Advances in semiconductor sensors, Gamma-ray imaging systems

Dr Andy Boston ajboston@liv.ac.uk

Outline of presentation

- Focus on ionising radiation and gamma-rays
 - What are the challenges?
 - What detector technology can we consider?
 - Select example projects & links to fundamental research
 - The future prospects

Sensors: Knowledge Exchange

Direct application in medical security and energy areas as evidenced by funding from: CLASP/PNPAS, EPSRC/TSB, NERC, MRC, NHS, NNL (NDA), AWE

Novel SPECT imaging system

PROSPECTUS

NNL

• Nuclear Decommissioning applications

NERC

Radionuclide Transport

All projects are collaborations some with industrial partners. All involve contributions from parts of STFC.

What are the challenges?

- In <u>Nuclear Medicine</u>:
 - Know the energy
 - Want the **location** over a small field of view
 - Need to cope with high count rates
 - Multimodality applications (eg PET/CT)
 - Image fusion

What are the challenges?

- In <u>Nuclear Security and Environmental</u>:
 - Don't know the energy & a broad range
 - Want the **location** over a large field of view
 - Need to cope with wide range of count rates
 - Image fusion

What are the detector requirements?

• Need to know the location of the radiation:

- Use a mechanical collimator (Anger Camera)
- Use positron annihilation for LoRs
- Use other electronic collimation
- Range of energies:
 - Medical 141 keV 511 keV
 - Security 60 keV 2 MeV
- Operating environment:
 - B-fields? Microphonics? High temperature?

What are the detector requirements?

• Ideally would want:

- Good energy resolution (Good light yield/charge collection)
 < few %
- High efficiency (High Z)
- Position resolution
- Timing resolution
- Detector materials:
 - Semiconductors (Si, Ge, CdZnTe)
 - Scintillators (LaBr₃, CsI(TI), NaI(TI), BaFI, BGO, LYSO...)

High resolution Gamma spectrometry

The AGATA Spectrometer

Steering Committee Chairperson: G. De Angeles INFN LNL vice-Chairperson: Faizal Azeaz

12 Countries >40 Institutions

Main features of AGATA

Efficiency: 43% ($M_{\gamma} = 1$) 28% ($M_{\gamma} = 30$) today's arrays ~10% (gain ~4) **Peak/Total: 58% (M_y=1)** today ~55% Angular Resolution: $\sim 1^{\circ} \rightarrow$ FWHM (1 MeV, v/c=50%) today Rates: 3 MHz (M_{γ} =1) today 1 MHz

5% (gain ~1000) **49% (Μ_γ=30)** 40%

~ 6 keV ~40 keV

300 kHz (M_y = 30) 20 kHz

nmetric AGATA Triple Cryostat

63

integration of 111 high resolution spectroscopy channels
cold FET technology for all signals

Challenges:

- mechanical precision
- LN2 consumption
- microphonics
- noise, high frequencies

The AGATA Demonstrator Objective of the final R&D phase 2003-2008

From Design to Reality

AGATA's Deployment

AGATA D.+PRISMA

Total Eff _{Nominal}. ~2.6%

AGATA @ FRS Total Eff. (β=0.5) ~ 10% AGATA @GANIL Total Eff ~ 8% to 14%

From AGATA to Application

Typical system configuration

- Double sided strip detectors
- RC Charge preamps (100 200mV/MeV)
- Caen V1724 8 channel digitizers with 100Mhz / 14 bit
- Custom written firmware providing circular buffer, trigger, energy, timestamp
- Optical readout
- Timestamp, list mode trace data recorded to disk and/or processed in real time
- Also use "desktop digitizer" and V1730 16 channel board.

Am-241 AC x-y surface intensity distribution

 The results are presented for 60 keV with 2 minutes of data per position.

Typical detector depth response

ProSPECTus

Next generation Single Photon Emission Computed Tomography

Nuclear Physics Group, Dept of Physics, University of Liverpool, Nuclear Physics & Technology Groups, STFC Daresbury Laboratory, MARIARC & Royal Liverpool University NHS Trust, CCC NHS Foundation Trust

What is SPECT?

Functional imaging modality

What's different?

Conventional SPECT

- Gamma rays detected by a gamma camera
- Inefficient detection method
- Incompatible with MRI
- 2D information

Compton camera

- Gamma rays detected by a Compton camera
- Positions and energies of interactions used to locate the source
- 3D information.

Factors that limit the performance of a Compton Imager: Energy resolution, Detector position resolution, Doppler Broadening

$$\cos\phi = 1 - m_e c^2 \left(\frac{1}{E_2} - \frac{1}{E_1 + E_2} \right)$$
UNIVERSITY OF
LIVERPOOL

$$\cos\phi = 1 - m_e c^2 \left(\frac{1}{E_2} - \frac{1}{E_1 + E_2} \right)$$
UNIVERSITY OF
LIVERPOOL

$$\cos\phi = 1 - m_e c^2 \left(\frac{1}{E_2} - \frac{1}{E_1 + E_2} \right)$$

$$\underbrace{\square \text{ IVERSITY OF}}_{\text{LIVERPOOL}}$$

$$\cos\phi = 1 - m_e c^2 \left(\frac{1}{E_2} - \frac{1}{E_1 + E_2} \right)$$

$$\underbrace{\square \text{ IVERSITY OF}}_{\text{LIVERPOOL}}$$

$$\cos\phi = 1 - m_e c^2 \left(\frac{1}{E_2} - \frac{1}{E_1 + E_2} \right)$$

$$\underbrace{\nabla \mathbf{U} \, \mathbf{N} \, \mathbf{V} \, \mathbf{E} \, \mathbf{R} \, \mathbf{S} \, \mathbf{I} \, \mathbf{V}}_{\text{LIVERPOOL}}$$

Image Reconstruction Algorithms

- Sensors have excellent energy & position information.
- Uniformity of sensor response
- Optimise existing:
 - Analytical
 - Iterative
 - Stochastic
- Requirement for GPU acceleration

MTRL: Medical Teaching and Research Laboratory

SPECT/CT:

Converted a lab to host a refurbished SPECT/CT scanner in partnership with STFC Daresbury Laboratory and Royal Liverpool University Hospital.

Uses - training medical physics students and research.

MTRL Timeline

- Autumn 2012- discussions with Liverpool University, Royal Hospital, STFC Futures.
- Dec 2012- Futures offer funding for lab refit.
- Jan 2013- Clear equipment from lab T3
- Mar 2013- Install lead shielding on walls and doors, new floor, rewire, paint, fit air con, fit personnel safety system.
- Early 2014 obtain & install scanner
- SPECT/CT
- 2014 first students

Funded by STFC Futures (refit laboratory) and University of Liverpool (purchase used scanner) Expert advice from Royal Liverpool Hospital

ProSPECTus: Next generation SPECT

- Detector head sensitivity maximised for ^{99m}Tc 141 keV gamma rays (also works at higher energies e.g. ¹³¹I 364keV).
- Sensitivity is a factor of 10 improvement over LEHR collimated SPECT detector heads.
- Multi-isotope imaging in single acquisition
- Wide energy range with one system
- 2 semiconductor detectors housed in 1 cryostat
- MRI-compatible

Security & Environmental Imaging

- SNMs and other threats
- Raster scanning
- Coded aperture systems (low energy)
- Focus on wide FOV and variety of stand off distances
- Compton cameras

A three dimensional gamma-ray vision system

NDA Funded

Location and Identification...

Courtesy K. Vetter LBL (work @ LLNL)

- The ability to locate and identify radioactive material with high precision
- Quantification of waste into low/intermediate/high brackets
- Wide range of activities from ~37kBq -> MBq
- There are many open challenges and opportunities

Si(Li) + Ge Cryogenic solutions

- Mechanically cooled
- Battery powered
- Work in collaboration with Canberra

Compton Camera measurements (Ge/Ge)

E = 1408 keV, 30 keV gate

No PSA (5x5x20) Iterative reconstruction

The potential: 3D Gamma & Optical Stereoscopic image fusion

A Compton Camera provides 3D source location

The potential: 3D Gamma & Optical Stereoscopic image fusion

1.5m standoff

A Compton Camera provides 3D source location

Real time imaging

Typical limit of detection

- For a stand-of distance of 1m
- Measurement time of 1 minute
- A full field limit of detection of
 - 4kBq for ¹³⁷Cs,
 - 10kBq for ⁶⁰Co
 - 10kBq for ²⁴¹Am
- 3 dimensional phase space gating
- Background reduction from the whole field of view
- Theoretically x10 reduction possible

Environmental Compton Camera Development: Imaging Radionuclide Transport in Soils and Geomaterials

NERC Proof of concept award

Sample collection from target site

Previous Work: SPECT Gamma-camera

Corkhill et al, Environ Sci Technol. Dec 3, 2013; 47(23): 13857–13864

70 mm

0

20

Proof of concept demonstrator

Cerium Sand Column Experiment

Sand column effluent flow imaged with Ce-139

Sand column profile: FWHM v Time

Gamma Ray Imaging Spectrometers

- 10 x imaging sensitivity
- Factor 2 3 improvement in position resolution
- System locates sources in space (3D) and can identify the isotopes in the material
- Radioactive material found quickly, reducing cost, false alarms and search time – increasing cargo throughput

Improvement of the performance of germanium detectors using pulse shape analysis for industrial and environmental applications

STFC Innovation Partnership Scheme (IPS)

Project aims and objectives

- Project aims to improve minimum detectable activity (MDA) of BEGe detectors by suppressing background events
- Uniquely Identify true coincidence summing
- Investigation will focus on developing algorithms which exploit the position dependent variation in pulse shape for the detector

Improve the time resolution of the detector

Coax vs BEGe charge pulse shape response

"Inverted Coaxial" Point-Contact Detector

- Drift of charges is radically different from a normal coaxial detector
- Long drift times, up to $\sim 2 \ \mu s$
- Small capacitance gives very low noise
- Can be segmented to give superb position resolution
- Signal time helps to determine drift distance and therefore position

Closed-end Coaxial

Lots of opportunities exist

- Novel sensors: Point contact imaging detectors
- Image fusion
- Compact, high count rate systems medical imaging
- High sensitivity systems for security imaging
- Autonomous systems

Advances in semiconductor sensors, Gamma-ray imaging systems

Dr Andy Boston ajboston@liv.ac.uk