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       Nuclear Instrumentation: Lecture 2 
 

Pulse Processing: Pulse Shaping  
 

2.1 PULSE SHAPING 

 

The shapes of signal pulses from detectors are usually changed or shaped by the signal 

conditioning or processing elements of the data acquisition system. It is very common, for 

example, to shape the output pulses of the preamplifier in the amplifier. 

To assure complete charge collection from a detector, preamplifier circuits are normally 

adjusted to provide a long decay time for the pulse (typical decay times are on the order of 50 

µs). Since the pulses occur at random 

times (radioactive decay is a random 

process) they will sometimes overlap 

(especially if the count rate is large). In 

such circumstances, a pulse train such as 

shown in Figure 2.1(a) may occur. The 

amplitudes of the pulses carry the basic 

information, the charge deposited in the 

detector (which often is proportional to the 

energy of the original radiation). Hence, 

the pile-up, saturation and subsequent non 

linear response shown in Figure 2.1(a) is 

very undesirable.  

Shaping the pulses to produce a pulse 

train such as shown in Figure 2.1(b) can 

alleviate the pile-up problem. With one exception, the pulses have been shaped in such a way 

that their total lengths have been reduced without affecting the pulse amplitude. Such shaping is 

normally carried out in a linear amplifier, usually using a variety of RC shaping networks. In this 

lecture, the operation of some of the commonly used pulse shaping networks will be described.  
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Figure 2.1 (a) Typical pulse train from a  preamplifier. 
(b) Shaped pulse train. 
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2.2  VOLTAGE AND CURRENT VERSUS TIME 

It is useful to begin with a brief review of the behaviour of circuits, which contain resistive 

and capacitive elements and their response to an AC signal (e.g. a pulse from a detector). 

 

2.2.1 Discharging 

 

Consider the simple circuit shown in Figure 2.2, where a charged capacitor C is connected 

across a resistor R. The time evolution of the voltage is described by the differential equation, 
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                 Figure 2.2 Discharge of a capacitor across a resistor. 
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ution to Equation (2.1) is:    
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V0 is the initial voltage across the capacitor. 
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Therefore, a charged capacitor placed across a resistor will discharge, as shown in Figure 2.2, 

with a time constant τ = RC.  

For R in ohms and C in farads, the product RC is in seconds. For example, a 1 µF capacitor 

placed across a 1kΩ resistor has a time constant of 1 ms. 

 

2.2.2  Charging 

 

Figure 2.3 shows a slightly different situation where a resistor and capacitor are connected 

across a battery (voltage source). At time t = 0, the switch is closed, connecting the battery. The 

equation for the current is 
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This equation can be solved in the same way as Equation (2.1) and is shown in the box below: 
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the solution to Equation (2.3) is   
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  Figure 2.3 Response of an RC circuit to a sudden voltage change 
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As can be seen, after a long time ( t » 5RC) the voltage approaches its final (equilibrium) 

value. 

5RC rule: A capacitor charges or decays to within 1% of its final value after about five time 

constants.  

 

2.3    CR DIFFERENTIATOR OR HIGH-PASS FILTER 

 

A basic CR differentiator circuit is sketched in Figure 2.4(a). The input and output voltages 

are related by the equation 

0i V
C
QV +=                                                       (2.5) 

where Q is the charge on the capacitor at time t.   Differentiating gives  

t
V + 
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d
d
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where the current I =  dQ/dt.  

Using V0 = IR and τ = RC we get  

t
V  =  

t
V + V

d
dτ

d
dτ i0

0                                               (2.7) 

This equation can be solved to give a general solution. However, useful insight is obtained by 

considering two limiting situations where the time constant τ is very much less than or very 

much greater than T, the duration of the pulse. 

 

τ « T:  

If τ  (= RC) is made sufficiently small, the second term on the left hand side can be neglected 

and the output voltage is proportional to the time derivative of the input, hence the name 

differentiator! 

To meet this requirement, the time constant needs to be short compared to the duration of 

the input pulse (or to the Fourier frequency components of the pulse). However, care needs to 

be taken not to `load' the input by making RC too small (at the transition, the change in voltage 

across the capacitor is zero, so R is the load seen by the input). 
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τ » T: 

At the opposite extreme of a long time constant, the first term can be neglected giving 

t
V  

t
V

d
dτ

d
dτ i0 ≈                                                     (2.8) 

Integrating this and setting the constant of integration equal to zero gives 

VV i0 ≅                                                          (2.9) 

In this limit, the network will pass the waveform without distortion. 

The CR differentiator is a high-pass filter.  

 High frequency components of pulses (edges) are passed without distortion. 

 Low frequencies are attenuated away and any dc component is not passed. 

The effect of a high-pass CR filter on different input waveforms is shown in Figure 2.4. 
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Figure 2.4 High-pass CR filter (differentiator): (a) basic circuit; (b) step input; (c) single (square) pulse (RC = T); (d) 
single pulse (RC » T); (e) single pulse (RC « T); (f) pulse train. 
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 For a step input, the output is  

ei0
τ-t/V=V ,                                                 (2.10) 

which approximately represents the shaping of a rapidly rising signal pulse by a single 

CR differentiator. Note that the fast leading edge is not differentiated because τ is not 

small compared to its rise time. Therefore, the leading edge is simply passed through 

while the shaping consists of differentiating away the long tail. 

 For a single square pulse [curve (c)], the fast rise and fall are passed undistorted and the 

DC signal falls towards zero. Note that the areas above and below the baseline are equal, 

which is a result of the fact that any dc Fourier component of the input is not passed. 

 Curve (d) shows that if the time constant is long compared with T, the pulse is passed 

with little distortion. 

 By contrast, if RC « T [curve (e)], the pulse is strongly differentiated and the output is 

large only when dVi/dt is large. 

 A train of pulses is passed [curve (f)], shaped according to the value of RC relative to T, 

but there is no baseline shift, i.e. the dc component of the input signal is not passed. 

 

The response of a high-pass filter to a rising input voltage Vi = kt, is shown in Figure 2.5. 
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Figure 2.5 Response of a high-pass CR filter to a rising ramp input. 
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 At large t (» RC), the output reaches a saturation value equal to τ(dVi /dt). 

 Initially, (for t « RC), the output (solid curve) follows the input. 

 Any real pulse rises from zero to its peak in a finite time Tr and there will be a difference 

between the output and input depending on the ratio of τ to Tr. This difference is called 

the ballistic deficit (shown as ∆ in Figure 2.5). If τ > 5×Tr , ∆ < 1% of the signal height. 

 

Differentiators are useful for detecting leading and trailing edges in pulses. For example, in 

digital circuitry one sometimes sees networks like that shown in Figure 2.6. In this case, the 

differentiator generates spikes at the transitions of the input pulse and the output buffer converts 

these into short square pulses.  

 

2.4 THE RC INTEGRATOR OR LOW-PASS FILTER 

 

A passive RC network acts as an integrator when configured as shown in Figure 2.7. The 

circuit equation is now  
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Figure 2.6 Example of the use of a differentiator in digital circuitry. 

V+IR = V 0i .                                                     (2.11) 

Since I (= dV/dt) represents the rate of charging of the capacitor. This can be rewritten as  



NI PULSE SHAPING 
 

 
L2-8 

V+
t

V=V 0
0

i d
dτ  

which can be rearranged as 

ττd
d i00 V=V+

t
V .                                                (2.12) 

Again, consider the extreme situations when RC is very large or very small (compared with 

the pulse duration, for example). 

τ » T: 

When τ (= RC) is large, only the first term on the left-hand side matters and we see that the 

output voltage is proportional to the integral of the input voltage, hence the name `integrator'. 

tV=V d
τ
1

i0 ∫                                                     (2.13) 

τ « T: 

At the opposite extreme of very small time constants (low frequencies), only the second term 

is significant and once again  

VV i0 ≅                                                          (2.14) 

so that the network will pass the signal without change. 

The effect of a low-pass RC filter on different input waveforms is shown in Figure 2.7. 

 

 

 

 

 

 

 

 

 

 
Figure 2.7 Low-pass RC filter (integrator): (a) basic circuit; (b) step input; (c) single (square) pulse (RC = T); (d) 
single pulse (RC » T); (e) single pulse (RC « T); (f) pulse train. 
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For a step input [curve (b)], the fast rise is not passed and the output begins to increase  

only after the input has reached its maximum dc value. The capacitor C charges up at a rate 

dependent upon τ and, eventually, the output becomes equal to the input. 

 For a single, square pulse [curve (c)], the output rises as C charges and then it 

falls after the end of the pulse. 

 If RC » T, the output reaches a low value [curve (d)], because it varies inversely 

as 1/τ,  according to Equation (2.13). 

  By contrast, if RC « T [curve (e)], the pulse is passed with little distortion, 

according to Equation (2.14). 

 A train of pulses is passed [curve (f)], shaped according to the value of RC 

relative to T. In this case, the baseline shift is passed. 

 

The response of a low-pass filter to a voltage that is rising for a time T, is shown in Figure 2.8. 

 

 

 

 

 

 

 

 
     Figure 2.8 Low-pass RC filter response to a linear rising ramp input. 
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 If t « RC, after a short delay, the output follows the input, according to Equation  

(2.14) 

 If t » RC, the output is proportional to the integral of the input, according to 

Equation  (2.13). 

The integrator is used extensively in analog computation. It is a useful circuit that finds 

applications in control systems, analog/digital conversion, and in waveform generation. 
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2.5 CR-RC SHAPING 

 

The combination of a CR differentiator and RC integrator is commonly used as a pulse shaper 

in linear amplifiers. 

The output of a single CR differentiating circuit has several unwelcome features for pulse 

processing systems. 

 The sharp top makes any subsequent pulse height analysis difficult (the maximum 

is only held for a short time). 

 All high-frequency noise components are passed through by the circuit, implying 

that the signal-to-noise ratio is usually poor. 

 

If an RC integrating stage follows the CR stage both of these features can be much improved. 

Such a combination, shown in Figure 2.9 is one of the most widely used methods for shaping 

preamplifier pulses.  
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   Figure 2.9 A CR-RC shaping network. 

 

The triangular symbol is an operational amplifier (op amp), which in this configuration has 

infinite input impedance and zero output impedance. The op amp serves to isolate the two 

individual networks (impedance isolation) so that neither influences the operation of the other.  

The response of this CR-RC network to a step voltage of amplitude Vi is 

)e-e(
τ-τ
τ τ/-τ/-

21

1i
0

21 ttV=V                                             (2.15) 

where τ1 and τ2 are the time constants of the differentiating and integrating circuits, 

respectively. For interested students, the derivation of this equation is given in the box below. 

 Figure 2.10 plots the response of Equation (2.12) for several different combinations of time 
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constants. 

 

 

 

 

 

 

 

 

 

 

 

 

Derivation of Equation (2.15): 
The first part of the circuit is a high-pass filter. The output voltage is given by Equation 

(2.10): V , where τe 1
iS

τ-t/V= 1 = R1C1.  
The second part is a low-pass filter, whose behavior is given by Equation (2.12) with Vi = 

VS,  i.e. 
2
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τ

Setting the condition: V0 = 0 when t = 0, K = −Viτ1/(τ1-τ2) from which we get Equation 
(2.15). 
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re 2.10  Response of a CR-RC network to a step voltage. Curves are shown for several different combinations  
me constants. Curves are labelled τ1+τ2. 
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In some applications (a common situation in nuclear pulse processing), CR-RC shaping is 

carried out using equal time constants (τ say). For this particular case, the solution is 

e
t

V=V t/- τ
τi0 .                                                   (2.16) 

This response is also illustrated in Figure 2.10. 

 

 

 

 

 

 

Derivation of Equation (2.16): 

If τ1 = τ2 = τ, rewrite Equation (2.15) as 1)-e(eτ-τ
τ )/1τ/1(-τ/-
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first term in brackets to first order in t: 
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,  giving Equation (2.16). 

The choice of shaping time constants is determined primarily by the charge collection time in 

the detector. As always, there are competing factors that need to be considered:  

 In order to minimize pile-up effects, the time constants should be kept short so 

that the pulse returns to baseline as quickly as possible.  

 On the other hand, when the time constants become comparable to the rise time of 

the pulses from the preamplifier, the input to the network no longer looks like a step 

voltage and the result is that some of the amplitude of the signal is lost.  

This is referred to as ballistic deficit (see Section 2.3) and can be avoided only by 

keeping the time constants long compared to the charge collection time of the detector. 

Typical values for τ range from a few tenths of a µs for small semiconductor detectors through 

to a few µs for `large' Ge detectors to tens of µs for some types of proportional counter. 

 

2.6 GAUSSIAN SHAPING 

 

When a single CR differentiator is followed by several stages of RC integration (four are 

sufficient), the output pulse shape approximates that of a mathematical Gaussian.  

In theory, a Gaussian pulse shape has some potential advantages for improvement in signal-

to-noise ratio over simple CR-RC shaping. Gaussian or semi-Gaussian shaping is very 

commonly found in linear amplifiers used in nuclear pulse processing applications. A 
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disadvantage, however, is that because of the greater pulse width, pile-up effects are more severe 

at high rates. 

 

2.7 DOUBLE DIFFERENTIATION OR CR-RC-CR SHAPING 

 

Double differentiation can be used to generate a bipolar pulse shape. Another differentiation 

stage is added with the result illustrated in Figure 2.11. 

 The most common choice is to make all three time constants equal.  

 The bipolar pulse shape makes baseline shifts (see later) much less severe.  

 This type of signal is most useful at high count rates. However, at lower rates, its 

signal-to-noise characteristics are usually not as good as single-stage RC shaping because 

the amplitude is lower. 
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Figure 2.11  Creation of a bipolar pulse using a CR-RC-CR shaping network. 
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2.8 SINGLE AND DOUBLE DELAY-LINE PULSE SHAPING 

 

Some properties of coaxial cables can be used to shape pulses. Recall that a cable shorted at 

one end will produce a reflected pulse moving back toward the sending end of the cable with an 

equal amplitude but opposite polarity.  

                                                                     

2.8.1  Single delay-line shaping 

 

A single delay line can be used to generate a 

square pulse from a step voltage input as shown in 

Figure 2.12 

 

input step

reflected step

output pulse

2τ

oZ

transmission line
shorted at bottom end

 
 
Figure 2.12  Single delay-line shaping.  

The transmission line is assumed to be long 

enough so that the propagation time is long 

compare to the rise time of the step. The op amp 

provides impedance isolation and, since its output 

impedance is zero, the resistor Z0 terminates the 

cable at its sending end. The width of the shaped 

pulse is just twice the propagation time through the 

length of the cable. For many applications, this is a 

microsecond or so. Special delay lines, with 

reduced pulse propagation velocities, are often 

used to avoid excessively long cables. 

Figure 2.13 illustrates problems, which can arise if the delay time T is (a) too short or (b) too 

long.  

At one extreme, T must not be shorter than the pulse rise time, otherwise ballistic-deficit 

effects will appear [see Figure 2.13(a)]. On the other hand, T must not be so long that it is 

comparable with the decay time of the input pulse, or there will be an undershoot, as illustrated 

in Figure 2.13(b). However, if it is not possible to achieve this condition, the undershoot can be 

alleviated by attenuating the reflected pulse, as illustrated in the lower two waveforms in Figure 

2.13(b). 
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 Figure 2.13 Single delay-line shaping where the delay time is (a) less than the pulse rise time and (b) is comparable 
with the input pulse decay time.   
 

2.8.2  Double delay-line shaping 

 

Bipolar pulses can be produced if two delay 

lines are used, as shown in Figure 2.14. If both 

delay lines have equal length, the resulting pulse 

will have equal positive and negative lobes and 

an average dc level of zero can be maintained. 

This will virtually eliminate any baseline shift in 

subsequent circuits. While DDL shaping has 

excellent high counting rate capabilities, it does 

not apply any high-frequency filtering to the 

signal and therefore, has poorer signal-to-noise 

characteristics than RC shaping networks. 

Therefore, it is seldom used in high resolution 

systems (i.e. Ge detectors). 
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Figure 2.14  Double delay-line shaping and the  
production of bipolar pulses. 
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2.9 DELAY-LINE PLUS RC SHAPING 

 

Yet another option is to send the output of a delay-line network to an integrator or low-pass 

filter. This eliminates much of the high-frequency noise from the signal with a corresponding 

improvement in the response of the network.  

 If the output of a DDL network is integrated, a triangular pulse can be produced 

as shown in Figure 2.15.  

 As the time constants are increased, the approximation to a triangular shape gets 

better but the amplitude of the pulse is reduced.  

 The signal-to-noise characteristics of triangular pulses are quite good and such 

pulses are sometimes used in high-resolution systems when the count rate is not 

excessively high. 
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Figure 2.15  (a) Production of triangular shaped pulses using a DDL network through an integrating RC network.  
(b) Similarly for an SDL network. 
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2.10 POLE-ZERO AND BASELINE RESTORATION. 

 

2.10.1 Pole-zero 

 

The simple CR-RC circuit described above produces a significant undershoot as the amplifier 

pulse attempts to return to zero. This is due to the long exponential decay of the preamplifier 

pulse. In high count rate situations it is possible (likely) that another pulse will arrive during this 

time and `ride' on the undershoot of the original pulse. Obviously, in this case, the apparent 

amplitude of the second pulse will be somewhat reduced, resulting in an undesirable broadening 

of the peaks in the energy spectrum.  

The problem can be alleviated by use of a pole-zero cancellation network, such as shown in  

Figure 2.16. In Figure 2.16(a) the preamplifier signal is applied to the input of a normal CR 

differentiator circuit. The output shows the typical undershoot.  

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 2.16  The benefit of pole-zero correction. 
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Therefore, for a longer preamp decay time, a longer shaping time in the amplifier leads to 

larger undershoots. 

In Figure 2.16(b), the resistor Rpz placed in parallel with the capacitor can be adjusted to 

cancel the undershoot. The result is an output pulse with a simple exponential decay to zero. 

Virtually all spectroscopy amplifiers incorporate this pole-zero circuit (the term pole-zero comes 

from the mathematical representation of the circuit, the resistor `cancels' a pole in the 

expression). 

 

2.10.2 Baseline restoration 

 

To ensure good energy resolution and peak position stability, high-performance spectroscopy 

amplifiers are entirely dc coupled (except for the CR differentiator network located close to the 

input which is ac coupled almost by definition). Therefore, any DC offsets in the early stage of 

the system will be greatly amplified to cause a large unstable dc offset at the output. Since the 

amplitude of the pulses in nuclear applications carries much of the desired information such an 

offset is extremely undesirable.  

The basic principle of the baseline restorer is illustrated in Figure 2.17. We consider two 

modes of operation: 

 

Simple baseline restoration.  

For a simple time-invariant baseline restorer, the switch S1 is always closed and the restorer 

behaves like a CR differentiator. The baseline between pulses is restored to zero by the resistor 

Rblr. The time constant CblrRblr must be at least 50 times the shaping constant in order not to harm 

the signal-to-noise ratio. 

Such a time invariant system does not adequately maintain the baseline at high counting rates. 

Since this simple circuit is essentially a CR differentiator, the average signal area above ground 

potential must equal that below (a capacitor cannot pass a dc level). For low count rates, the 

spacing between pulses is very long and so the baseline is restored to very close to ground 

potential. However, as the rate increases, the baseline must shift down, the amount of shift 

increasing with count rate.  
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Figure 2.17  Operation of a base-line restorer in simple mode and in gated mode. 

 

Gated baseline restoration: 

 The gated baseline restorer virtually eliminates the problem caused by changing count rates. 

In this case, the switch S1 in Figure 2.17 is opened (O) only during the duration of each amplifier 

pulse and is closed (C) otherwise. Therefore, the CR differentiator is active only on the baseline 

in between pulses and the effect of signal pulse is virtually eliminated. The gated baseline 

restorer `thinks' that it is operating at zero counting rate! 

 

2.11 GATED INTEGRATOR 

 

Performance at high count rate can be improved using a gated integrator at the output stage of 

the amplifier shaping network. The principle is illustrated in Figure 2.18.  

The unipolar output of a shaping pre-filter is integrated on a capacitance C, which is part of an 

active circuit, for a time that encompasses the duration of the pulse. At the end of this interval, 

the capacitance is discharged by closing a switch. The amplitude of the pulse from the gated 

integrator is now proportional to the area of the unipolar pulse from the shaping circuit rather 

than its peak value. This is much less sensitive to the ballistic deficit caused by variable charge 
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collection times in the detector.  

As an illustrative example, consider the two delay-line shaped pulses shown in Figure 2.18. 

The top waveform shows a pulse with a fast rise time. The area of the pulse is VT, where T is the 

delay time and V is the pulse amplitude. The central waveform shows a pulse with a ballistic 

deficit, because it has a rise time Tr that exceeds T. The pulse reaches an amplitude mT, where m 

is the voltage gradient of the leading edge, and there is a ballistic deficit because Tr  > T. The 

pulse falls to zero at time (V/m)+T after its initial rise. The area of the pulse is the area of the 

trapezoid ABCD, which is VT, i.e. it is independent of Tr. The output of the gated integrator is 

shown in the bottom waveform. Before the start of the pulse, switch S1 is open and S2 is closed. 

During integration, from t1  to t2, S1 is closed and S2 is open and at the end of the pulse, S1 is 

open and S2 is closed, awaiting the arrival of the next pulse. Provided that (t2  - t1)  exceeds the 

total pulse duration, the output of the gated integrator is independent of ballistic-deficit effects of 

using a shaping time comparable with Tr .  
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Figure 2.18  Principles of operation of a gated integrator. 

 

Figure 2.19 shows the timing and output pulse from a gated integrator acting on a unipolar 

pulse from the output of a Gaussian shaping network The integration continues for a time that is 

about 8 to 10 times the shaping time used in the Gaussian network (or 2 to 3 times the peaking 

time). With a gated integrator, much shorter shaping times can be used than if a gated integrator 

is not used, which will minimize the effect of pile up on the resolution. The waveform shown in 
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Figure 2.19 uses a Gaussian shaping time of 0.25 µs resulting in a total time of 5 µs above the 

baseline for the output of the gated integrator. Using a conventional Gaussian shaping amplifier, 

would need a much longer shaping time of 3 µs (20 µs above the baseline) to achieve the same 

resolution. Thus, use of a gated integrator enables higher-rate operation before the effects of pile 

up become a limiting factor. Systems using gated integrators can operate with germanium 

detectors up to a count rate of 106 pulses/sec with good energy resolution. 
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Figure 2.19 Output pulses from (upper) semi-Gaussian and (lower) gated- 
integrator amplifier. 
 
TP = time to peak;  TW = total pulse width. 
TP is, typically, 2×amplifier shaping time. 
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