diagrams

Recent experiments have characterised the liquid-
to-vapour phase transition in nuclei. The phase
diagram for the nucleus of a Kr atom is shown
below compared to that for a macroscopic fluid of
Kr atoms. The similarity is a reflection of the fact
that the effective forces between nucleons (strong
force) are similar to those between molecules in
ordinary liquids (electromagnetic force). In both
cases the force is repulsive at short distances yet
attractive at long distances.
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Figure 81: Phase diagram of Kr nucleus and atomic
fluid

The critical temperatures and densities are however
vastly different:
Liquid: TC = 209 K; ρc ≈ 0.1 moles/cm3,
Nucleon: TC = 8×1010 K; ρc ≈ 8×1013 moles/cm3.
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10.13 Nuclear Molecules

Figure 82: The “Ikeda Diagram”

Speculations about the existence of clusters, such as
α particles, in nuclei have been around since the
earliest days of nuclear physics, stimulated initially
by the observation of α-particle decay. However, the
observation of a complex fragment emerging from a
nucleus does not necessarily imply that it existed as
a pre-formed entity in the nucleus.

E.S. Paul PHYS490: Advanced Nuclear Physics Slide 149

During the 1960’s a number of theoretical groups
began work on the problem of describing the
nucleus in terms of clusters of α particles. The
Ikeda Diagram illustrates possible cluster structure
in light nuclei. Ikeda believed that the cluster
structures would show up at energies just above the
relevant separation energies of the fragments.

At the same time Brink presented the light α
conjugate nuclei as almost crytalline structures with
specific arrangements of the α clusters.

Figure 83: Bloch-Brink cluster model
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Figure 84: 12C as a cluster of three α particles

At about the same time that Ikeda and Brink were
developing their early models of α clustering, the
first experiments which suggested that larger
clusters might also exist were just beginning. When
the yield of reaction products from the collision of
two 12C nuclei was measured, narrow resonances
appeared in the excitation function. This led to the
speculation that the two 12C nuclei were forming an
intermediate nuclear molecule in the reaction. This
is an even more extreme form of cluster structure in
the nucleus.

When the spins of the resonances were measured,
they appeared to increase with energy exactly as
expected for the rotation of two touching 12C nuclei!
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10.14 Nuclear Sausages

Cluster model calculations for 12C show evidence
for a chain state consisting of three α particles in a
row. This shape has an axis ratio of 3:1.

Similarly, calculations for 24Mg show evidence for a
chain state consisting of six α particles in a row.
This extreme shape has an axis ratio of 6:1!

Figure 85: Cluster configurations in 24Mg
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10.15 Binary Cluster Model

It has been observed that measured transition
quadrupole moments of many superdeformed bands
(axis ratio ≈ 2:1) are accurately described by:

Qt ≈ 2R2
0

[
ZTA

2/3
T − Z1A

2/3
1 − Z2A

2/3
2

]
, (141)

with R0 = 1.07fm. This expression results from
considering the states of the nucleus (ZT , AT ) to be
composed of two clusters (Zi, Ai) in relative motion.
To choose the binary fragmentation, differences
between a fragment’s actual binding energy and its
liquid-drop estimate are considered.

Recently, a strongly deformed band in 108Cd was
observed (Clark et al., 2001) with a measured
Qt ∼ 9.5 eb. The binary cluster model predicts the
split for 108Cd to be 58

26Fe32 + 50
22Ti28, which is

slightly asymmetric because of the influence of
closed shells at nucleon numbers 20 and 28. This
configuration has a predicted quadrupole moment of
Qt = 9.2 eb, which is close to experiment.

These very extended shapes are predicted to be
widespread in mass A ∼ 110 nuclei.
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11: Nuclear Reactions

There are various types of reaction depending on:
• Energy of the projectile,

• (Z,A) of the target and projectile,

• Proximity of the paths of the target and
projectile (impact parameter b)

Figure 86: Various types of reaction

Central Reactions: at small b

• Collision with fusion of target and projectile –
compound nucleus formation.
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Peripheral Reactions: at large b

• Scattering – incident projectile is present
afterwards.
– Elastic scattering – projectile deflected

unscathed from unchanged target.
– Inelastic scattering – target or projectile

becomes excited or breaks up.

∗ inelastic nuclear excitation,
∗ direct break up,
∗ Coulomb excitation,
∗ transfer reaction.

Deep Inelastic Collisions (DIC): at intermediate b

• No fusion, but some (massive) transfer of
particles between projectile and target.

11.1 Collision Kinematics

Many quantities must be conserved in nuclear
reactions – energy (mass), momentum, angular
momentum, parity, charge and at low energies the
number of protons and neutrons.
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Consider the reaction:

a+A→ b+B, usually written : A(a, b)B

where a is a light projectile bombarding a massive
target A (at rest). B is the “target-like” product
and b is the “projectile-like” product. The Q-value
for the reaction is:

Q = [(MA +Ma) − (MB +Mb)] c2. (142)

Energy
�

a+A �

�
Q

b+B

As in chemistry, an exothermic reaction (Q > 0)
gives off energy (kinetic energy of reaction
products); an endothermic reaction (Q < 0) requires
an input of energy to occur.

Reactions with Q > 0 can, in principle, proceed if
the collision occurs at zero incident kinetic energy.
For Q < 0, we need to input energy – kinetic energy
of incident particle.
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To take into account the recoil of the products, we
consider the kinetic energy available in the
centre of mass frame Tc:

� �
a �Pa

�

A �PA = �0

Momentum : Pa = MaVa,

Kinetic Energy : Ta = 1
2MaV

2
a = P 2

a
2Ma

.

� �
a �Pc

��
A − �Pc

Momentum : Pc = Pa
MA

Ma+MA
,

Kinetic Energy : Ta,c + TA,c = P 2
c

2Ma
+ P 2

c
2MA

.

From which it follows:

Tc = Ta
MA

Ma +MA
. (143)

For a negative-Q reaction to occur:

Tc +Q > 0; Tc > |Q|; Ta >
Ma +MA

MA
|Q|, (144)

and this defines a threshold energy Ta for the
reaction to proceed.
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11.2 Compound Nucleus Model

Introduced by Niels Bohr in 1936:

Formation phase Decay phase

a+A→ C∗ → a+A∗

→ b+B∗

→ γ + C∗

The model assumes that the incident particle a
enters the nucleus A, suffers collisions with the
constituent nucleons of A until it has lost its
incident energy, and becomes an indistinguishable
part of the nuclear constituents C∗.

Consider a beam of alpha particles (E = 5 MeV/A)
on 60Ni:

α + 60Ni → 64Zn∗.

The energy of the incident particle is:

1
2
Mαv

2 = 5 (MeV/A) ×A,

1
2
AmN c

2
(
v

c

)2

= 5A.
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Using relativistic formulae,

E = mc2 = γm0c
2 = γM0, (145)

with M0 is the rest-mass energy, the total energy is
given by:

E = M0 + T , (146)

and hence:

T = (γ − 1)M0, (147)

where:

γ =
1√

1 − β2
, β =

v

c
. (148)

So by comparing the kinetic energy T to the
rest-mass energy M0, we can estimate γ, and hence
β for this reaction. We find that β ∼ 0.1 – i.e.
nonrelativistic.

It then follows that it takes ∼ 10−22 s for the
incident α particle to travel across the target
nucleus.

E.S. Paul PHYS490: Advanced Nuclear Physics Slide 159

In a compound nucleus, the first emission of a
nucleon or a γ-ray takes > 10−20 s, and often
� 10−20 s – the α particle could traverse the
nucleus more than a hundred times! Hence, within
this timescale, the compound nucleus equilibrates
all its degrees of freedom – it shares out energy
between all the nucleons. The projectile is absorbed
and the system loses its memory of how it was
formed.

Bohr’s hypothesis of independence states that the
formation and decay of a compound nucleus are
independent. It does not matter how we form the
compound nucleus – the decay modes will be the
same. Note, however, that the excitation energy
and angular momentum are remembered!

We could make 64Zn by α + 60Ni or p + 63Cu
reactions. If the excitation energy (and spin)
brought into the compound system were the same
for each reaction, then the probability of each decay
channel would be the same.
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11.3 Geometric Cross-Section

The concept of a cross-section is statistical.
• Definition: The cross-section is the number of
processes per second when one scattering centre is
exposed to unit flux of incident particles.

In the classical picture shown below, the projectile
and target nuclei will interact (fuse) if the impact
parameter b is less than the sum of their radii. A
disk of area π(R1 +R2)2 is swept out which defines
a geometric cross-section. Remember – the units of
cross-section are area (1 b = 100 fm2)!

Figure 87: Geometric cross-section

R1 b
2R
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11.4 Coulomb Excitation

In Coulomb excitation or Coulex reactions, the
kinetic energy of the projectile is transferred into
nuclear excitation energy by the long-range
Coulomb interaction. The biggest effect is for
deformed nuclei with high Z. These deformed
nuclei show rotational band structures up to spins
in excess of 20h̄ in Coulex reactions.

In pure Coulex the charge distributions of the two
nuclei do not overlap at any point in the collision.

• Example:
234U bombarded by 5.3 MeV/A 208Pb. Note the
beam energy is kept low (less than the Coulomb
barrier) so that other reactions (e.g. fusion) do not
compete, i.e.

Beam energy = 5.3 × 208 MeV ,

= 1100 MeV = 1.1 GeV .

The Coulomb barrier (converting to the lab frame)
for this reaction is:

Z1Z2e
2

4πε0(R1 +R2)
×

(
A1 +A2

A2

)
≈ 1300 MeV .
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11.5 Intermediate Energy Coulex

At higher beam energies (> 30 MeV/A), well above
the Coulomb barrier, Coulex can still take place but
in competition with other violent reactions.
Intermediate energy Coulex is characterised by
straight line trajectories with impact parameters
larger than the sum of the radii of the two colliding
nuclei. The process is now so fast that only the first
excited states (2+ for even-even nuclei) are
populated — in both beam and target nuclei.

• Example:
A gold target bombarded by 140 MeV/A 108Sn.

Beam energy = 140 × 108 MeV ,

= 15120 MeV = 15.1 GeV .

At this energy β = 0.48 — i.e. the projectile is
travelling at half the speed of light!
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11.6 Neutron Capture

Low energy neutron-capture cross-sections exhibit
peaks manifesting a compound system and these
peaks are often called resonances. An example is
the neutron capture of 115In to form 116In.

Figure 88: Neutron capture resonance
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In neutron capture115

log Tn

The neutron needs only 1.46 eV to form an excited
compound state in 116In∗. But note that the
excitation energy in 116In is much greater than 1.46
eV – it is in fact 6.8 MeV ! So even though we only
put in 1.46 eV , the compound system is highly
excited due to the binding energy of the neutron.
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Figure 89: Neutron capture and decay
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• Cross-section:
At 1.46 eV , the total cross-section for neutron
capture is σ ∼ 2.8 × 104 barns. This is much larger
than the geometric cross-section (πR2 ∼ 1.1 b, with
R ∼ 6 fm). This is a quantum effect and we need to
consider the de Broglie wavelength (λ/2π) instead of
the nuclear radius – slow neutrons have a large
wavelength and hence a long range influence. The
cross-section becomes:

πR2 ⇒ π

(
λ

2π

)2

.

The momentum of the neutron is:

pn =
√

2mnE =
√

2 × 939 × 1.46 × 10−6,

= 0.052 MeV/c.
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The de Broglie wavelength is then:(
λ

2π

)
=

h̄c

pnc
=

197
0.052

,

= 3.7 × 103 fm,

and hence the cross-section becomes 4.3 × 105 b.
The measured value is only 6% of this latter
estimate – we must also consider other effects such
as the spins of the neutron, target and compound
nucleus.

• Decay of the compound state:

116In∗ → n+115 In

→ γ +116 In∗

For compound nucleus decay, neutron decay with
energies > 1 MeV are more likely than γ-decay.
However, for the example of 116In∗ the neutron
could only be emitted with the same low 1.46 eV .
Consequently, γ-decay (e.g. the 5.89 MeV (E1)
5+ → 4− transition) dominates, and we find that:

Γn

Γγ
= 0.04,

i.e. there is a 96% probability for γ-decay and only
a 4% probability for neutron emission.
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At this energy, there are no other decay modes open
and so

Γn

Γ
≈ 0.04,

where Γ is the total decay width or decay
probability (Γ = Γn + Γγ).

We can also link this decay fraction to the
formation cross-section:

π

(
λ

2π

)2

× Γn

Γ
.

Recall that the measured formation cross-section
was only 6% of the estimate using the de Broglie
wavelength – this factor is similar to the partial
neutron decay width!

• Wavefunction picture of a resonance:
There is a matching of the phase of the
wavefunctions of the target and projectile at the
surface of the target if the derivative at the surface
is zero. Once there is a match to penetrate the
target, it does not match to get out. There are
many reflections and equilibration of the energy.
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11.7 Proton Capture

In the case of charged-particle capture (and decay),
we have to consider the Coulomb barrier which
inhibits the formation (or decay). We need
sufficient energy to overcome this barrier (several
MeV ) and so the wavelengths are much smaller
than for neutrons. Consequently, the cross-sections
for proton capture are ∼ 1 b at maximum.

For heavier ions (e.g. α, 12C, 32S), the Coulomb
barrier is larger still and the particle enters a
continuum of very high level densities and
overlapping resonances. The excitation energy of
the compound nucleus is much higher (10–80 MeV )
and since the neutron binding energy is only
∼ 8 MeV , several neutrons are emitted before γ-ray
emission becomes dominant. These fusion
evaporation reactions also bring large amounts of
angular momentum into the compound system.
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11.8 Charged Particle Decay

Figure 90: Neutron capture, proton decay
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Consider the 23
11Na(n,p)2310Ne reaction – a neutron is

captured by 23Na to form a 24Na∗ compound
system which then decays by emitting a proton.
The Q-value for this reaction is -3.59 MeV (i.e.
energy to change n into p) and the threshold
(neutron) energy is 3.75 MeV (taking into account
the recoil energy of the 23Ne nucleus). The
Coulomb barrier for the outgoing proton has a
height of ∼ 4 MeV . Just above threshold, the
proton channel is not present as the Coulomb
barrier must be overcome. Above 5 MeV , the
barrier becomes increasingly “transparent” to the
outgoing proton and resonances occur – although
the cross-sections are only mb!
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11.9 Fusion-Evaporation Reactions

Heavy Ion (HI,xn) fusion-evaporation reactions are
useful in nuclear structure studies. These reactions
can bring in large amounts of angular momentum
and excitation energy.

Figure 91: Fusion-evaporation reaction
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The angular momentum brought into the compound
system is dependent on the impact position of the
projectile on the target:

Figure 92: Induced angular momentum
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The angular momentum is: �l = �b ∧ �p,
where b is the impact parameter and p the
momentum of the projectile. The partial fusion
cross-section is proportional to the angular
momentum: dσfus(l) ∝ l.

Figure 93: Fusion cross-section
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The nucleus 132Ce can be formed by bombarding a
stationary 100Mo target with a beam of 36S at an
energy of 155 MeV (4.31 MeV/nucleon). At this
chosen energy, the residual nucleus with the largest
cross-section is 132Ce which is produced by boiling
off four neutrons.

• Compound nucleus formation:
10−20 s after impact, the target has thoroughly
absorbed the projectile to produce the excited
compound nucleus 136Ce∗.

• Neutron emission:
After 10−19 s, four neutrons are boiled off which
each carry away large amounts of energy (at least
equal to the binding energy of ∼ 8 MeV ), but little
angular momentum.

• Statistical (cooling) γ-ray emission:
After 10−15 s, high energy (E1) γ-ray transitions
remove excitation energy but little angular
momentum. The nucleus “cools” towards the yrast
line where all the excitation energy is involved in
the rotation – E ∝ I(I + 1).
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• Quadrupole (slowing down) γ-ray emission:
After 10−12 s, quadrupole (E2) γ-ray emission takes
over, dissipating the angular momentum – slowing
down the nuclear rotation.

After about 10−9 s, the nucleus reaches its ground
state after about 1011 rotations. This is similar to
the number of revolutions of the earth since its
creation!

Figure 94: Energy-spin plane
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11.10 Transfer Reactions

Transfer reactions occur within a timescale
comparable with the transit time of the projectile
across the nucleus. The cross-sections are
comparable to a fraction of the nuclear area and
they vary smoothly and slowly with the projectile
energy. The de Broglie wavelength of a 20 MeV

incident nucleon is 1 fm and therefore it “sees” or
interacts with individual nucleons. These will be
the valence nucleons at the nuclear surface and they
are transferred to/from the target nucleus.

For example, a (d,p) reaction strips a neutron off
the projectile (deuteron) leaving a proton, and adds
it to the target. Conversely, in a (p,d) reaction, the
projectile (proton) picks up a neutron from the
target to form a deuteron.

The angular distribution (variation of intensity with
angle) of the outgoing modified particle (p or d)
contains information on the orbit (state) of the
captured (lost) neutron. For instance, it contains
data on l the transferred angular momentum.
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12: Nuclear Astrophysics

“Linking Femtophysics with the Cosmos”

12.1 Origin of the Elements

Big Bang: 1H, 2H, 3He, 4He, 7Li

• Thermonuclear fusion in a rapidly cooling,
expanding mixture of protons and neutrons
⇒ 4He/1H≈10% with very small traces of 2H,
3He, and 7Li.

• Low binding energy of 2H

• Stability of 4He

• Lack of stable A=5 and 8 nuclei

Interstellar gas: Li, Be, B

• Spallation and fusion reactions between cosmic
rays and ambient nuclei e.g.
p + O → Li, Be, B
α+ α→ 6Li, 7Li
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Stars

• Massive (> 8M�) stars, type II supernovae
Li, B, C to Fe, heavy (r: rapid)

• Low to intermediate (< 8M�) mass stars
Li, C, N, F heavy (s: slow)

• Type Ia supernovae (thermonuclear explosion of
a white dwarf) Si to Fe

• Others (novae, black holes,...)

12.2 Turning Hydrogen into Helium

The fusion of four protons into helium is the only
way to produce enough energy over the timescale of
the Solar System, such that the Sun is still shining
brightly today. The main reaction is:

4 1H → 4He + 2 e+ + 2 ν,

which gives off energy. It is unlikely that four
protons just happen to coalesce into helium; instead
the four protons are processed into helium via a
series of simple reactions: the pp chain or the CNO
cycle.
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12.3 The Proton-Proton (pp) Chain

This occurs in stars with masses ≤ 1.5M�. The
reactions are:

• 1H + 1H → 2H + e+ + ν

• 2H + 1H → 3He + γ

• 3He + 3He → 4He + 2 1H, pp1, Q = 26.20 MeV

• 3He + 4He → 7Be + γ

• 7Be + e− → 7Li + ν

• 7Li + 1H → 2 4He, pp2, Q = 25.66 MeV

• 7Be + 1H → 8B + γ

• 8B → 8Be + e+ + ν

• 8Be → 2 4He, pp3, Q = 19.17 MeV

There are three end points when He is formed, each
with an effective Q value (positive means energy
released).
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12.4 The CNO Cycle

The CNO cycle converts hydrogen into helium by a
sequence of reactions involving carbon, nitrogen and
oxygen isotopes, releasing energy in the process. It
occurs in stars with mass > 1.5M�. The main
reaction sequence is:

1. 12C(p,γ)13N, proton capture

2. 13N(e+,ν)13C, β deacy

3. 13C(p,γ)14N, proton capture

4. 14N(p,γ)15O, proton capture

5. 15O(e+,ν)15N, β decay

6. 15N(p,α)12C, proton capture, α loss

The net result is:

4 1H → 4He + 2 e+ + 2 ν,Q = 26.73MeV.

The cycle is limited by the β decay rates of 13N
(τ ∼ 10 min) and 15O (τ ∼ 2 min). At higher
temperatures, proton capture on 13N can begin to
compete with the β-decay and the cycle can break
out into the hot CNO cycle.
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Figure 95: CNO and Hot CNO cycles

At still higher temperatures, reactions begin to
compete that can break out of the hot CNO cycle
and ignite a runaway sequence of nuclear burning.

Figure 96: Breakout of Hot CNO cycle
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12.5 Explosive Nucleosynthesis

Evidence

• Technetium — no stable isotopes — in S stars
Tc II lines identified in red giants with strong
lines of Y, Zr, Ba, La, etc.

• Cameron (1955) proposed synthesis of these
elements by neutron capture:
neutrons from e.g. 13C(α,n)16O

Elements beyond Fe

• Nuclear fusion?
Ruled out by B/A maximal at iron

• Neutron capture?
Can occur at low T but needs high T to
activate neutron sources

Stellar abundances imply two different processes

s-process s ≡ slow N(n) → 0

r-process r ≡ rapid N(n) → ∞
‘Low’ neutron flux is typically 108 neutrons/cm3,
‘High’ neutron flux is typically 1020 neutrons/cm3.
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Rapid proton capture — rp-process and rapid
neutron capture — r-process produce exotic nuclei
far away from the line of β stability.

Figure 97: The rp- and r-processes

c©M. Aliotta, Edinburgh Nuclear Physics Group
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Figure 98: The creation of the heavier elements

The production of elements in these sequences is
described by a coupled set of network equations that
give the nuclear abundances as a function of time.

12.6 The rp-process

This sequence of reactions typically lasts 10–1000
seconds, and is called the rapid proton capture
process (rp-process). This is a series of radiative
proton capture reactions and nuclear β+ decays
that process the lower mass nuclei into higher mass,
radioactive nuclei.
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Figure 99: Creation of proton-rich nuclei by the rp-
process

The end point of thr rp-process in thought to be
light Te nuclei (Z = 52, A∼ 106).
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Once the thermonuclear flash has ended, the
remaining nuclei decay to stable mass nuclei up
through the krypton isotopes.

The elemental abundances depend crucially on the
reaction rates (cross-sections) — i.e. proton
(neutron) capture vs. β-decay. These can now be
studied using accelerated beams of radioactive
beams. Several worldwide laboratories are being
developed for such beams. An example is the
measurement of the reaction 21Na(p,γ)22Mg
recently carried out at TRIUMF Canada, using a
radioactive 21Na beam.

Figure 100: 21Na beam and 22Mg recoils
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12.7 Astrophysical sites of the rp-process

Figure 101: Binary system accretion disk

Four astrophysical sites have been proposed for the
rp-process:

• novae

• X-ray bursters

• shock waves pasing through the envelope of
supernova progenitors

• Thorne-Zytkow objects — a neutron star
merges with a supergiant and sinks to its centre
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12.8 Neutron-rich nuclei

Adding more and more neutrons to a nucleus may
change the shell structure. It has been predicted
that the shell gaps (magic numbers) are washed out
far from the line of stability. Some evidence comes
from the measured abundances of r-process nuclei.
Theoretical calculations including quenched shell
structure appear to describe the data better.

Figure 102: Abundances of r-process elements
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Figure 103: Quenching of shell structure in neutron-
rich nuclei

c©Witek Nazarewicz, ORNL
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13.1 Radioactive Ion-Beam Physics

From GANIL (EXOGAM) website:

Figure 104: Physics with radioactive beams

• Proton-rich systems:

The addition of protons to a nucleus rapidly
decreases the binding energy of the system through
the increase in the repulsive electrostatic interaction
between protons; as a consequence nuclei are
rapidly reached which are unstable towards the
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emission of protons. The majority of our current
understanding of nuclei and their structure comes
from studies of moderately proton-rich species. The
production of very proton-rich nuclides, near to the
proton dripline, is limited by the use of stable
beams because of the extremely small production
cross-sections for pure neutron emission. These
restrictions will be lifted by the use of radioactive
beams since it will become feasible to populate such
nuclei via the much more prolific charged particle
evaporation channels. Not only do such channels
correspond to higher cross-sections, but
charged-particle emission facilitates rather easy high
efficiency selection of the nuclei of interest if
appropriate ancillary detectors are used in
conjunction with a γ-ray spectrometer.

• Self-conjugate nuclei:

Of the proton-rich species, systems with N = Z are
of particular interest. For masses less than 40, N =
Z self-conjugate nuclei are strongly bound and β
stable, whereas for A > 56, the line of β stability
moves away towards more neutron-rich systems and
N = Z nuclei become progressively less bound as
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the mass increases. With increasing mass, such
systems become more and more difficult to access
experimentally. Structurally, self-conjugate nuclei
are important for the high degree of symmetry they
display between the proton and neutron degrees of
freedom. Protons and neutrons simultaneously fill
identical single-particle orbitals, leading to a large
overlap between nucleon wavefunctions. Such
systems are therefore subject to very strong
correlations in their motion which can amplify many
structural phenomena. A rich variety of different
types of structure are exhibited; oblate and prolate
deformed systems, spherical and superelongated
systems occur and the changes in structure from
one nuclide to another, and also structural evolution
with angular momentum and excitation within a
single species, are sudden and dramatic. Such
nuclear landscapes provide stringent tests of our
nuclear models. Furthermore, the rp-process passes
through these isotopes and structural properties can
influence these reactions chains. There is no definite
astrophysical site in which the rp-process is known
to occur and so such information is important in
order to locate and understand possible explosive
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nuclear synthesis sites.

• Nuclear structure around 100Sn:

The self-conjugate nucleus, 100Sn (N = Z = 50) has
recently been shown to be bound in its ground state
by experiments carried out at GSI and GANIL. Its
excited states are expected to be bound up to ∼ 4
MeV and higher states might be quasi-bound by
centrifugal and Coulomb barriers, which can confine
nucleon wavefunctions, even when the proton
separation energies are small. It is expected that
this nucleus has a rather simple structure associated
with a doubly magic system. However, the actual
binding energies are very sensitive in such a weakly
bound system to residual interactions and
correlations. The regions around doubly magic
nuclei have traditionally been the source of
experimental matrix elements used as input for
shell-model descriptions of large regions of nuclei.
The study of excited states in 100Sn and
neighbouring nuclei, via observation of their
electromagnetic decay, will provide important
information about the nuclear mean field, spin-orbit
and residual interactions and nucleon correlations
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which would be of relevance to the structure of all
medium-mass nuclei. Furthermore, the study of the
polarising effects of excited valence nucleons, such
as those seen in particle-hole states in 16O and 40Ca
doubly magic systems, could be extended with the
application of radioactive beams to γ-ray
spectroscopic measurements in 56Ni and 100Sn.
Studies of these polarising effects can then be
related back to the issue of the onset of stable
ground-state deformation.

• Valence nucleon interactions: T=0 pairing:

The N = Z nuclides also provide a unique system
for the study of certain valence nucleon interactions
which affect nuclear structure in various ways. The
valence nucleon interaction can be split up into two
forms: a T = 1 force giving rise to the well known
p-p and n-n pairing correlations and a T = 0 force
which gives rise to collectivity and deformation via
configuration mixing. The T = 0 force appears
predominately in monopole and quadrupole forms;
the latter playing a key role in the development of
quadrupole collective effects in deformed regions
and quadrupole vibrational degrees of freedom. The
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T = 0 monopole component is less well known but
has been encountered in light N = Z nuclides. It is
of great interest to study such effects in
medium-mass systems, where level densities are
high enough for the monopole T = 0 force to give
rise to a potentially well-developed pair field. It
might be possible for such neutron-proton pairing
interactions to lead to the development of a pairing
gap in odd-odd systems or effects in the alignments
of nucleon pairs at moderate spins and other
phenomena. These would be apparent in
measurements of the γ-decay of energy levels in such
nuclei. It is known that the T = 0 effects in N = Z
nuclei are large, and the magnitude drops rapidly
when moving away from nuclei in the vicinity of N
= Z. Self-conjugate nuclei are thus unique
candidates for investigating such phenomena.

• Isospin symmetry:

More subtle aspects of self-conjugate nuclei concern
various aspects of isospin. The demise of isospin
symmetry has not been properly addressed since it
remains a fairly good symmetry throughout the
known periodic table. Coulomb effects are small in
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light nuclei and washed out by a neutron excess in
heavier systems, leading to a persistence of isospin
symmetry. Along the N = Z line however, a large
Coulomb energy can be built up, without the relief
of a neutron excess, thus breaking the symmetry in
the behaviour of charged protons and chargeless
neutrons. Recent estimates of isospin mixing
indicate that it has a roughly Z8/3 dependence for
self-conjugate nuclei. This would correspond to
admixtures of T = 0 components of around 5% in
the ground-state wavefunction of 100Sn, hence
suggesting that the structure of this nucleus may
not be as simple as first imagined. No other region
allows access to nuclei exhibiting such extreme
breakdown in this symmetry. Measurements of the
electromagnetic transitions between low-lying states
in the heavier N = Z systems could elucidate these
expectations with the observation of E1 transitions
which are forbidden for self-conjugate nuclei in the
case of perfect symmetry.

• Mirror nuclei:

The spectroscopy of mirror nuclei (N = Z + 1 or Z
– 1) provides information on the difference between
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the proton and neutron nuclear potentials.
Spectroscopic studies in mirror nuclei allow a
systematic study of the changes between the
positions of proton and neutron Fermi surfaces. The
interplay between Coulomb and nuclear forces can
also be studied via Coulomb energy differences in
mirror nuclei. With radioactive beams, it will be
possible to study far heavier pairs of mirror nuclei
than is currently feasible, and moreover, to study
them to high spin. Results of an experiment to
investigate the mirror pair 49Mn/49Cr have shown
that there is a clear correlation between the
behaviour of the Coulomb energy differences and
the rotational alignment of nucleons.

• Spectroscopy of nuclei beyond the proton
dripline:

Nuclear species beyond the proton dripline are
unbound towards proton emission. With radioactive
ion beams it becomes possible to populate some
unbound systems. In principle, electromagnetic
decays can compete with particle emission, but only
realistically in cases where the latter is hindered in
some way. For low-lying states with high angular

E.S. Paul PHYS490: Advanced Nuclear Physics Slide 195

momentum, particle emission probabilities can be
reduced by the effects of Coulomb and centripetal
barriers and such states might well decay by
emitting γ-rays as in a normal bound system. The
subsequent proton decay of lower-lying states can
then be used to identify the γ-emitting nuclide.
Such techniques, combining an array of γ-ray
detectors with measurements of proton radioactivity
using a radioactive beam, will open up previously
unstudied regions of the Segre chart, for example,
the predicted deformed region centred on very
neutron-deficient gadolinium isotopes. In addition,
it will allow studies to be made of the relative
particle- and γ-decay probabilities and the rather
sensitive role that structure is expected to play in
that competition.

• Neutron-rich systems:

The structure of neutron-rich nuclei presents a
major challenge to our understanding of nuclei as a
whole. The development of a large excess of one
type of particle in nuclei leads to the expectation
that the physics of such systems is liable to be
fundamentally different from that which we are
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used to in neutron-deficient and near-stable nuclei.
Changes are expected in nucleon-density
distributions and effective interactions, which lead
to alterations of nuclear structure as discussed
below. The nucleus can bind a much greater excess
of neutrons than protons, hence the neutron
dripline is very far from stability. As a consequence
it has only been reached for the very lightest
systems. The position of the neutron dripline in
heavy systems is an open and hotly debated
question. Recent calculations have indicated that a
substantial difference between proton and neutron
rms radii develops with increasing neutron excess.
These effects are established in light systems where
neutron haloes have been experimentally observed.
The presence and extent of neutron skins in heavier
systems are not fully established and the effects of
the development of such a neutron skin in medium-
and heavy-mass systems are an open question. If
such a change in the density distributions of the two
nucleon systems arises, this will be reflected in a
concomitant alteration in the geometries of the
associated nucleon potentials. The resulting change
in the mean fields would influence the single-particle
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structure near the Fermi surface and therefore have
a dramatic effect on the structure of neutron-rich
nuclides. Studies of such systems therefore hold the
key to addressing the issue of whether a measurable
difference does develop between the charge and
mass distributions with increasing neutron excess.
This would yield information on the relative
strengths of the isoscalar and isovector components
of the nucleon interaction; e.g., are protons pulled
out by the neutron excess thereby reducing charge
densities and altering binding energy and stability,
or does a neutron skin develop? If so what are its
structural consequences?

The spin-orbit interaction was introduced in the
early years of nuclear structure to account for the
observed sequence of magic numbers in the nuclear
system. Its strength obviously has a direct effect on
nuclear structure by shifting the ordering and
energetic locations of single-particle orbitals. There
are predictions that the strength of this interaction
is modified by an increasing neutron excess,
although a theoretical consensus has not yet
emerged. Observation of modifications of structure
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by changes in the spin-orbit interaction would give
insight into the origins of the interaction itself; for
example, is it generated by a purely two-body force,
or as some theorists suspect from studies of light
nuclei, does it have many-body components?

The nuclear pairing interaction has had a profound
effect in our appreciation of nuclear structure. In
weakly bound systems the nucleon pairing
interaction may scatter pairs of particles from
bound to continuum states, drastically increasing
the pair correlations to the extent that the
behaviour of nucleons is altered and structure
modified. Such phenomena might be observable in
the most neutron-rich species near the drip line,
manifest by a possible increase in pair gaps or delay
in band-crossing frequencies.

• Coulomb excitation:

At the simplest level, Coulomb excitation to the
low-lying states would be able to quickly map out
the basic structural features of whole regions of
nuclides. A simple measurement of the positions of
the first two or three excited states will enable the
development of vibrational collectivity and
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deformation to be observed. Such effects are
influenced to a large degree by the valence
single-particle structure, orderings of levels, pairing
and major shell gaps. Modifications to fundamental
nuclear properties (potential, effective interactions
and pairing) would influence the single-particle
structure near the Fermi surface, and therefore the
basic features exhibited by the structure of
low-lying states. A recent example of the use of
such methods has employed intermediate-energy
Coulomb excitation of a 32Mg beam from
fragmentation reactions. Measurements made on
just the first excited state have produced evidence
that the well-known N = 20 spherical shell gap is
broken down by the onset of strong deformation in
heavy neutron-rich isotopes.

• High-spin spectroscopy of neutron-rich isotopes:

The measurement of medium- to high-spin states
has been a fruitful area of research in testing the
validity of our understanding of nuclear structure.
Such states are populated in heavy-ion
fusion-evaporation reactions, which, with stable
beams, imposes the restriction of studying only
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moderately proton-rich systems, due to the
curvature of the line of stability. The study of
nuclear properties at high angular momentum sheds
light on the various modes of excitation that nuclei
can accommodate and the evolution of such modes
as a function of spin and excitation. The study of
exotic metastable shapes (for example, octupole,
super- and hyper-deformation) in nuclei provides
severe tests for nuclear theories; many of the
predictions of such states occur at moderate spins
in stable and neutron-rich nuclei. Observations of
high-K isomers based on yrast many-quasiparticle
states can elucidate the effect of extensive blocking
of valence orbitals on the nucleon pairing
interaction. Again, many predictions of such yrast
isomers occur in nuclei only accessible to study with
a γ-ray spectrometer deployed at a radioactive ion
beam facility.

High-spin studies also address the general problems
of modifications to shell structure and nuclear
properties by an increasing neutron excess discussed
previously, but now with the added variables of spin
and excitation. Do potentials and effective
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interactions alter at high spin as shown by changes
in shell gaps, deformation and band-crossing
frequencies, or does the presence of appreciable
angular momentum alter the development of a
neutron skin? Is pairing quenched at high spin or
does continuum coupling allow it to persist? Such
questions are open at the present time.

• Extension of complete spectroscopic
measurements in stable nuclei:

Very complete low-spin information exists for some
stable nuclei through detailed studies of
electromagnetic transitions following neutron
capture reactions. Spectroscopy of such systems can
be guaranteed to be ‘complete’, in the sense that all
states below a particular spin (around 4–5h̄) and
excitation energy (a few MeV) are certain to be
populated. Such extensive data sets have been used
to establish the existence of certain symmetries in
the nuclear structure of low-lying levels, as
described by, for example, the interacting boson
models. The point in spin or excitation at which
such symmetries are broken, and the role of other
nuclear properties in lifting such symmetries, are
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unknown due to the lack of information extending
neutron capture studies to a higher spin and
excitation regime. Spectroscopic measurements of
such stable systems, at higher spins than those
available in neutron capture, would begin to address
these areas, but radioactive heavy-ion beams are
required.

• Structure of heavy nuclei:

Nuclear collectivity depends on the availability of
specific combinations of nuclear configurations near
the Fermi surface. Collective modes appear when
pairs of orbits are available which have large matrix
elements for the appropriate operator. For example,
octupole effects are seen when protons or neutrons
differing in orbital angular momentum and total
spin by three units are active near the Fermi
surface. Other combinations of exotic configurations
will become accessible with the advent of
radioactive beams. The heavy nuclei offer prospects
of investigating even higher multipole modes of
excitation. For example, the hexadecapole mode
could be studied in heavy Pd (A ∼ 116–120) and
Os (A > 192) nuclei, where high-K unique-parity
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proton and neutron orbits, favourable to large ε4
shape components, lie close to the Fermi surface.
Another exciting possibility is the chance to observe
a ∆l = 5 collective mode by reaching nuclei such as
the neutron rich Ra-Th isotopes, where
π(p3/2 − i13/2) and ν(d5/2 − j15/2) orbit pairs favour
the creation of excitations with sufficient
two-quasiparticle components to generate
collectivity in this highly exotic mode. It is not
feasible to study such modes with stable beams and
targets.

There is no definite evidence for the existence of
rotationally stabilised triaxial shapes in nuclei.
Such nuclei are expected to occur when the
shape-driving effects of valence protons and
neutrons are in an opposite sense (i.e., one prolate-
and one oblate-driving). This generally occurs when
one Fermi surface is at the bottom of a major shell
and the other at the top. In heavy nuclei such
situations will occur in extremely neutron-deficient
or -rich species. For example, the light Hf to Pt
nuclei with N ∼ 90 would be good candidates with
which to pursue stable triaxiality. However, the
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best examples for studying such states lie just
beyond the lightest nuclei that can be populated at
high-spin with stable beams and targets. Similarly,
oblate ground-state deformation has been observed
in very few nuclei (some Pt and Au isotopes). Here
oblate-driving proton and neutron orbits are
required. Interesting candidates might be found in
neutron-deficient Se/Kr nuclei, light Ba isotopes
and Au systems. In order to reach candidates for
either phenomenon, radioactive beams are
necessary.

It has been suggested that nucleon transfer prior to
the fusion of two nuclei can lead to large
enhancements in sub-barrier fusion cross sections.
Transfer reactions involving reaction participants
with loosely bound nucleons occur at larger radii
than those involving well-bound stable systems,
providing further information on sub-barrier effects.
Heavy beams with exotic N/Z ratios may also yield
enhanced multiple pair transfers, as equilibration of
the N/Z ratio favours the onset of neutron and
proton currents, whose consequences may lead to
new physics. A possible example is related to the
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pairing degree of freedom and the associated
multipair transfer processes. At large inter-nuclear
distances proton transfer is inhibited because of the
Coulomb barrier, neutron transfer is therefore
favoured, especially if one of the participants is
neutron rich. If it were possible to transfer a large
number of pairs then that could give rise to new
modes of collective motion, and a new method of
synthesising neutron-rich nuclei.
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