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Abstract

Collective properties of the radioactive nuclei 220Rn and 224Ra have been studied

via Coulomb excitation of a 2.8 A.MeV radioactive ion beam (RIB) incident upon

60Ni, 112,114Cd and 120Sn targets. The experiments took place at the REX-ISOLDE

RIB facility, CERN. De-excitation γ-ray yields following multiple-step Coulomb ex-

citation were detected in coincidence with recoiling target nuclei in the Miniball

spectrometer.

For the first time, B(E3; 3+ → 0+) values have been directly measured with a

radioactive ion beam. In the process, 224Ra becomes the heaviest post-accelerated

RIB to date at ISOLDE (with the possible exception of the quasi-stable 238U).

The measurements presented in this thesis represent a tripling of the number of

nuclei around Z ' 88 and N ' 134, for which direct measurements of the octupole

collectivity have been performed. The only previous measurements being for the

relatively long-lived 226Ra.

The γ-ray yields, in conjunction with previously measured spectroscopic data,

were used to determine electromagnetic matrix elements using the least-squares

search code, Gosia. In total, nine E1, E2 and E3 matrix elements were measured

in 220Rn (plus six upper limits) and 12 (plus four upper limits) in 224Ra. The

measured B(E3; 3+ → 0+) values in 220Rn and 224Ra are 32±4 W.u. and 42±3 W.u.,

respectively. A new state has been observed at 937.8(8) keV in 220Rn and is proposed

to be the 2+ member of the K = 2, γ-vibrational band.

The results are interpreted in terms of the collectivity and deformation, and are

compared with the predictions of self-consistent mean-field theory and cluster model

calculations.
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Chapter 1

Introduction

The notion that collectivity due to the octupole (λ = 3) degree of freedom can

occur in atomic nuclei is supported by a large base of experimental evidence and

theoretical work [1]. For a long time, quadrupole (λ = 2) collectivity has been

established and features such as rotational bands, described consistently by a wide

variety of collective models. The introduction of an octupole degree of freedom

into the Nilsson-Strutinsky model predicted a gain in binding energy of 1–2 MeV in

nuclei around 224Ra [2]. A systematic review recognised octupole correlations as an

essential contribution to the mean field interaction just above closed shells, where

(N, j, l) intruder orbitals interact strongly with the (N−1, j−3, l−3) natural parity

states. In these regions, when the Fermi level is situated between these orbitals, the

strongest interactions occur. The corresponding particle numbers are Z or N ' 34,

56, 88 and 134.

Collective parameters, such as multipole moments, Qλ, and transition strengths,

B(Eλ), are used to describe the shape of deformed nuclei and can be directly or

indirectly accessed through various experimental techniques. Measurements of these

parameters in the actinide region, where correlations are expected to be strongest,

are scarce due to various experimental limitations, such as the unstable nature of

these nuclei. An indirect measurement of B(E3; 3− → 0+), for example, can be

1



Chapter 1 Introduction

achieved with knowledge of the lifetime of the 3− state and the relative E3 decay

branch to the ground state. However, since there are usually lower-lying 2+ and

1− states, with the exception of only 146Gd and 208Pb, possessing an observed first

excited state of Iπ = 3− to date, E1 and E2 transitions dominate and the E3 branch

is almost impossible to observe. Coulomb excitation however, is able to populate the

3− state directly from the ground state via an E3 transition, giving access to the all

important matrix elements which define the collective parameters. The argument

of whether any of these nuclei truly possess stable octupole deformation in the

ground state, or whether their properties can be described as vibrational excitation,

continues to rage.

Since the nuclei in the neutron-deficient actinide region are unstable, studying

them via Coulomb excitation required the production of radioactive target materials

until the advent of high-intensity radioactive ion beams. It was possible to measure

E3 matrix elements in 226Ra with the former technique [3] coupled with the ad-

vancement of Coulomb excitation analysis codes such as Gosia [4]. It is clearly de-

sirable to extend this technique and utilise the unique capability of CERN’s Isotope

Separator On-Line Detector (ISOLDE) to produce intense radioactive ion beams to

three-fold increase our knowledge of octupole collectivity in the region of the nuclear

chart, where it is expected to be strongest.

1.1 Collectivity and deformation in nuclei

When a nucleus deviates from sphericity, its surface can be parameterised in terms

of spherical harmonics:

R(θ, φ) = c(αλµ)R0

[
1 +

∞∑
λ=0

λ∑
µ=−λ

αλµYλµ(θ, φ)

]
. (1.1)

The factor c(αλµ) is required to conserve volume since the spherical harmonic Yλµ(θ, φ)

2



Chapter 1 Introduction

does not average to zero for 0 ≤ θ < 180 and 0 ≤ φ < 360. Terms in λ = 0, 1 de-

scribe a shift in volume (the breathing mode) and centre of mass respectively, and

therefore give no information on the nuclear shape. When assuming axial symmetry,

µ = 0 and Equation 1.1 can be reduced to the following:

R(θ) = c(βλ)R0

[
1 +

∞∑
λ=2

√
2λ+ 1

4π
βλPλ0(cos θ)

]
. (1.2)

The deformation parameters, βλ, can be calculated from the intrinsic multipole

moments, Qλ, given in Equation 1.7. It is first useful to define an expression for the

first-order term in an expansion of deformation co-ordinates,

Qλ =
3√

(2λ+ 1) π
ZRλ

0 β̄λ , λ ≥ 2. (1.3)

The full expansion, from two to six multipoles, can be given by the following

intrinsic relations [5]:

β̄2 = β2 +

√
5

π

(
2

7
β2

2 +
4

15
β2

3 +
20

77
β2

4 +
10

39
β2

5 +
98

386
β2

6

+
12

7
√

5
β2β4 +

20

21

√
7

11
β3β5 +

30

11

1√
13
β4β6

)
, (1.4)

β̄3 = β3 +
5√
4π

(
4√
45
β2β3 +

6

11
β3β4 +

60

91

√
7

11
β4β5

+
7

33

√
77

13
β5β6 +

10

21

√
35

11
β2β5 +

100

33
√

13
β3β6

)
, (1.5)

β̄4 = β4 +
6√
4π

(
3

7
β2

2 +
3

11
β2

3 +
243

1001
β2

4 +
3

13
β2

5 +
42

187
β2

6

+
20
√

5

77
β2β4 +

60

91

√
7

11
β3β5 +

20

11
√

13
β4β6 +

15

11

√
5

13
β2β6

)
. (1.6)
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Figure 1.1: Representation of
the nuclear surface of 226Ra
using Equation 1.2 expanded
to λ = 4 and using the mea-
sured βλ values from Ref. [3].
The colour scale represents
the radius of the surface from
the symmetry axis.

This relationship between multipole moments and deformation parameters is

used to give a schematic representation of the shape of the nuclei studied in this

thesis (see Figure 6.2), while Figure 1.1 shows 226Ra, plotted using βλ parameters

calculated in the same way, from measured Qλ values [3].

1.1.1 Rigid-rotor model

The electromagnetic matrix elements connecting an initial and final state with an-

gular momentum, Ii and If , respectively, can be reduced by exploiting the Wigner-

Eckart theorm, separating the projection quantum number (K) dependent compo-

nents from the radial part, which contains the nuclear structure information. This

leads to an expression for the reduced matrix elements which is proportional to the

multipole moment (an intrinsic or transitional moment, which is distinct from the

static or spectroscopic moment), Qλ [6]:

〈If ||Eλ||Ii〉 = (2If + 1)
1
2 〈If0λ0|Ii0〉Qλaλ, (1.7)

4



Chapter 1 Introduction

where a1 =
√

3
4π

and aλ≥2 =
√

2λ+1
16π

and 〈Ii0λ0|If0〉 is the Clebsch-Gordan coeffi-

cient, assuming K = 0. This is useful in defining the strength of an electromagnetic

transition between those two states, which is given by:

B(Eλ; Ii → If ) =
1

(2Ii + 1)
|〈If ||Eλ||Ii〉|2. (1.8)

By substituting Eq. 1.7 into Eq. 1.8, an expression for transition strength is obtained

in terms of the intrinsic multipole moment.

B(Eλ; Ii → If ) =
(2If + 1)

(2Ii + 1)
〈If0λ0|Ii0〉2Q2

λa
2
λ. (1.9)

Under the assumption that all states in a band have the same intrinsic struc-

ture, i.e. same intrinsic matrix element or multipole moment, B(Eλ) values can be

determined as spin increases within a band. Two simple indicators of nuclei which

behave like a rigid rotor, are the ratios of the energies of the first two excited states,

usually E4/2 in even-even nuclei, and the strengths of the two lowest E2 transitions

in the ground band, usually B4/2:

E4/2 =
E (4+)

E (2+)
= 3.33, (1.10)

B4/2 =
B(E2; 4+ → 2+)

B(E2; 2+ → 0+)
= 1.43. (1.11)

For purely vibrational nuclei, the energy of the 4+ state is approximately twice

that of of the 2+ state, i.e. E4/2 ≈ 2, while B4/2 also tends towards a value of 2.

5
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1.2 Reflection-Asymmetric Nuclei

The very first observation of low-lying negative-parity states in alpha spectroscopy

[7, 8] led to the suggestion that they have the same intrinsic structure as the ground

state and a K quantum number of 0 [9]. It was 25 years before this was asso-

ciated with a possible stable octupole deformation in the ground state of these

nuclei [10–13] and predictions of their properties began.

All of the nuclei described are axially symmetric with respect to the longest axis

and the lowest configuration of the even-even nuclei have a K quantum number

of 0. However, the parity of some low-lying excitations is negative, implying that

such a state is not symmetric with respect to reflection. The implication of this

reflection asymmetry is presented in Figure 1.2 for three different assumed poten-

tials with respect to the octupole deformation parameter, β3. The first (left-most

panel) of these represents a vibration about a zero octupole deformation, while the

other extreme (right-most panel), is the ideal case in which an infinite barrier exists

between degenerate, deformed minima, and a rigid octupole deformation ensues.

In nature, this scenario is never reached in a true, complex, many-body quantum

system, where dynamical fluctuations smear the phase transition to deformation,

and the centre panel represents the most realistic, octupole soft, deformation. The

barrier height shown in the centre panel of Fig. 1.2 is still relatively small, even in

cases presented as the strongest candidates for a stable octupole deformation, i.e.

the actinide nuclei around A = 224 [13].

On a microscopic level, octupole correlations arise through a parity-breaking in-

teraction between intruder orbitals, with the quantum numbers (N, j, l) and

(N − 1, j − 3, l − 3) natural parity states, leading to a tendency for the strongest

correlations to occur just above closed shells, namely at particle numbers Z or

N ' 34, 56, 88 and 134. The largest interaction comes when the energy difference

between the interacting states is minimised and the density of interacting states is

6



Chapter 1 Introduction
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Figure 1.2: Nuclear potentials as a function of the octupole deformation parameter,
β3, for (left to right) a quadrupole deformed (β2 6= 0) nucleus which is octupole-
vibrational with an average deformation of β̄3 = 0, an intermediate case with a small
potential barrier separating two degenerate, deformed minima and an ideal case of
rigid deformation. Adapted from Figure 1 of Reference [14].

at its maximum, augmenting the number and magnitude of coupling matrix ele-

ments. Both of these conditions are fulfilled with increasing mass number, leading

to the combination of Z ' 88 and N ' 134 a fertile testing ground for reflection

asymmetry.

In the following, the appropriate experimental observables are described in terms

of reflection asymmetry and the evidence they provide in support of collective oc-

tupole excitations.
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Chapter 1 Introduction

1.2.1 Energy levels

Low-lying 1− and 3− excited states, of collective origin, betray reflection asymmetry.

Their relative excitation energy with respect to the first-excited 2+ and 4+ states

is an indicator of the strength of the interaction and this reaches a minimum for

224Ra. The comparison to the positive-parity states, coupled with the E(3−) and

E(1−) difference, is also essential in quantifying the collective nature of these exci-

tations [15]. An illustration of different level schemes for even-even nuclei is shown

in Fig. 1.2. In odd-mass nuclei, the manifestation of reflection asymmetry on the

energy levels, comes in the form of parity doublets [10, 16].

A first observation of odd-even staggering at high-spin in 218Ra [17], and sub-

sequently in the neighbouring even-even actinide nuclei [18–20], shows stabilisation

of octupolarity [21]. Above I = 5~, the positive- and negative-parity states begin

to interleave, approaching the asymmetric rotor limit. The alignment of octupole

phonons with a rotational band, also cause odd-even staggering, due to the weak-

ening of the sphericity-driving, pairing force, caused by the Coriolis force. However,

the rotational frequency follows a distinctly different path with angular momen-

tum [22], giving a pointer to the nature of the correlations by observing high-spin

states.

1.2.2 Dipole moments

An unusually large intrinsic dipole moment is observed in the “octupole” regions

of the nuclear chart. Here, transitions between yrast states of opposite parity have

considerable E1 strength. The B(E1) strength is measured to be > 10−4 single-

particle units in octupole-deformed nuclei, and as high as 10−2 W.u. [23]. These

values are orders of magnitude greater than typical values of similar transitions

measured elsewhere in the nuclear chart.

It was suggested that a displacement of the centres of charge and mass [12, 24, 25]

8



Chapter 1 Introduction

in reflection-asymmetric nuclei would lead to an enhancement of the intrinsic dipole

moment. This effect is explained by the tendency of charged particles to gather

where the radius of the potential contour is smallest, i.e. at the narrow end of the

“pear” shape.

Assuming an axially-symmetric system, one can express the intrinsic dipole mo-

ment as [25, 26]:

D0 = e
NZ

A
[〈zp.c.m〉 − 〈zn.c.m〉] , (1.12)

where zp.c.m and zn.c.m represent the co-ordinates of the proton and neutron centre

of mass, respectively. In reflection-asymmetric nuclei, intrinsic parity is broken and

therefore zp.c.m 6= zn.c.m leading to a non-zero dipole moment. The relative weakness

of the Coulomb force to the nuclear strong force maintains a small D0, yet large

enough to allow for the experimentally observed E1 strengths.

However, experimental observations of relatively small |D0| values in 224Ra

prompted the introduction of a shell-correction term to the calculation of the intrin-

sic dipole moment [27]. The earlier works of Strutinsky, and Bohr and Mottelson

used only a macroscopic approach and hence could not predict fluctuations in the

intrinsic dipole moment for nuclei with the same shape. The microscopic part of

the dipole moment, introduced by Leander et al. [27], has been calculated [26] to

be roughly equal to the macroscopic, or liquid-drop term, and is summed either

constructively or destructively,

D0 = (±)Dmacro
0 + (±)Dshell

0 . (1.13)

The resulting dipole moment in 224Ra reproduces the previously observed

B(E1)/B(E2) branching ratios [28, 29]. These calculations, in fact, do very well in

reproducing the known systematics in the actinide, as well as the lanthanide region

where the small D0 in 146Ba is also reproduced.

9
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Figure 1.3: Previously measured B(E3; 3− → 0+) values as a function of proton
number, Z. Values are calculated from tabulated data in Ref. [30].

1.2.3 E3 transition strength

The single-particle effects described for dipole moments (Section 1.2.2) do not have

as strong an influence in the octupole moment, or the E3 matrix elements. For

this reason, measurements of E3 matrix elements or octupole moment, Q3 (via

Equation 1.8), provide the best measure of the collective strength of the octupole

correlations.

The simplest indicator one can get from these measurements, is the

B(E3; 3− → 0+), which gives a direct measure of the collective strength of the

electric-octupole transition from the ground state to the first excited 3− state. Data

throughout the nuclear chart has been plotted in Figure 1.3, as a function of proton

number, Z. It is clear that, in the actinide region (Z ∼ 88), there is a lack of mea-

surements, attributed to the difficulty of performing such experiments, discussed at

the beginning of this chapter.
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Chapter 1 Introduction

A complete set of E3 matrix elements has the possibility to provide unambiguous

information on the nature of the octupole excitations, be it rotational or vibrational.

In 148Nd [23, 31], the very small values for 〈2+||E3||3−〉, 〈4+||E3||5−〉, 〈1−||E3||4+〉

and 〈3−||E3||6+〉, compared to those of the stretched transitions between rotational,

even-spin states and the odd-spin, vibrational states, such as 〈2+||E3||5−〉, indicates

a coupling of an octupole phonon to a rotational band. However in 226Ra, these

appear to follow more closely to the rigid rotor values [3], indicating true quadrupole-

octupole deformation.

1.2.4 Further evidence

Many other theoretical and experimental evidence points to reflection-asymmetry

in nuclei. Some of these are listed below, with appropriate references and will not

be expanded upon further in this thesis since they aren’t of relevence to it’s content.

• Binding energy discrepancies [2, 12, 13].

• The decoupling parameter [32, 33].

• Magnetic moments in odd-mass nuclei [33, 34].

• Differential radii of odd-mass nuclei [35].

• Alpha decay hindrance factors [32, 36, 37].

• Exotic decay and cluster preformation [38–40].

For a comprehensive review of the subject of reflection asymmetry, see Ref. [1].
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Chapter 2

Coulomb Excitation

When an atomic nucleus is excited from the ground state via the time-dependent

electromagnetic field generated by a collision with another nucleus, it can be de-

scribed as having undergone “Coulomb excitation”. If this process is performed at

energies well below the Coulomb barrier, the distance between the interacting nuclei

remains much larger than the range of the nuclear force, ensuring its effect is negli-

gible and all interactions can be treated using the well understood electromagnetic

force.

As a result of this basic condition, it is possible to utilise “safe” Coulomb ex-

citation to obtain spectroscopic properties of excited states in nuclei via the mea-

surement of the excitation cross-sections. The observation of the level population is

usually an indirect process, where the information gained is either the subsequent

decay via γ-ray (or possibly even internally-converted electron [41]) emission, or the

kinetic energy of the collision partners as a function of angle. The latter is limited

by the intrinsic energy resolution of the experiment and is most useful for experi-

ments utilising light projectiles (protons, α particles and light ions) or potentially

light target nuclei in extremely inverse kinematics, taking advantage of a Helios-like

spectrometer [42, 43].

There have been numerous review articles and books on the subject and a de-
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Chapter 2 Coulomb Excitation

tailed description of the technique and its theory can be found in Refs. [44–47].

Here, a brief description of the relevant theory is outlined in Section 2.1 and the

Coulomb excitation analysis code, Gosia is described in Section 2.2.

2.1 Theoretical description

Early use of Coulomb excitation relied on the validity of first- and second-order

perturbation theory to describe a one-, or at most, two-step process. This relative

simplicity came with the use of light-ion beams and was extensively exploited to

measure collective quadrupole properties of many stable nuclei. Coulomb excitation

of many states with the use of heavy ions presented a problem that became too great

for the perturbation treatment, briefly described in Section 2.1.2. The complexity of

multiple Coulomb excitation meant that a numerical approach had to be developed,

and this is considered in Section 2.1.3. Analysis of Coulomb excitation data requires

the validity of the semi-classical approximation, described in Section 2.1.1, since a

full quantal calculation would be too computer intensive.

2.1.1 The Semi-Classical Approximation

The condition for “safe” Coulomb excitation can be expressed in terms of a classical

picture using the distance of closest approach, b, for a head-on collision. It has been

shown [47] that the nuclei should be separated by a distance of 5 fm so that nuclear

interactions are conservatively below 0.1% of the total excitation. This yields an

expression for the minimum distance of closest approach,

R0

(
A1/3
p + A

1/3
t

)
+ 5 > b =

ZpZte
2

Ep
, (2.1)

whereR0(= 1.25 fm) is the average nucleon radius andAp/t(Zp/t) are the mass(charge)

numbers of the projectile (p) and target (t) nuclei and Ep is the kinetic energy of the
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r

Figure 2.1: Classical depiction of the projectile orbit in the Coulomb field of the
target nucleus, shown at the axes origin. The hyperbolic orbit is essentially the
same as that in Rutherford scattering.

projectile. For the experiments in Chapter 4, the minimum value of b is ≈ 17 fm.

Of course, for the incoming particle to be safely treated classically, the size of

the wavepacket must be much smaller than the relative distance between the two

nuclei. This is achieved when the Sommerfeld parameter, η, is much greater than

unity:

η =
2πa

λ
=
ZpZte

2

~vp
, (2.2)

where a = b/2, half the distance of closest approach, λ is the de Broglie wavelength

of the projectile with a velocity vp and Zpe and Zte are the respective charges of the

projectile and target nuclei.

The hyperbolic trajectory depicted in Figure 2.1 is symmetric which is only true

if the incoming and outgoing energies are similar, i.e. the inelastic scattering can be

approximated to elastic scattering. This introduces another requirement, that the
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energy transfer, ∆E, must be much smaller than the projectile energy, Ep, i.e.

∆E

Ep
<< 1. (2.3)

In practice, symmetrisation of initial and final velocities is used to approximate

this effect, but since the energy transfer is not necessarily at the point of closest

approach, it cannot be accounted for fully.

For heavy projectiles at low energy, the condition η � 1 is fulfilled and usually

(at least it is true for all cases of interest in this thesis), the excitation energy is

small compared to the incoming beam energy. As a consequence of these, the semi-

classical approximation is valid for the analysis of heavy ion Coulomb excitation.

The Coulomb excitation cross section can, therefore, be represented as a product

of the “Rutherford” cross section, σR, and the probability, Pn, of exciting a given

state, |n〉:
dσn
dΩ

= Pn
dσR
dΩ

(2.4)

Here, the standard Rutherford cross-section is given by

dσR
dΩ

=
a2

sin4 (ϑ/2)
, (2.5)

where ϑ is the centre of mass scattering angle and a is half the distance of closest

approach, b, defined in Equation 2.1.

2.1.2 First-order Perturbation Theory

A simple, but in the end impractical, way of viewing the excitation is to treat it

as a first-order perturbation [44] to the time-dependent Schrödinger equation of the

form

i~
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉, (2.6)
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where the Hamiltonian, H(t), can be decomposed into the three distinct parts of

the electromagnetic interaction. These are the monopole-monopole term, H0(t),

which treats the elastic (“Rutherford”) scattering and the classical trajectory; the

monopole-multipole term, V (r(t, θ, φ)), which is responsible for the excitation of

either the projectile or the target nucleus; and the multipole-multipole term, which

accounts for the mutual excitation of both the target and projectile. Mutual exci-

tation is small compared to the excitation of a single partner, since the individual

probabilities are low, and can be neglected. Therefore, the Hamiltonian is expressed

as:

H(r(t)) = H0(r(t)) + V (r(t)). (2.7)

The probability in Equation 2.4 can be generalised for a multi-level system and

given for each excitation path connecting an initial state |i〉 and a final state |f〉,

with angular momenta Ii,f . It is the equal to the squared sum of the transition

amplitudes, aif , averaged over all magnetic substates, Mi and Mf ,

Pif =
1

(2Ii + 1)

∑
MiMf

|aif |2 . (2.8)

The perturbation approach is valid when the electromagnetic interaction is weak

compared to the total energy of the system. This condition is fulfilled for light ions

exciting a single state in the target nucleus, for example. The transition amplitudes

can then be defined in terms of the nuclear frequency, ω = ∆E/~, which is associated

to the excitation energy, ∆E = Ef − Ei and the interaction strength between the

two states:

aif =
1

~

∫ ∞
−∞
〈f |V (r(t))|i〉eiωtdt. (2.9)

The matrix element in Equation 2.9 can be evaluated by expanding the monopole-
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multipole interaction into the constituent multipole components:

V (r(t)) = 4πZ ′e
∞∑
λ=1

λ∑
µ=−λ

1

2λ+ 1

1

r(t)λ+1
Yλµ(θ(t), φ(t))T (Eλ, µ), (2.10)

where Z ′ is the atomic number of the other collision partner, Yλµ(θ(t), φ(t)) are the

normalised spherical harmonics with angles θ and φ in the centre of mass frame

and T (Eλ, µ) is the electric multipole moment of the nucleus undergoing excitation.

Here, the magnetic multipoles can be neglected since magnetic excitations scale

with (v/c)2 and are, in the non-relativistic case, much smaller than their electric

counterparts.

Substituting Equation 2.10 into Equation 2.9 the excitation amplitudes in terms

of the nuclear matrix elements can be evaluated as:

aif =
4πZ ′e

i~
∑
λµ

1

2λ+ 1
〈IfMf |T (Eλ, µ)|IiMi〉Rλ,µ. (2.11)

A simplification is made by representing the orbital integral by

Rλ,µ =

∫ ∞
−∞

eiωtSλ,µ (t) dt =

∫ ∞
−∞

eiωt
1

r(t)λ+1
Yλµ (θ(t), φ(t)) dt (2.12)

and the reduced matrix elements can be given using the Wigner-Eckart theorem:

〈IfMf |T (Eλ, µ)|IiMi〉 = (−1)If−Mf

 If λ Ii

−Mf µ Mi

 〈If ||Eλ||Ii〉. (2.13)

These reduced, transition matrix elements are related to the transition strengths,

B(Eλ), by Equation 1.8. Substituting these into Equation 2.8 and, in turn, Equation

2.4, we obtain the differential Coulomb excitation cross-section, for each electric
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multipole:

dσEλ
dΩ

=

(
2πZ ′ea

~

)2
B(Eλ)

sin4
(
ϑ
2

)∑
µ

|Rλ,µ|2, (2.14)

with the total differential cross-section for Coulomb excitation being the sum over

all multipoles:

dσCE
dΩ

=
∞∑
λ=1

dσEλ
dΩ

. (2.15)

2.1.3 Multiple-step Coulomb Excitation

Multiple-step Coulomb excitation was outlined as early as 1956 by Alder and

Winther [48] and subsequently expanded upon. A detailed outline of this early

work is given in Chapter 5 of Ref. [45]. The treatment of the excitation probability

can be represented as a coupled set of differential equations, where all possible paths

are considered. The amplitude of an excitation to a state k, now depends on the

couplings to all states n, namely the matrix elements defined in Eq. 2.13 and the

energy difference between the levels, Ek − En. Of course, the probability, or more

precisely, the amplitude for exciting the state n, an, is a crucial factor, one which

further depends on couplings to all other states, including the state k,

dak
dt

= −i4πZ1,2e

~
∑
n

an (t)
it

~
(Ek − En)

∑
λµ

(−1)µ Sλ,µ (t) · 〈IkMk|T (Eλ, µ)|InMn〉.

(2.16)

Integration of these complex, coupled differential equations requires a numerical

approach. The solution to such a problem has been refined in the coupled-channel

computer code, Gosia, described in Section 2.2. For an in-depth look at the nu-

merical methods used, see Chapter 6 of the Gosia manual of Ref. [49].
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2.2 The Gosia Analysis Code

The analysis of multiple Coulomb excitation data was first treated numerically in

the deBoer-Winther code [50]. The program treats the population of many nuclear

levels via the quadrupole interaction by integrating the set of coupled differential

equations, numerically. The decay is then treated and the angular distribution of

the γ rays is computed. However, the input requires a certain knowledge of the

quadrupole properties of the nucleus and as such, depends on the use of nuclear

models. This issue and many more, such as the treatment of higher multipole

orders (vital for this analysis, in particular), was overcome by Czosnyka, Cline and

Wu with the introduction of the Gosia code [4].

The Gosia code can be used to calculate excitation cross-sections following

multiple Coulomb excitation, given a set of electric and magnetic multipole matrix

elements, E1 – E6, M1 and M2. For the simulation of an experiment, optimum

angles and target/beam species can be found, whereas for analysis of real data,

comparisons to these calculations can be used to fit the matrix elements to a number

of data, in a model independent way. The most important observable is the γ-ray

yield of a given transition, following the decay of a state which has been populated in

the collision. This comparison is possible as the code also treats the decay of excited

states governed by the very same matrix elements that determine the excitation.

The assumption that these two processes are independent, and separated in time, is

supported by a much faster excitation (∼ 3× 10−21 s) than γ-ray de-excitation time

(∼ 10−14 – 10−9 s in the nuclei of interest).

Other, independent data can be included in the fit, such as lifetimes of excited

states, known matrix elements, branching ratios and E2/M1 mixing ratios.

To calculate the cross-section and consequently the γ-ray yields, an integration

of the coupled-channel differential equations is performed numerically, using a fast

approximation described in the manual [49]. This calculation is done at a single
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value of energy and angle and gives the “point” yields, Ypoint((Ii → If ), E,Θ).

Further integration over solid angle, Θ, and beam energy, E, (Equation 2.17) gives

the integrated yields,

Yint(Ii → If ) =

∫ Ef

Ei

1

dE/dx
dE

∫ Θ1

Θ2

Ypoint((Ii → If ), E,Θ) sin(Θ)dΘ. (2.17)

Computing these integrations, with up to 30 meshpoints and 50 sub-meshpoints for

each of dE and dΘ, is time consuming, although it is performed only once as the

recalculation is sped up with the use of average energy and angle values. These

average point yields, Yave(Ii → If ), are corrected by a constant factor to match the

integrated yields and only if the matrix elements diverge significantly is it necessary

to recalculate the correction factors with a re-integration.

The least-squares statistic used by Gosia is very similar to χ2 with the exception

that it is normalised to the total number of data points, N, rather than the number

of degrees of freedom. This is due to the difficulty in determining the degrees of

freedom since each parameter and datum have hugely varying degrees of sensitivity

in the fit. The statistic S, is shown, simplified:

S =
1

N

(∑
i

1

σ2
i

(
Y exp
i − Y calc

i

)2
+
∑
j

1

σ2
j

(
dexp
j − dcalc

j

)2

)
(2.18)

where Y represents the gamma-ray yield for each measured transition in each data

set, i and the superscripts “exp” and “calc” are for the experimental and calculated

values, respectively, while σ is the uncertainty on the relative yield (i.e. factoring

in errors due to efficiency determination and background subtraction). The second

summation is over the number of independent data, j, where d represents the value

of each datum input and its associated error, σ.
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2.2.1 Limitations

Comparisons to quantum-mechanical calculations in simple systems have been made

to test the validity of the semi-classical approximation and overall differences in pop-

ulation were found to be ≈ 3%. However, some cancellation of this systematic effect

comes from using the comparison of relative de-excitation γ rays in the analysis [51].

The depolarisation of the nuclear alignment due to the highly-fluctuating hyper-

fine fields of the recoiling atom is known as the de-orientation effect. This is re-

sponsible for the attenuation of the angular distribution of the de-excitation γ rays,

something which can be corrected for when introducing attenuation coefficients, Gk.

In Gosia, the Gk coefficients are estimated using a two-state model [52, 53] and

have been shown to be a good fit to experimental data [51]. In the end, this effect

is not great in this experiment since the Miniball array covers a large fraction of the

solid angle.
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Experimental setup

The Coulomb excitation of the unstable 220Rn and 224Ra nuclei was performed at

the ISOLDE facility, CERN in August/September 2010 and September 2011. To

date, the study of 224Ra sets a record for the heaviest post-accelerated, radioactive

ion beam (RIB) at ISOLDE, with the exception of the quasi-stable 238U, and in-

deed the world. This chapter briefly describes the production of the nuclei studied

(Section 3.1) and their acceleration through the REX linac (Section 3.1.2) to the

Miniball spectrometer (Section 3.2).

3.1 The Radioactive Isotope Facility, ISOLDE

ISOLDE is a rare-isotope facility utilising the Isotope Separator On-Line tech-

nique, based at CERN in Geneva, Switzerland. The radioactive isotopes are pro-

duced in high energy, proton-induced reactions with a target material designed with

chemistry, as well as nuclear physics, in mind. The protons arrive from CERN’s

PS Booster with an energy of 1.0 or 1.4 GeV and impinge on the primary ISOLDE

target with a maximum current of 2.0 µA. Fission, fragmentation and spallation

reactions have so far produced more than 600 isotopes of 70 elements from uranium

carbide, molten lead and silicon carbide primary targets, amongst others. Up to
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700 A of electrical current (equivalent to around 2000◦C for a UCx target) can be

applied to the target to provide heating so as to thermalise the products and speed

up the effusion and diffusion processes which govern the extraction of the species of

interest and its subsequent ionisation. More detailed information on the ISOLDE

facility is given in Reference [54].

3.1.1 Isotope production

Selection of the target material and ion source combination is crucial in extracting

a high ion yield, and is dependent on the species of interest. In this work, two

chemically very different elements are studied, one, radon, is a noble gas and the

other, radium, is a group-two metal with a relatively low ionisation potential. In

both cases, a natUCx target was used, impinged with 1.4 GeV protons at an average

intensity of ' 1.4µA. However, the differences come in the ion source and transfer

line combinations. For 224Ra, the most simple set-up can be used, that of a heated

transfer line made of tungsten, or indeed, tantalum, which has a higher thermionic

work function than radium allowing for surface ionisation. It is not possible to use

surface ionisation for 220Rn because of the high ionisation potential of radon. There-

fore, a plasma-ion source [55] is used, with a water-cooled transfer line which has

the effect of suppressing the less volatile ions and reducing isobaric contamination.

Upon leaving the target, the 1+ ions are accelerated to 30 keV and the isotope

of interest is selected with the High Resolution Separator (HRS), a series of dipole

and quadrupole magnets which separate according to the mass-to-charge ratio [56].

Accounting for efficiency losses through the HRS (effHRS ' 80%), trapping and

charge breeding (effREX ' 60 – 65%) and post-acceleration (effEBIS ' 3 – 5%),

the production yield of 224Ra has been estimated at 3 × 107 pps. For 220Rn, the

same efficiency values are assumed, leading to an estimated production yield of

1.0× 107 pps.
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Figure 3.1: Rate of particles incident on the CD detector during and after protons
were impinged on the primary target. The average current of the 1.4 GeV protons
was 1.4 µA before the target was taken “off-line”.

“Off-line” mode

The extraction of 224Ra from the primary target can continue without a proton cur-

rent on the primary target made possible by a combination of the relatively long half

life of the isotope itself (T1/2 = 3.66 days) and the α-decay parent nucleus, 228Th

(T1/2 = 1.9 years). The former facilitates the survival of the species of interest until

it travels from its point of production, through the target matrix, to the transfer line

and subsequent acceleration, while the latter ensures an equilibrium is reached be-

tween extraction and production, yielding a reasonable production intensity without

direct production of 224Ra.

Data for the 224Ra experiment was split between on-line and off-line mode, where

the respective beam intensity at Miniball has been estimated at 5.8 × 105 pps and

6.2 × 104 pps, respectively, using the calculated cross-section for excitation of the

112Cd target. This represents a factor of ' 9 reduction in production yield from
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the primary target when the heating and isotope production is reduced without a

proton current.

The assumption of an equilibrium is valid only when the chemistry of the parent,

i.e. thorium, ensures it remains inside the target mass. As can be seen in Figure 3.1,

the production rate decreases with time after protons are turned off as this is not

the case for a long period. The immediate exponential drop observed is likely due

to the cooling caused by the removal of the high proton current as well as the lack

of direct production, hence it is difficult to ascertain the amount of nuclei produced

via decay with respect to the proton-uranium reaction.

3.1.2 Post-acceleration: REX-ISOLDE

The Radioactive beam EXperiment (REX) is designed to accelerate the RIB from

ISOLDE up to energies of 3.0 A.MeV. The final beam energy achieved during the

experiments in this thesis were 2.85 A.MeV in 2010 and 2.82 A.MeV in 2011. The

REX project has been outlined in References [57–63], and the design and com-

missioning report of Reference [64] contains a greater degree of technical details.

Here, a summary of the acceleration procedure will be presented and a schematic

representation can be seen in Figure 3.2.

30 keV 1+ beam

REXTRAP

EBIS

A
/Q

sep
arator

RFQ IHS 7-Gap . . . 9-Gap resonators

0.3→ 1.2 A.MeV 2.2 A.MeV 3.0 A.MeV

Figure 3.2: A schematic diagram of the REX accelerator. The energy at each step is
indicated in red. The beam is delivered from the HRS at 30 keV in a 1+ charge state
(left to right in the diagram), bunched and charge bred to achieve a mass-to-charge
ratio of 4.0 ≤ A/Q < 4.5 before mass separation and acceleration to the target
position inside Miniball.
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Bunching and charge-breeding

The semi-continuous 1+ beam, from ISOLDE’s HRS, is injected into REXTRAP [65,

66], a Penning trap designed to cool and bunch the ions. The cooling process, or

deceleration, occurs firstly due to a high voltage barrier which reduces the 30 keV

beam down to energies of eV magnitude, and then through collisions with an argon

or neon buffer gas.

Charge breeding is achieved with an Electron Beam Ion Source (EBIS) [66–68],

required for mass separation and to make compact linear acceleration feasible (the

first element, the RFQ, requires that A/Q < 4.5. A 2-T superconducting magnet is

used to confine a beam of mono-energetic electrons with a current up to of 500 mA

which strip electrons via impact ionisation.

The trapping time is governed by the charge-breeding time, which in turn de-

pends on the required charge state. For these heavy nuclei with A ≥ 220, a charge

state of Q ≥ 50+ is required to achieve an mass-to-charge ratio < 4.5, leading to

a large breeding time of 400 ms, incurring increased efficiency losses. Charge ex-

change in the trap also causes loss of some 1+ ions. However, the largest “bottle

neck” with regards to the efficiency comes from the ions being distributed about a

number of charge states in EBIS, resulting in an overall trapping/breeding efficiency

of (effEBIS ' 3 – 5%).

Mass separation and acceleration

Before injection into the linear accelerator, the beam, now consisting of n+ ions, is

passed through a mass separator with a resolution of ∆(A/Q)
A/Q

' 100 [64]. At this

stage, beam contaminants can come from the residual gas (atmospheric and REX-

TRAP buffer gas), amongst other sources, if a charge state of Q = n+ reproduces a

inseparable A/Q value. However, since these are a much lower mass than the beam

species of interest (at least in this thesis), their cooling profile in REXTRAP is very
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different, and these contaminants can be suppressed [69], although this mode of

operation was not utilised for the experiments here. Some light mass contaminants

are present at a low level in the 220Rn(52+) and 224Ra(52+) beams, however, their

kinematics are very different and the scattering events can be disentangled with

relative ease in Miniball.

Injection into the Radio-Frequency Quadrupole (RFQ) is the first step of the

post-acceleration of the RIB [60, 61, 70]. This structure accepts the re-accelerated,

5 A.keV, n+ ions from EBIS and enhances the energy to 300 A.keV. A rebunching

takes place before injection to the IH structure, which further accelerates the beam

to a variable energy between 1.1 and 1.2 A.MeV. Following this, a series three 7-gap

resonators increase the beam energy to 2.2 A.MeV before the final cavity, a 9-gap

resonator accelerates the beam to the final energy of ≤ 3.0 A.MeV.

Lead shielding and a concrete tunnel have been constructed to reduce

bremsstrahlung radiation at Miniball caused by secondary electrons in the accel-

erator gaps.

3.1.3 Timing

The specific timing of the ISOLDE facility is schematically presented in Figure 3.3.

Extraction of the beam from REXEBIS triggers the linear accelerator’s 800-µs RF,

“on-beam” window, 100 ms before injection. Usually, the entire release from REXE-

BIS occurs within the first ≈300 µs, but with large beam intensities, this causes

pile-up events in the detectors and increases dead-time. To counteract this, a “slow-

extraction mode” has been achieved reducing the instantaneous particle intensity at

Miniball, prolonging the bunch with to around 500 µs.

The trigger from REXEBIS also opens an “on-beam” window for the Miniball

spectrometer (see Section 3.2). During this 800 µs window, aligned with the accel-

erator’s RF window, the data acquisition system records all information with each

27



Chapter 3 Experimental setup

Time [s]

Time [s]

Time [ms]

Time [ms]

Time [ms]

Time [µs]

REXTRAP

REXEBIS

Linear accelerator

(A)

(B)

(C)

(D)

(E)

(F)

1.2 s

2.4 s

100 ms

800 µs ∼4–10 ms 800 µs

100ms

Figure 3.3: Schematic of the specific timing at ISOLDE. (A) The supercycle of pro-
ton bunches of ≈ 100 µs width from CERN’s PS Booster separated by 1.2 seconds.
The ISOLDE primary target receives an allocation of the bunches, shown in black,
while others in the supercycle are distributed to other experiments. (B) Release pro-
file of produced isotopes from the primary target. The release curves of 220Rn and
224Ra will be very different due to the varying half-lives and ionisation mode. (C-D)
REXTRAP and REXEBIS beam bunches, synchronised with (E) the RF window of
the REX linac. (F) The 800 µs “on-beam” and “off-beam” time windows using the
Miniball setup.
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Figure 3.4: Photographs showing the Miniball clusters (not from this experiment,
but reproduced from Ref. [73]) closed around the target chamber as well as the
inside of the target chamber. The targets, positioned on the rotary target wheel,
along with the CD detector are visible.

signal in each and every detector segment, individually timestamped. This later

allows for a full reconstruction of the real events and coincidences.

3.2 Miniball

The Miniball spectrometer consists of eight triple-cluster HPGe detectors, each with

6-fold electronic segmentation. The array features a close geometry design, covering

up to 65% of the 4π solid angle, and as a consequence has high detection efficiency

for γ rays. Full design specifications and a greater degree of detail can be found in

References [71, 72].

The high granularity of the detector array ensures good determination of the

position of interaction, required for the determination of the angle for Doppler shift

correction. Simply taking the centre of a given segment as the interaction point

gives sufficient position sensitivity (limited by angular resolution of CD detector,
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see Section 3.2.1), although pulse-shape analysis techniques have been shown to

improve the effective granularity by a factor of ≈ 17 [71].

The Miniball set-up at REX-ISOLDE is the subject of a detailed review which

can be found in Reference [74]. Presented in this section are the details and mea-

surements, relevant to this thesis.

3.2.1 CD Detector

The CD detector is so named due to its physical similarity to a Compact Disc. It is,

in fact, a Double-Sided Silicon Strip Detector composed of four quadrants each with

16-fold segmentation on the front side (annular p+n junction strips) and 24 n+n

ohmic, radial strips on the back, electronically paired to give a 12-fold, electronic

segmentation. The Si wafer has a thickness of 60 µm, providing ample of stopping

for the heavy ions in this thesis, plus an inactive layer of between 0.3 and 0.8 µm of

aluminium.

Back

81.6◦ (active)

3.4◦ width

83.9◦ (physical)

3.5◦ pitch

Front

9 mm40.9 mm

2 mm pitch

1.9 mm width

Figure 3.5: Schematic drawing of the double-sided silicon strip detector. There are
small, 0.1 mm, inactive regions between the 1.9 mm wide annular strips and similarly,
0.1◦ inactive regions separate the 3.4◦ wide secular strips. The inner radius is 9 mm.
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The azimuthal symmetry of the particle detector allows for a simple relationship

to be made with scattering angle, while the high granularity aids in the angular

correlation to coincident γ rays allowing for a well-determined Doppler correction.

The energy of the detected particle is also used for determination of velocity in

the Doppler-shift formula of Equation 3.2, and to identify projectile- and recoil-

scattering events.

3.2.2 Efficiency determination

The γ-ray detection efficiency in the Miniball array needs to be known to good

precision since this will impact on the uncertainty in the measured yields. A mea-

surement took place before the beginning of the experiment in both 2010 and 2011

to determine the relative efficiency curve of the complete Miniball array in the en-

ergy range of interest. Sources of 152Eu and 133Ba were placed at the target position

giving data points as low as 53 keV and as high as 1408 keV. The parameterisation

used to determine the relative efficiency curve is shown below.

log(ε) = a+ b · x+ c · x2 + d · x3 + e · x4, (3.1)

where ε is the relative efficiency, x = log
(
Eγ
E0

)
and a – e are free parameters.

Using the measured relative intensities from the Evaluated Nuclear Structure

Data File (ENSDF) at NNDC [75], one can fit an efficiency curve to the 152Eu data

points. The average ratio between this curve and the 133Ba data points, N , is then

calculated and a second curve constructed with the addition of the normalised 133Ba

data points. This normalisation is left as a free parameter during the fit of the

second curve. The resulting fit parameters and their respective errors, obtained

using gnuplot [76] and checked with topfit [77], are listed in Table 3.1 and the

efficiency curves shown in Figures 3.6 and 3.7.
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Figure 3.6: Relative efficiency curve for the complete Miniball array as determined
in August 2010 with the add-back procedure on.
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Figure 3.7: Relative efficiency curve for the complete Miniball array as determined
in August 2011 with the add-back procedure on.
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Figure 3.8: Relative efficiency curve for the complete Miniball array as determined
in August 2011 with the add-back procedure off.

The E0 factor is used to distribute the relative error correctly. Each parameter,

a-e, has an error associated with it, extracted from the least-squares fit procedure

and their contributions to the total error are added in quadrature. Except for the

parameter a, all parameters have an energy-dependent contribution and this tends

to zero when Eγ = E0. Therefore, E0 is found using an iterative approximation to

reproduce a consistent energy dependent uncertainty function in the region where

there is data. An E0 value which is too small forces the error bars to increase at

higher energy whilst decreasing the error bars at low energy, such that it becomes

unphysical, and vice versa. For the current Miniball setup, it was found that a value

of E0 = 325 keV was most appropriate.
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Table 3.1: Tabulated relative efficiency parameters of Equation 3.1 describing the
fitted curves in 2010 and 2011 with and without the addback (AB) procedure turned
on, shown in Figures 3.6, 3.7 and 3.8.

2010 2011 with AB 2011 without AB

a = 2.683± 0.010 4.238± 0.011 4.212± 0.007

b = −0.645± 0.013 −0.529± 0.015 −0.635± 0.009

c = −0.04± 0.02 −0.032± 0.023 −0.060± 0.014

d = 0.128± 0.010 0.092± 0.011 0.100± 0.006

e = −0.058± 0.010 −0.048± 0.011 −0.040± 0.007

3.2.3 Add-back routine

An add-back procedure is employed in the Miniball array so that events occurring

in neighbouring detectors, i.e. the same cluster, within a ±100 ns time window are

added to give a single event. This allows for the full energy a single γ ray, which

has under-gone a Compton scattering process and thus produced multiple “hits”

in neighbouring detectors, to be reconstructed, therefore, increasing efficiency. The

energies of the two or more events are summed and the segment with the highest

energy is assumed to be the position of the first “hit”.

Using 133Ba and 152Eu sources at the target position, the relative intensity of

different γ rays with and without the add-back procedure, known as the AB-factor,

has been measured and is shown in Figure 3.9. It is clear that there is a gain in

efficiency above ∼ 250 keV and any loss in efficiency below this is measured to be,

at most, 5%. Of course, random coincidences with γ rays emitted from radioactive

nuclei in the target chamber or other background sources is possible, and this is the

likely cause of the loss of efficiency at lower energies, since the Compton scattering

cross-section decreases with decreasing energy.

The AB-factor is also affected by incorrect “add-back” of true γ-γ events, emitted

in a cascade, since the timing resolution is not sufficient to distinguish these from

Compton scattering events. This can be seen by an increase in the intensity of γ-ray
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Figure 3.9: Ratio of Miniball efficiency with and without add-back. Data points
are the ratios of the efficiencies of γ-decay lines from the 152Eu and 133Ba sources
while the line shows the ratio of the two fitted efficiency curves shown in Figures 3.7
and 3.8 and is not a fit to the data itself. Please note that the error on this ratio
becomes very large at low energies.

sum peaks, such as the 437 keV peak (see Figure 3.10) caused by the pile-up of the

356 keV and 81 keV γ rays. This effect results in a sum peak in the spectra of 220Rn

at 534 keV (see Section 4.2 and Figure 4.7).

3.2.4 Determination of Ge-detector positioning

The detector clusters of the Miniball array are mounted on a flexible frame allowing

rotation of the clusters about the target position. Both the polar (θclu) and azimuthal

(φclu) angles of each detector with respect to the incident beam can be adjusted

during the installation of the clusters, as well as the rotation about its own axis

(αclu). Therefore, to determine angles precisely, a calibration method is necessary.

Utilising the dependence of the Doppler shift on polar angle (as in Equation 3.2),

and knowledge of the fixed cluster geometry, the parameters determining the cluster

positioning can be fitted.
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Figure 3.10: Miniball γ-ray spectra taken with the 152Eu and 133Ba sources in place
showing the 437 keV sum peak caused by the pile up of the 81 keV and 356 keV
γ rays in 133Cs following electron capture in 133Ba. The blue spectrum is taken with
the add-back procedure on and the red spectrum without add-back. The add-back
procedure incorrectly sums γ rays in a cascade which are both detected in the same
cluster making it more probable that a pile-up event will occur and increasing the
intensity of the sum peak seen in the spectra.

Calibration with 22Ne

A 22Ne beam is taken to the Miniball target position where a 1.9 mg/cm2 thick, 98%-

deuterated polyethylene target is placed. Two reactions, namely 22Ne(d, γp)23Ne and

22Ne(d, γn)23Na, populate excited states in the product nuclei, which then decay via

440 keV and 1017 keV γ-ray transitions, respectively.

Since the reaction is a case of extreme inverse kinematics, the maximum scatter-

ing angle is small, plus, the average polar angle over the 2π azimuthal range is zero,

meaning the angle of the γ ray can be treated independently of the emitted nucleus.

Therefore, the measured Doppler shift in each segment of the Miniball array, is a

direct measurement of the recoil velocity, β, and the polar angle, θseg. Since all

segments in a single cluster (3 detectors×6-fold segmentation= 18 segments) have a

fixed geometry relative to each other, a fit of the Doppler shift in each can be made

to a total of 5 parameters, (dclu,θclu,φclu,αclu, β), where dclu is the distance from the
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interaction point in the target to the interaction point in the Ge crystal.

β can be determined using a combination of LISE++ [78] and SRIM2010 [79]

and is fixed to be equal for all clusters, although, it is left as a free parameter in

the final fit to ensure convergence. Similarly, θclu is coupled for pairs of detectors by

virtue of them being fixed to the same arm, allowing for further coupling in the fit.

The detector distance, dclu, is not well determined since the mean-free path of

γ rays in a solid material is non-zero and dependent on their energy. Since the γ-ray

energies of interest in this thesis are relatively low in energy, the 440 keV transition

is used for the determination of the angles, although good agreement has been found

using data for both transitions.

The fit method is a simple and crude, iterative grid search, in which the starting

parameters and limits are determined from reading the physical angles from the

Miniball support frame. The frame angles are already a good starting point and

can be determined to within ±5◦. Each parameter is varied independently, keeping

all other fixed at their starting values and the best fit value, determining using a

χ2-type least-squares test, is stored. The new parameters are iteratively fed back

into the grid search until a decrease in the total χ2 is no longer obtained. Local

minima cannot be differentiated from the true, global minimum with this iteration

procedure, and so many different starting values must be used to test the validity

of the fit. In the final analysis, there are many χ2 minima which sit very close

together, however, the φclu angle, for example, varies by a maximum of 0.3◦ between

the different solutions.

3.2.5 Doppler correction

The velocity of scattered projectiles and recoiling target nuclei are significant enough

to cause Doppler shift of the emitted photons. The energy of the detected γ ray is
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shifted according to:

Eγ =
γE0

1− β cosϑ
, (3.2)

where E0 is the energy in the nucleus frame of reference, β is the nucleus’ velocity in

units of c, ϑ is the angle of the emitted γ ray with respect to the nucleus direction of

motion and γ is the Lorentz factor 1/
√

1− β2. Using knowledge of the Ge-detector

segment which is first “hit” by the γ ray and the segment of the CD detector in

which the particle deposits its energy, a correlation between particle angles (θp, φp)

and γ-ray angles (θγ, φγ) can be made:

cosϑ = sin θp sin θγ cos (φp − φγ) + cos θp cos θγ. (3.3)

By dividing E0 by Equation 3.2 and substituting in Equation 3.3 one can extract a

Doppler correction factor that can be used to correct the γ-ray energy,

E0

Eγ
=

1

γ
(1− β (sin θp sin θγ cos (φp − φγ) + cos θp cos θγ)) . (3.4)

Further to this, β can be determined from the energy deposited in the CD detector

(Ep in units of MeV) and the simple kinetic energy relationship, β =
√

2Ep/m0c2,

where m0 is the mass of the detected particle in units of MeV/c2.

Kinematic reconstruction

Every event needs to be corrected according to Equation 3.4, and to do this, both β

and θ need to be determined on an event-by-event basis. This is a simple task when

the particle and the γ ray which it emits are detected in coincidence. However, if

the other collision partner is detected, say the target recoil when Doppler correction

is required for the scattered projectile or vice versa, then a kinematic reconstruction

is required to establish the projectile angle and velocity. The approximations used

for these cases are shown in Appendix A.
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Broken Miniball segments

Events occurring in dead segments are identified when a signal is observed only in

the core, with no coincident segment signal. Since the add-back procedure uses

the full energy signal at the core, but the angular information from the segments

and the latter information is missing, zero values are registered for the angle. This

leads to an incorrect Doppler correction factor for these events. This is seen as a

misshapen peak and is not immediately obvious in the data until each cluster is

plotted individually. In these spectra, the effect manifests itself as a small peak or

“bump” on the edge of the correctly Doppler corrected events.

The solution is to trap these events during the sort procedure, i.e. those which

have a core signal but no segment signal, and reassign the respective (θγ, φγ) angles

with those of the core. This determines the angles with a great enough precision to

provide sufficient Doppler correction at the recoil velocities in this thesis.

39



Chapter 4

Coulomb excitation of 220Rn and

224Ra

This thesis centres on the investigation of E3 matrix elements in nuclei where oc-

tupole correlations are expected to be strongest, namely 220Rn and 224Ra, have been

studied so far. Coulomb excitation (see Chapter 2) is the only reasonable way of

accessing E3 transitions in these nuclei, and since they and the neighbouring nu-

clei in the actinide nuclei are unstable, radioactive ion beams (see Chapter 3) are

required. This chapter presents the spectroscopy of the 220Rn and 224Ra beams and

the segmentation of the data into different target and scattering angle combinations.

Target selection

Both beams were studied using nickel (Z = 28), cadmium (Z = 48) and tin

(Z = 50) targets, providing differing kinematics, and therefore differing sensitiv-

ity to the Coulomb excitation process. In the case of the cadmium experiments,

114Cd (220Rn,220 Rn∗) and 112Cd (224Ra,224 Ra∗), the increased probability of target

excitation coupled with their relatively well-measured spectroscopic properties leads

to the possibility of an absolute cross-section, and therefore beam intensity, measure-
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ment. However, this information is not required for the final analysis of Chapter 5

as both nuclei studied have precise measurements of the lifetimes of their first ex-

cited, 2+ (and 4+ in the case of 224Ra) states, providing a well defined normalisation.

Consequently, a 120Sn target was used in the study of both nuclei because of the

very high first 2+ energy and low probability of target excitation. Not only does this

reduce any, already negligible, effects to the semi-classical approximation, the lack

of γ-ray de-excitation of the target results in spectra without the high background

from the Compton scattering caused by a high-energy transition. A lighter target

in 60Ni, also with large E2+ and low B(E2; 2+ → 0+), gave increased sensitivity to

single-/multi-step excitation and reduces the feeding from higher states to the 3−

state of interest.

4.1 Event selection

The timing scheme for the Miniball setup at ISOLDE is laid out in detail in Ref. [74].

In the following (Section 4.1.1), the definition of prompt and random events will be

outlined and the background subtraction technique described. The particle gating,

which leads to the selection of the (Z, θ) experiments, is described in Section 4.1.2.

4.1.1 Time windows

The time difference between the detection of a γ ray, and a particle in the same

EBIS pulse, is used to determine whether or not they are correlated. The prompt

coincidence window is determined from Figure 4.1, which shows the true coincident

events in a peak around 600 ns wide. Events outside of this peak can be attributed

to the correlation of a γ ray with an elastically scattered particle from a different

collision to the one which caused the excitation. These random events are used

to determine the background spectra, which are subtracted from the prompt co-
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incidence spectra scaled by the width of the respective time windows, assuming a

background constant rate across the correlation time used.

Downscaling problems

In 2011, when data was taken with the 220Rn beam, a downscaling factor, n, of 2 was

used to reduce the number of randomly correlated, elastically scattered particles,

with the goal of improving dead-time and reducing the size of the raw data. An

800 ns hardware time window is triggered by the detection of a γ-ray in Miniball

and only 1 in 2n particles (25% in this case) which fall outside of this window are

written to the data stream. This, however, caused unforeseen problems since the

delayed particles appear to fall close to the edge of the 800 ns γ-ray trigger (Figure

4.1 (b)).

When downscaling is used, the background subtraction isn’t so simple. To over-

come the artificial variation in the random spectra due to downscaling, the γ-ray

de-excitation of β- or α-decay daughter nuclei can be utilised. The radioactive beam

scatters into the walls of the chamber or remains implanted in the Si wafer of the

CD detector, subsequently decaying. Excited states are formed in the daughter

nuclei and their γ-ray decay is randomly correlated to particle events, providing

time-independent background peaks in the spectra, the intensities of which can be

used to normalise the prompt and random windows.

More importantly still, the possibility of prompt events being downscaled means

that the particle-γ efficiency is compromised and cannot safely be assumed to follow

the γ-ray singles curve. Since the timing resolution of a Ge detector degrades with

lower energy γ rays the effect on the efficiency is energy dependent. Figure 4.2 shows

four normalised time difference spectra gated on different energy transitions. The

lowest energy gate is on the X rays at 85 keV and it is clear that the large tail on

the right-hand side of the peak is caused mainly by the poor timing resolution of
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Figure 4.1: (a) Particle-γ time difference in the 224Ra on 112Cd experiment. A
software time window about a particle event in the CD detector is positioned such
that all prompt, true γ-ray coincidences are recorded. These are seen in the peak
centred around -2000 ns, where the offset is caused by the different timing properties
of the electronics and a delay on the particle signal. There is no hardware coincidence
condition set and elastically scattered particles, which are randomly correlated to
γ rays, are not downscaled (explained in Ref. [74]). (b) As for (a) but for the 220Rn
on 60Ni experiment where the downscaling was applied. Please note here how the
prompt window overlaps the downscaled region.
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Figure 4.2: Particle-γ time difference in the 220Rn on 60Ni experiment, gated on
the energy range for X rays (red), the 2+ → 0+ transition at 241 keV (blue) and
the 3− → 2+ transition at 421 keV (green). Degradation of timing with decreasing
energy deposited in the Ge detectors is seen in the increase in peak width.

these events. Critically, the events gated on 241 keV transition (the lowest observed

transition in these experiments) do not fall outside of the downscaling window,

supporting the use of relative efficiency curve of Figure 3.7 for this energy regime.

4.1.2 Particle Identification

The use of heavy beams leads to inverse kinematics, where the mass of the projectile

is greater than that of the target mass. This has consequences for the kinematics in

the laboratory frame, namely a maximum projectile scattering angle, θP , given for

elastic scattering by:

sin θP =
mT

mP

√
1− ∆E

EP

(
1 +

mP

mT

)
, (4.1)
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where ∆E is the energy transfer, EP the projectile energy and mT,P the masses of

the target and projectile, respectively. Although, since ∆E << EP , Equation 4.1

can be approximated to elastic scattering and simplified to sin θP = mT
mP

. For 220Rn

on 120Sn, this maximum laboratory angle is 33◦ and can be seen in Figure 4.3 (a).

This leads to an ambiguity between centre of mass angle and projectile angle,

where the laboratory angle has two solutions. These solutions can be separated by

energy, but this becomes troublesome around the maximum angle where problems

are caused by a lack of granularity in the particle detector and energy straggling

caused by the interaction in a target with a finite width. However, no such problem

exists for the target recoils, where the translation from centre of mass scattering

angle to laboratory angle, θT , is single valued. For that reason, the angular range

is defined in terms of the detected recoil and a gate constraining the energy and

angular range is applied to select recoils in the range where there is no ambiguity.

A projectile gate is also defined to determine true coincidences, that is if the first

particle passes the recoil gate and the second passes the projectile gate. If the second

particle does not pass the projectile gate, then it is considered a randomly correlated

particle, and the event is treated on the basis of recoil detection only.

The recoil gate is further split to give two ranges in the centre of mass (CoM)

scattering angle. Events occurring in strips 3–8 of the CD detector are considered

for the high CoM angular range, and those in strips 9–16 for the low CoM angular

range. By splitting the data in this way, sensitivity to the Coulomb excitation cross

section is increased.

4.1.3 Particle Multiplicity

Events are sorted such that each and every detected γ ray is correlated to a single

prompt or random particle (1-p events), two prompt or random particles (2-p events)

or even higher multiplicities (n-p events). It is also possible that a correlation is made
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Figure 4.3: (a) Particle spectrum taken in the CD detector for the
120Sn(220Rn,220Rn∗) experiment at 2.82 A.MeV. The arrows show the direction of
increasing centre of mass (CoM) scattering angle, while the blue dots represent a
target and projectile at the same CoM angle. The z axis represents the number of
events per 2 MeV, per CD strip. Notice that each strip has a different angular pitch
and so it is not proportional to “per degree”. (b) As in (a), but now with the recoil
gate applied. The two inner most strips of the CD detector are not used for the
recoil gate due to the overlap with the projectiles in this region.
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Figure 4.4: Particle
multiplicity for the
112Cd(224Ra,224Ra∗) ex-
periment. The blue circles
(◦) are prompt events, i.e
those inside the prompt
window of Figure 4.1,
while the red crosses (×)
are random events, those
outside of the prompt
window of Figure 4.1,
normalised to the prompt
data using the ratio of the
respective window widths.
Multiplicities greater than
2 account for < 1.5% of
the total events.

between a γ ray and a combination of prompt and random particles and in this case,

the random events are not considered and the particle multiplicity is considered to

be that of the number of prompt particles.

As can be seen in Figure 4.4, the number of events with a prompt multiplicity

greater than 2 represent a small fraction of the total data. These events are caused

by a genuine 2-p event where both recoil and scattered projectile are detected, plus

a number of randomly correlated elastically scattered particles from an independent

collision. However, 3-p events can still be filtered and the random event rejected by

utilising kinematic relationships between the real prompt events. So far, 4-p events

and higher have not been included in the data.

The assumption that the kinematic relationship between projectile and recoil

is clean, is tested in Figure 4.5. If the particle detection efficiency were equal to

100%, every prompt γ ray would be in coincidence with two particles. However,

after setting the condition for recoil detection between 22◦ and 52◦, the correlated

projectile is not detected 16% of the time. Only a factor of 2% can be attributed to
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Figure 4.5: Experimental recoil scattering cross-section as a function of recoil scat-
tering angle for γ-particle and γ-particle-particle events for the 120Sn(224Ra,224Ra∗)
experiment. The data show the number of events per degree in each strip of CD de-
tector, separated into 1-p (red) and 2-p (blue) events, while the black data points are
the sum. The x-axis range represents the angular range spanned by the CD detector
while the dashed vertical lines show the limits of the projectile angle corresponding
to the extremes of the recoil angle.

the dead regions separating the segmented annular rings of the detector, while it is

also possible for a small fraction of events to pass between quadrants of the detector

due to the finite width of the beam spot.

The non-linearity of the 1-p cross-section suggests that other, angular dependent

effects cause the loss of the second collision partner also. At higher laboratory angles

for recoil detection, the correlated projectile is at very low angles close to the inside

edge of the CD detector and it becomes more likely that it will scatter below the

detectable angular range when a finite beam spot width is considered. A small drop

in projectile detection efficiency is also observed at the lowest recoil angles around

24◦, corresponding to projectile angles around the maximum.

By summing 1-p with 2-p (including 3-p or γ-projectile-recoil-random) events

the, albeit small, angular effect on the projectile detection efficiency is eliminated
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and an increase in the total number of events is obtained over the strict selection of

two particle kinematics.

4.2 Spectroscopy of 220Rn via Coulomb excitation

The low-lying level scheme of 220Rn has been previously measured using β- [80, 81]

and α-decay spectroscopy [36, 82, 83]. This was extended, using γ-ray spectroscopy

following multi-nucleon transfer reactions, to high spin by Cocks et. al. [20] and

all odd and even yrast states of the octupole band, up to and including Iπ = 21+,

have been placed. Collated information from the Nuclear Data Sheets [84] is used

to construct the level scheme shown in Figure 4.6. The placing of the new level at

937.9(10) keV and its Iπ = 2+
γ assignment is discussed in Section 4.2.1.

241.0
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404.2
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318.3340.2
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7−1128
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Figure 4.6: Reduced level scheme of 220Rn.

An initial sorting of the data uses a particle event in the CD detector as a

trigger and correlates this to all γ rays which fall inside the time windows described
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Figure 4.7: Gamma-ray spectrum of particle-gamma singles events in 220Rn, Doppler
corrected and background subtracted. Transitions labeled were either previously
observed or determined in this work (see Section 4.2.1). The 534 keV peak, labelled
with a diamond (�), is a sum peak caused by the pileup of the 241 keV, 2+ → 0+

and 293 keV, 4+ → 2+ transitions. The 836(2) keV peak, labelled with a star (?),
is unplaced in this nucleus. Data from Sn and Ni target experiments are summed
but the Cd data is not included for clarity of presentation.

in Section 4.1.1, yielding events of type p-nγ, where n is the number of γ rays in

coincidence with the particle, p. The majority of these events are p-0γ or p-singles

events, since the most likely collision is an elastic one, meaning there is no excitation

and subsequent γ-ray decay associated. Those events with n > 0 are expanded to

particle-gamma singles events and are Doppler corrected, background subtracted

and shown in spectrum of Figure 4.7, which now includes all γ rays definitively

correlated with either a projectile or a target recoil.

Events with n ≥ 2 are reduced to p-γ-γ events and form a γ-γ matrix, the

projection of which is shown in Figure 4.8. The “total statistics” spectra, coupled

with γ-γ coincidence analysis allows confirmation of the known level scheme, along

with the measurement of two branching ratios, presented in Table 4.1. The total
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intensities of all measured transitions are presented in Table B.1 as Experiment

No. “p-γ”.

4.2.1 Vibrational states

In this region of the nuclear chart, vibrational states are observed at low energy,

around 1 MeV. Bands associated to γ and β vibrations have been populated in

heavy-ion Coulomb excitation experiments in neighbouring thorium nuclei [85]. The

level at 937.8(8) keV in Figure 4.6 is proposed to be one such state, namely, the

2+ member of the K = 2, γ-vibrational band. This level has been observed for the

first time in this work, although its decay to the lowest 2+ state was listed as an

unplaced transition in the β-decay studies of Liang et al. [80].

The decay of the 2+
γ state to both the ground state and the first excited 2+ can

be seen in Figure 4.7 in the form of 937.8(12) keV and 696.9(10) keV transitions, re-

spectively. The placement of the level is supported by the energy difference between

the two transitions, 240.9(16) keV, being consistent with the energy difference of

the 2+ and 0+ states, but also by analysis of the γ-γ matrix. The projection, shown

in Figure 4.8, implies that the 937.8 keV transition is not coincident with any other,

while the 696.9 keV transition is coincident with the 2+ → 0+ transition only (see

inset of Figure 4.8).

A transition to both Iπ = 0+ and 2+ states requires the state to be either

I = 1, 2, ruling out I = 3 (and higher) since the ∆I = 3 transition to the ground

state would be greatly hindered compared to the ∆I = 1 transition to the 2+

state. A I = 0 state is also not possible because of the observed γ-ray decay to the

0+ ground state. Coulomb excitation of unnatural parity states, such as a 1+ or

2−, is orders of magnitude less likely than excitation of natural parity states [47].

The significant population of this state, which is not fed from γ-ray de-excitation

(no γ-γ coincidences with the 2+
γ → 0+ transition), implies a 1− or 2+ spin and
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Figure 4.8: Projection of the particle-γ-γ matrix of events with the 220Rn beam.
The matrix is symmetrised with Doppler corrected events and those random in time
are subtracted according to the ratio of the relative prompt/random window widths.
The “bumps” on the left edge of the 241 keV, 2+ → 0+ and 293 keV, 4+ → 2+ peaks
are caused by Compton scattered events. The diamond (�) indicates the 511 keV
annihilation peak, smeared out due to the Doppler correction. The inset figure
shows the projection gated on the 697 keV transition. Data from Sn and Ni target
experiments are summed but the Cd data is not included for clarity of presentation.

parity assignment. A 1− level would be populated via an E3 excitation from the 2+

state, similar to 645 keV level, but the much higher energy difference would require

an impractically large E3 matrix element connecting the states to reproduce the

population observed. Therefore, a Iπ = 2+ assignment is made.

The γ-ray branching ratio for the decay of the state can give an indication of

its structure. Comparisons are made to the prediction of the Alaga rules [86] and

the Bohr and Mottelson rotation-vibration model [6], assuming the same correction

factor, αγ = 0.030, as measured in 232Th [85], shown in Table 4.1. The branching

ratio of the proposed Iπ = 2+
γ state at 938 keV, decaying to the 2+ and 0+ members

of the ground band, agrees well with the rotation-vibration prediction, supporting

the assignment as the K = 2 band head.
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Table 4.1: γ-ray branching ratios in 220Rn, measured in this work, compared with
the predictions of the Alaga rules and the rot-vib model of Bohr and Mottelson.

State (Ii) I1 I2
Yγ (Ii → I1)/Yγ (Ii → I2)

Experiment Alaga Rot-Vib

2+
γ 2+ 0+ 2.1± 0.5 0.32 2.41

1− 2+ 0+ 0.26± 0.12 0.49 —

4.2.2 Data segmentation

As discussed at the start of this Chapter, and Section 4.1.2, the data is segmented to

give different (Z,θ) combinations (see Section 5.1 for details). A lighter target with a

lower-Z value reduces the probability of multiple-step Coulomb excitation, leading

to sensitivity to different excitation paths. This effect can be seen in the γ-ray

spectrum of Figure 4.9, where the data taken on the Ni (Z = 28) and Sn (Z = 50)

are compared. The population of the 4+ state is reduced by a factor 2 relative to

the 2+ state when the nickel target is used, whereas the 3− state, populated by a

single-step E3 excitation, shows an increase in the relative population.

Segmentation into different angular ranges is possible due to the granularity of

the CD detector. Recoil events occurring in the inner-most strips (low laboratory

angle) of the detector correspond to high centre of mass scattering events, while the

outer strips (high laboratory angle) contain scattering events at low centre of mass

scattering angle. This provides two angular ranges for which the Coulomb excitation

cross-section is sensitive, resulting in different level populations between the data

sets. This is obvious in Figure 4.10 where the γ-ray intensities of the transitions

are very different, especially for the states populated in multiple-step processes. For

example, the 6+ → 4+ intensity is enhanced in the high centre of mass range due to

the increased probability of multiple-step Coulomb excitation.
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Figure 4.10: Comparison of high centre of mass (CoM) scattering angular range
(blue) and low CoM angular range (red) with the 220Rn beam on 120Sn target. As
with the change of target Z, the change in angle yields different cross sections for
exciting states with the variation in intensities reflecting this.

54



Chapter 4 Coulomb excitation of 220Rn and 224Ra

4.3 Spectroscopy of 224Ra via Coulomb excitation

There have been numerous studies of the level structure of 224Ra in the past and as

such, the level scheme is rather well determined at low-energy. Asaro, Stephens and

Perlman [7] identified the first observed low-lying odd-spin states in this nucleus,

back in 1953. Populating states in 224Ra via the α decay of 228Th [83], limits

the number of levels that can be observed, however, β-decay of 224Fr populates a

large number of low-spin states [87], identifying, in particular, the excited 2+ state

assumed here to be the band-head of the K = 2 γ-vibrational band. Two-neutron

pickup [28] and knockout [29] and most significantly, multi-nucleon transfer reactions

[20], have placed the yrast levels up to Iπ = 26+ among others. A reduced level

scheme showing the positive- and negative- parity band, and the vibrational level

discussed in Section 4.3.1, is presented in Figure 4.11, where the level and γ-ray

energies are extracted from Ref. [88].

The data is sorted in the same way as the 220Rn data (see Section 4.2) and the

particle-γ spectra, containing the total statistics, can be seen in Figure 4.12, while

the γ-γ projection is presented in Figure 4.13. The 2+ → 0+ transition at 84.4 keV

sits in the region of the x-rays, making it difficult to extract the intensity of the peak

and forms a doublet with the 85.4 keV, Kα2 peak. Utilising the measured relative

intensity to the Kα1 X rays [89], it is possible to fit all three peaks in question

simultaneously, to extract the 84.4 keV yield. However, doing this requires the

coupling over fit parameters such as the peak width, and the fixing of the centroid

of the Kα2 peak. This introduces large uncertainties in the other, free parameters,

specifically the peak area, leading to the rather large uncertainties for the yields of

the 2+ → 0+ transition. Unfortunate as this is, the 4+ → 2+ transition is measured

to better than 5% in all cases and provides a robust normalisation point for the

Gosia analysis of Section 5.2.2 when coupled with the precise (∆τ
τ

= 5%) lifetime of

the 4+ state. Since the lifetime of the 2+ state is also independently measured with
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Figure 4.11: Reduced level scheme of 224Ra.

a 3% uncertainty, the matrix element controlling the excitation to this state, namely

〈0+||E2||2+〉, is determined without the requirement for precise yield measurements.

4.3.1 Vibrational states

A state has been observed at 965.5 keV in 224Ra, both in this experiment and

that of Kurcewicz et. al following the β decay of 224Fr [87]. The spin and parity

assignment in that experiment is given tentatively as Iπ = 2 and is assumed to

be the band-head of the K = 2 γ-vibrational band. Statistics for the two de-

exciting transitions are not as high as for the similar state observed in 220Rn (see

Section 4.2.1), however, γ-γ coincidences do confirm the state’s placement in the

level scheme of Fig. 4.11. Further to this, the measured γ-ray branching ratio,
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Table 4.2: γ-ray branching ratios in 224Ra, measured in this work, compared with
previous measurements, the predictions of the Alaga rules and the rotation-vibration
model of Bohr and Mottelson, where appropriate.

State (Ii)
I1 I2

Yγ (Ii → I1)/Yγ (Ii → I2)

Experiment Previous [88] Alaga Rot-Vib

2+
γ 2+ 0+ 1.1± 0.4 1.67± 0.19 0.90 6.73

1− 2+ 0+ 0.48± 0.05 0.515± 0.009 0.45 —

5− 4+ 3− 1.8± 0.4 4± 2 — —

presented in Table 4.2, reproduces that expected from the Alaga rules [86] for a

∆K = 2 transition and is also consistent with the previously measured value. Also,

the limit given on the transition strength in Table 5.6 (< 3 W.u), is of the order

that is expected for a 2+
γ → 0+ transition in this region. However, this is not strong

enough evidence alone for a confident assignment of this state’s configuration and

therefore we rely on systematics of similar 2+ states in this region to justify the

K = 2 assignment for the purposes of this analysis.

4.3.2 Data segmentation

Just as with the 220Rn data (see Section 4.2.2), the data is segmented (see Section 5.1

for details) to increase sensitivity to different excitation paths and therefore, better

determine the matrix elements in the Coulomb excitation analysis of Chapter 5.

Figure 4.14 contains the total statistics spectra for the Ni and Sn targets where the

effect of changing the target Z on the multiple-step excitation probability, is clear.

The data is also segmented by scattering angle, using two recoil gates, one rep-

resent the higher laboratory (lab) angle or low centre of mass (CoM) angle and the

other being the low lab and high CoM angle. These two data sets are compared for

the 112Cd target in Figure 4.15.
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is used, see 8+ → 6+ intensity.
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probability of multiple-step Coulomb excitation increases with CoM scattering angle
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Analysis and Results

The data is analysed using the Gosia code, previously described in Section 2.2.

Gosia has been used similarly to extract E2 and E3 matrix elements in 148,150Nd

and 226Ra [3, 23, 31, 90]. An explanation of the input required is presented in a

detailed way in the manual [49]. Here, in Section 5.1, a summary of the important

input will be presented along with a “recipe” of how the matrix elements are fit to the

data in Section 5.2. Extraction of the statistical error on the fitted matrix elements

is described in Section 5.3 and the further subsections describe methods used to

ensure confidence in the final fit and estimate further systematic contributions to

the uncertainties. The results of the final fits are presented for 220Rn and 224Ra in

Sections 5.4 and 5.5, respectively.

5.1 Gosia Input

For the calculation of the excitation cross section, information on the beam and tar-

get species, along with beam energy and scattering angle, are required to determine

the kinematics. Further to this, the nuclear-structure information, energy levels and

matrix elements, of the nucleus to be studied must also be defined. The partner

nucleus requires no structure information, since it is assumed that no mutual exci-
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Table 5.1: Summary of Gosia “experiments”

Projectile Target (thickness) Beam energy Angular range (lab) No.

220Rn

114Cd (2.0 mg/cm2) 620.40 MeV
22.05◦–37.75◦ 1
37.86◦–51.80◦ 2

120Sn (2.3 mg/cm2) 620.40 MeV
22.05◦–37.75◦ 3
37.86◦–51.80◦ 4

60Ni (2.1 mg/cm2) 620.40 MeV
22.05◦–37.75◦ 5
37.86◦–51.80◦ 6

224Ra

112Cd (2.0 mg/cm2) 633.92 MeV
23.94◦–40.32◦ 1
40.43◦–54.32◦ 2

120Sn (2.0 mg/cm2) 633.92 MeV
23.94◦–40.32◦ 3
40.43◦–54.32◦ 4

60Ni (2.1 mg/cm2) 631.68 MeV
23.10◦–39.87◦ 5
39.30◦–53.23◦ 6

tation takes place. All possible E1, E2, E3 and E4 couplings for yrast states up

to Iπ = 12+ are included and initial values estimated using the rigid-rotor model

of Equation 1.7 and Qλ values extracted from known lifetimes or comparisons to

previously measured matrix elements in the neighbouring nucleus, 226Ra. It is im-

perative that higher, unobserved levels are included in the calculation since use of

the coupled-channel system results in an overestimation of the transition amplitude

to the final level.

The proposed γ-band, observed in both 224Ra and 220Rn, is included up to

Iπ = 4+, where the unobserved 3+
γ and 4+

γ levels are included only for the rea-

son already explained and are assumed to be situated 50 keV and 100 keV above

the 2+
γ state, respectively. The starting values for the matrix elements represent a

ground state to 2+
γ transition strength of 1 W.u. and are all coupled to this 1 free

variable using Equation 1.7. M1 transitions are included to account for de-excitation

of the vibrational states to the ground band, although these have no effect on the

Coulomb excitation process.
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Table 5.2: Additional spectroscopic data used in the Gosia analysis.

Nucleus Datum Ref. Notes

220Rn

τ2+ = 210.6(72) ps [91, 92] weighted average

b.r.(1−) = 0.43(8) [80] Iγ(1−→2+)

Iγ(1−→0+)

b.r.(5−) = 4.1(14) [20] Iγ(5−→4+)

Iγ(5−→3−)

b.r.(7−) = 0.41(13) [20] Iγ(7−→6+)

Iγ(7−→5−)

224Ra

τ2+ = 1073(27) ps [92, 93] weighted average

τ4+ = 261(13) ps [92]

b.r.(1−) = 0.515(9) [88] Iγ(1−→2+)

Iγ(1−→0+)

b.r.(3−) = 50(20) [88] Iγ(3−→2+)

Iγ(3−→1−)

b.r.(5−) = 3.9(20) [88] Iγ(5−→4+)

Iγ(5−→3−)

b.r.(7−) = 0.133(43) [20] Iγ(7−→6+)

Iγ(7−→5−)

b.r.(2+
γ ) = 1.67(19) [88]

Iγ(2+γ→2+)

Iγ(2+γ→0+)

The data in this thesis, described in Sections 4.2 and 4.3, was taken on three

different targets and each was segmented into two angular ranges for recoil detec-

tion, thus there are six (semi-)independent data sets or “experiments” to be input,

summarised in Table 5.1. The target thickness is defined using the incident and

exit beam energy, calculated using SRIM [79], which in turn define the integration

limits Ei and Ef . The angular range is defined using the recoil detection angles in

the laboratory and is assumed to be symmetrical in φ, hence the integration limits

in the centre of mass frame, Θ1,2, can be calculated by the code unambiguously.

For each experiment, the efficiency-corrected γ-ray intensity, or yield, together

with the associated uncertainty, for every observed transition above a user-defined

threshold is given in a separate file, read by the code at run time. The uncertainties

given at this point include not only the statistical errors, encapsulating the effect of

subtracting background events and cleanliness of the fitted peak, but also a factor

which represents the uncertainty on the relative efficiency of the Miniball spec-
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trometer. Proper treatment of the angular distribution also requires the detector

geometries, including size and angle about the target position, which are determined

in Section 3.2.4.

Previously measured spectroscopic properties are included as further data points

and those used are given in Table 5.2 along with the appropriate references. These

data are removed after the final fit to ensure that the results, and consequently

the uncertainties, are independent of previous experiments. It is not possible to

determine a fully independent fit in 224Ra, however, as the lifetime of the 2+ state is

required to compensate for the large uncertainties on the 2+ → 0+ transition yields.

5.2 Fitting Procedure

An oversimplification of the procedure used to extract the matrix elements is to

say that the code fits a number of parameters (the matrix elements) to reproduce

the measured data (the γ-ray yields). The best solution is the one that produces

the lowest total χ2 (the S function, Eq 2.18). To be sure that the fit converges

correctly, it needs to be over-defined and have more data than free parameters, es-

pecially in this case where the sensitivity to data or parameters can vary by many

orders of magnitude. Free parameters aren’t exclusive to the matrix elements. Since

the γ-ray yields are only a relative measurement, a normalisation constant for each

“experiment” is also required and in all cases outlined here. This normalisation is

theoretically calculable for data segmented only by angular range, since the inte-

grated beam current is equal and therefore the difference between them is only a

factor related to the inelastic cross section. However, it is not possible to calcu-

late this factor in the current version of Gosia [49] and so these remain as free

parameter in the fit. In the case that Gosia is improved to allow this relative nor-

malisation of experiments, the number of normalisation constants for each isotope

studied would be three, instead of six, since each different target data-set would
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require normalisation.

The least-squares search follows a procedure that needs to be optimised depend-

ing on the situation. A choice is made by the user whether to turn on or off certain

features, including when to use the full calculation or the approximation, which

can speed up or slow down the process of finding a minimum. This optimisation

includes the possibility to switch between a steepest decent minimisation and a gra-

dient plus derivative method, the latter of which uses the second-order information

of the least-squared surface to better locate the direction of the search, especially

when sharp valleys in the multi-parameter surface are present. These sharp valleys

are common place in such analyses and are caused by strong correlations between

two or more parameters, a feature of branching ratio data. The Gosia manual [49]

describes the numerical aspects in detail.

5.2.1 The 220Rn Minimum

The final analysis of the 220Rn data involved a total of 30 experimental yields for

eight different transitions over six “experiments” (tabulated in Appendix B, Ta-

ble B.1) plus the four additional spectroscopic data from Table 5.2, including the

lifetime of first excited 2+ state at 241 keV, known to 3.4% accuracy. Freely varying

matrix elements total 15 (those of Table 5.5) while there are also six independent

normalisation constants which are also varied in the fit.

Although there are 15 matrix elements varied in the fit, the rest are not fixed, but

coupled to the nearest matrix element of the same multipolarity which is free and

lower in energy. The coupling is such that the ratio of the two matrix elements gives

the same intrinsic moment in the rigid-rotor model of Equation 1.7. Main examples

of these coupled parameters are the diagonal matrix elements, discussed in Section

5.3.5, and the insensitive E3 matrix elements connecting high-lying excited levels

in the band. In the first case, releasing the coupling can have an effect on the
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fit, since the increase in the number of free parameters, and the relative sensitive

nature of diagonal matrix elements (via the static quadrupole moment and the re-

orientation effect [94]) allows for an unphysical reduction of the least-squares statistic

per degree of freedom. In the latter case, the insensitivity of these matrix elements

slows the fit down by increasing the parameter space unnecessarily. This reduction

of parameters extends to higher-spin E2 matrix elements and all unobserved E1 and

E2 transitions, whereas all E4 matrix elements are fixed throughout (see Section

5.3.4).

The results of the fit are presented in Section 5.4. The final uncertainties are

calculated with all matrix-element couplings removed so as not to perturb the χ2

surface. The least-squares statistic of Equation 2.18, S, for the final minimum is

equal to 0.86.

Independence of the fit

It is crucial that the minimum taken as the best fit, is unique and not localised

from a true, deeper minimum. To test this, and to be sure that the final fit is

independent of the starting parameters, the input was randomised. The couplings

were left in place, but all free parameters were given random starting values within

reasonable limits. For example, in band, transitional E2 matrix elements could take

a value between ±9.9 eb and E3 matrix elements between ±5.0 eb
3
2 . An integration

over energy and angle is performed using these random values and new correction

factors obtained, before a new set of random matrix elements are calculated and

many iterations of the fitting procedure ran. At this point, the χ2 remains much

higher than the point found at the suspected minima and since the matrix elements

are now very different to those used for the calculation of the correction factors, a

re-integration is performed. After this, the fit converged with only the relatively

insensitive E1 matrix elements lying far from the values in the suspected minimum.
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To solve this problem, parameters which control the fit were optimised to allow a

large number of iterations of a small step size and the code was allowed to perform

many hundreds of iterations before terminating. Doing this allowed the original

minima to be reached, confirming the model-independent nature of the result.

The coupling of insensitive matrix elements could be seen as “model dependence”

and so various coupling schemes were investigated. Predictably, the values of insen-

sitive matrix elements do not impact on the fit and so too the coupling has no effect

on the overall result. Only the relative phase of the matrix elements are fixed and

remain a source of model dependence. This absolute sign is arbitrary and so, follow-

ing the conventions of Gosia, a positive matrix element is used to connect states

whose wave functions have the same intrinsic phase, remembering that the sign of

the Clebsch Gordan coefficient is negative when If−Ii−λ < 0. The assumption here

is that all states within the octupole band have the same intrinsic phase. Switching

the relative phase of the dipole and octupole moments is tested in Section 5.3.2.

5.2.2 The 224Ra Minimum

The 224Ra data analysis used a total of 48 experimental yields for ten different

transitions over six “experiments” (tabulated in Appendix B, Table B.2) plus the

seven additional spectroscopic data from Table 5.2. Of these data, the lifetimes

of the first excited 2+ state at 84.4 keV and 4+ state at 250.7 keV, are measured

with 2.5% and 5% uncertainty, respectively. A total of 16 matrix elements (those of

Table 5.6) are varied in the fitting procedure along with six normalisation constants.

The investigation of the minimum followed in the same way as 220Rn (Sec-

tion 5.2.1), including the technique used to ensure the independence of the fit. The

final uncertainties are calculated with the all matrix-element couplings removed. In

testing the independence of the fit, all additional spectroscopic data was removed

with the exception of τ2+ , which is required to compensate for the contamination of
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the 2+ → 0+ peak due to the X rays. The results of the fit are presented in Section

5.5. The least-squares statistic, S, for the final minimum is equal to 0.55.

5.3 Error Analysis

Usually, the uncertainties from a multi-parameter, least-squares fit would be esti-

mated using a curvature matrix or by finding the width about the minima where

the normalised χ2 increases by unity. The former method cannot be applied here

for many reasons, notably that the assumption of quadratic behaviour in χ2 is not

valid for Coulomb excitation data and that the gradient of this curve may never

truly reach zero. This imperfection in the fit is not a problem for the determination

of the central values of the parameters which are sensitive to the fit, but an unrea-

sonably large number of iterations to insignificant parameters is required to reach a

“perfect” minimum. The χ2 + 1 method implies that all parameters have equal or

at least similar significance, whereas the nuclear matrix elements, which are the fit

parameters in this case, can vary by many orders of magnitude in their sensitivity

to the data.

5.3.1 Statistical Errors

For the reasons discussed, a method of estimating the statistical errors in Coulomb

excitation analyses that does not require the assumption of quadratic behaviour of

χ2 or a perfect minimum, has been developed by Lesser and Cline [95, 96]. A full

derivation of this method can be found in the Gosia manual [49], along with the

numerical estimations used by the Gosia code. Here, a simplified description of the

process used to determine an error estimation, is given.
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Diagonal Errors

The error calculation is separated into two steps to manage the computation time

and provide a method of determining the quality of the fit. The first step is the

calculation of the diagonal errors, or the error on a single matrix element whilst all

others are kept fixed. This can be used to ensure that the error bars of all sensitive

matrix elements are close to symmetric as dramatic asymmetries at this point is an

indicator that the true minimum is not yet achieved. The code also checks whether

the least-squares statistic, S, improves significantly during this one-dimensional scan

of the parameter space and prints a message to the user making it easier to predict

where a better solution may lie.

Correlated Errors

A full calculation of the errors relies on knowledge of the sensitivity of a given matrix

element; information which is obtained from the diagonal error estimation. This

information is also used to define a “maximum correlation curve”, that is, a direction

in the parameter space whereby a change in χ2 when changing a given parameter is

offset to the maximum degree by changes in other, correlated parameters. Scanning

along the line of this path for a given matrix element, while allowing all other

matrix elements to vary, reproducing a minimum S, χ2 is evaluated. The positive

and negative values at which the integral becomes 68.3% of the total range, up to a

maximum/minimum value determined from the diagonal calculation, is used as the

estimate of the uncertainty on the matrix element in question.

5.3.2 E1/E3 relative phase

Coulomb excitation experiments are sensitive to the relative phase of the E1/E3

moments [97]. Using, in principle, the same technique as Amzal et al., [97], the

population of the 3− state in 224Ra was calculated assuming different signs of the
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product of Q1 and Q3 as defined in the rotational model. The sensitivity becomes

significant only at high centre-of-mass scattering angles, and Experiments 1, 3 and

5 of Table 5.1 show a variation between the positive and negative solutions of less

than 10% in the population of the 3− state.

Changes in the magnitude of the E1 and E3 matrix elements wash away any

small changes in level population and therefore, both solutions must be considered

and the differences in the resulting matrix elements factored into the overall uncer-

tainty. The differences between the two solutions, presented in Table 5.4, is small

and the χ2 of the final fit is almost identical. Here, the assumption is that the

relative phase is positive, since there clearly isn’t sufficient sensitivity to distinguish

between the two solutions.

In 220Rn, the effect is smaller and the difference between the two solutions where

Q1 ·Q3 > 0 and Q1 ·Q3 < 0 is < 1% for the population of the 3− state. However, a

variation in the matrix elements is still observed and included as a systematic error

in Table 5.4.

5.3.3 Beam energy and target thickness

There can be a systematic error introduced due to the uncertainty in the beam

energy (±0.7% [64]) and target thickness (assumed to be ±0.1 mg/cm2). Since

Gosia does not account for these sources of error in the matrix elements, and no

simple relationship exists between the measured matrix elements and experimental

factors such as beam energy, a brute force investigation is required to determine the

magnitude of the uncertainty in the results.

By using the extremes of beam energy and target thickness at 3σ to define the

incoming and exit beam energies, an estimation of the systematic uncertainty in the

matrix elements can be obtained. Here, the largest increase in cross-section would

come from a thick target and high beam energy, whereas the lower limit of the
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Table 5.3: Effect of different assumptions on matrix elements in 220Rn. The table
shows percentage differences in the matrix elements found at the two different chi-
squared minima in each case. The first column refers to E1/E3 relative phase effects,
the second column to beam energy and target thickness errors and the third column
to diagonal matrix element assumptions.

Matrix Q1 ·Q3 ↑ / ↓ XS DME

Element % diff. % diff. / 2
√

2 % diff.

〈0+||E1||1−〉 0.25 0.23 5.6

〈2+||E1||1−〉 0.23 0.19 5.6

〈2+||E1||3−〉 0.17 0.7 59

〈4+||E1||5−〉 2.5 2.5 6.2

〈6+||E1||7−〉 2.0 2.3 8.1

〈0+||E2||2+〉 0.10 0.0008 1.2

〈2+||E2||4+〉 0.012 1.4 0.002

〈4+||E2||6+〉 0.8 2.4 0.73

〈1+||E2||3+〉 0.08 2.6 9.5

〈3+||E2||5+〉 0.08 2.6 9.5

〈0+||E2||2+
γ 〉 2.3 2.3 21

〈0+||E3||3−〉 1.3 1.7 8

〈2+||E3||1−〉 1.8 2.7 9

〈2+||E3||3−〉 2.6 1.7 3.1

〈2+||E3||5−〉 2.6 2.8 3.1

cross-section is represented by a combination of a thin target and a reduced beam

energy.

The average difference between the values of each matrix element at these two

solutions is used to calculate the systematic error, i.e |ME↑i −ME↓i |/2
√

2. The

factor
√

2 is intended to account for the lack of proper quadratic addition of the two

extremes in beam energy and target thickness.

As can be seen in Tables 5.3 and 5.4, also Figures 5.1, 5.2 and 5.3 for 224Ra,

the effect is larger as spin increases due to the multiplicative effect of under- or

over-estimating the population of each intermediate state in multiple excitation.
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Figure 5.1: Magnitude of E1 matrix elements extracted from Gosia assuming dif-
ferent beam energy and target thickness conditions. The uncertainties represent
the initial statistical errors, uncorrected for the coupling of matrix elements. See
Section 5.3.3 for details
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Figure 5.2: Similar to Fig. 5.1 but for E2 matrix elements.
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Table 5.4: Effect of different assumptions on matrix elements in 224Ra. The table
shows percentage differences in the matrix elements found at the two different chi-
squared minima in each case. The first column refers to E1/E3 relative phase effects,
the second column to beam energy and target thickness errors and the third column
refers to the effect of switching of E4 matrix elements.

Matrix Q1 ·Q3 ↑ / ↓ XS E4 = 0

Element % diff. % diff. / 2
√

2 % diff.

〈0+||E1||1−〉 0.0 0.0 0.0

〈2+||E1||1−〉 0.0 0.0 0.0

〈2+||E1||3−〉 1.5 2.0 0.0

〈4+||E1||5−〉 0.5 0.8 0.0

〈6+||E1||7−〉 0.3 1.6 0.0

〈0+||E2||2+〉 0.4 0.02 0.3

〈2+||E2||4+〉 0.04 0.4 0.5

〈4+||E2||6+〉 0.11 1.6 1.6

〈6+||E2||8+〉 1.7 2.2 5.0

〈1+||E2||3+〉 0.9 1.5 0.7

〈3+||E2||5+〉 0.8 1.7 0.6

〈0+||E2||2+
γ 〉 0.12 14.7 1.2

〈0+||E3||3−〉 0.8 0.22 0.9

〈2+||E3||1−〉 0.6 1.5 1.4

〈2+||E3||3−〉 0.07 12.4 0.4

〈2+||E3||5−〉 2.0 2.0 0.6

5.3.4 E4 matrix elements

It is clear that, in this region of the nuclear chart, there is a non-zero value for the

electric hexa-decapole (E4) matrix elements. A measurement of B(E4; 4+ → 0+)

has been made in the neighbouring 226Ra [3]. From this, it is possible to extract

a hexa-decapole moment (Q4 = 2.55(35) eb2) assuming the nucleus behaves like a

rigid rotor.

During the Gosia investigation, it was very clear that the data from this ex-

periment lacked sensitivity to the E4 matrix elements (1σ error bars > 200% for
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Figure 5.3: Similar to Fig. 5.1 but for E3 matrix elements. Stretched, I ′ = I − 3,
and unstretched, I ′ = I − 1, matrix elements are represented by crosses (×) and
open circles (◦), respectively.

example), and so the assumption that Q4 is equal in 224Ra and 226Ra is used. For

220Rn, the simple assumption that Q4(226Ra)
Q4(220Rn)

= β4(226Ra)
β4(220Rn)

holds true is used. The mea-

sured Q4 value is taken from Ref. [3] and theoretical β values from Ref. [13]. Since

the resulting E4 matrix elements are so small, their effect is negligible.

All E4 matrix elements are calculated from the rigid-rotor formula and kept

fixed during the analysis with diagonal matrix elements fixed to be 0 eb2. To test

the effect of this assumption on the 224Ra fit, another fit was performed with all

E4 matrix elements equal to zero and the result is shown in Column 4 of Table 5.4.

Since the E4 matrix elements in 220Rn are so small, their effect is neglected in the

calculation of the uncertainties.
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5.3.5 Diagonal E2 matrix elements

The diagonal E2 matrix elements represent the spectroscopic quadrupole moment of

a state. In this experiment, there is not sufficient sensitivity (uncertainties > 200%)

to the matrix elements to allow them to vary as free parameters and so they are

coupled to the corresponding transitional E2 matrix element which depopulates the

state. To do this, it is necessary to assume a ratio obtained from model dependence,

in this case the rigid-rotor model. States in 224Ra are assumed to behave like a

perfect rigid rotor as, to good approximation, so too does 226Ra. Also, the ratio

B4/2 (according to Equation 1.11) is very close to the rigid-rotor value of 1.43.

This cannot be assumed with such confidence in 220Rn since the B(E2; 4+ → 2+)

value is not known and the E(4+)/E(2+) implies less collectivity than the higher-

mass radon isotopes. Initial values can still be obtained from the rigid-rotor model

as the B(E2; 2+ → 0+) is known from the measured lifetime of the 2+ state and the

effect on the final fit assuming different values for the diagonal E2 matrix elements

(DMEs), investigated.

Three simple conditions are used to investigate the magnitude of this effect

on the measured matrix elements. All DMEs are coupled to the nearest, freely

varying, transitional E2 matrix element below the state and the ratio fixed to the

ratio of the rigid-rotor prediction. The DMEs are then either positive, negative

or zero. The chi-squared value is lowest for the negative solution and highest for

the positive. The absolute difference between these two solutions is considered an

additional systematic error and is presented in Table 5.3.

5.4 220Rn Results

All sensitive matrix elements in 220Rn that were allowed to vary in the fit and

represent a real, physical measurement are presented in Table 5.5. For example,
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Table 5.5: Magnitude of measured matrix elements in 220Rn, extracted from the
Gosia analysis. Error bars represent 1σ while limits are 3σ.

Matrix elements [efmλ] B(Eλ) ↓ [W.u.] Qλ [efmλ]

〈0+||E1||1−〉 < 0.10 < 1.5× 10−3 < 0.02

〈2+||E1||1−〉 < 0.13 < 3× 10−3 < 0.019

〈2+||E1||3−〉 < 0.18 < 2× 10−3 < 0.02

〈4+||E1||5−〉 0.028± 0.009 3.0+2
−1.6 × 10−5 2.6± 0.8× 10−3

〈6+||E1||7−〉 < 1.3 < 0.5 < 0.10

〈0+||E2||2+〉 137± 4 48± 3 434± 14

〈2+||E2||4+〉 212± 4 63± 3 419± 9

〈4+||E2||6+〉 274± 14 73± 8 429± 20

〈1−||E2||3−〉 180± 60 6050
30 420± 150

〈3−||E2||5−〉 220± 150 60100
50 400± 300

〈0+||E2||2+
γ 〉 32± 7 2.6± 1.1 100± 20

〈0+||E3||3−〉 810± 50 33± 4 2180± 130

〈2+||E3||1−〉 < 2600 < 760 < 6000

〈2+||E3||3−〉 < 5300 < 1400 < 12000

〈2+||E3||5−〉 1700± 400 90± 50 3000± 700

the 〈2+||M1||2+
γ 〉 value is not presented since this is related to 〈2+||E2||2+

γ 〉 via the

mixing ratio which is undetermined in the fit and hence, is not truly measured. It

is left free, however, as it is sensitive to the branching ratio to the decay to the 0+

ground state, a data point which must be fit since both decays are observed.

It is possible to calculate the transition multipole moments for each measured

matrix element, assuming the rigid-rotor model of Equation 1.7. These have been

plotted as a function of the initial spin, Ii, for each of the dipole, quadrupole and

octupole moments in Figure 5.4. A straight line has been drawn which represents

the weighted average of these values, assuming Qλ is independent of spin. This as-

sumption seems consistent with the data, although there are only two measurements

of Q3, which is not enough to draw conclusions on rigid-rotor behaviour since similar

behaviour can be explained with the coupling of a octupole phonon to a rotational

band, as will be explained in Section 6.2.
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A strong indicator of the independence of this measurement comes in the repro-

duction of the measured τ2+ [91, 92] when all additional spectroscopic data points are

removed from the Gosia fit. The uncertainties presented in Table 5.5 are indepen-

dent of these data and represent only the sensitivity to, and statistical uncertainties

of the measurements in this thesis, plus the systematic errors of Table 5.3. In ad-

dition, lifetimes of the 4+ and 6+ states can now be calculated as 66 ± 3 ps and

28± 3 ps, respectively.

The state at 939 keV, with proposed (Iπ, K) = (2+, 2), has a transition strength

measured to be 2.7(11) W.u., which is similar to the value of 2.9(3) W.u. measured

in 230Th [98] and 3.47(17) W.u. in 232Th [99] for the respective states in those nuclei.

5.5 224Ra Results

The final extracted matrix elements in 224Ra are presented in Table 5.6. The uncer-

tainties reflect the sensitivity to the matrix elements, the systematic errors outlined

in Table 5.4 and the statistical error, without the inclusion of additional spectro-

scopic data outlined in Table 5.2. The one exception to this is τ2+ , which is included

to account for the large uncertainties on the γ-ray yield, therefore 〈0+||E2||2+〉 is

not an independent measurement.

It has been shown that the 4+ lifetime, previously measured by Neal and Kraner [92]

(τ4+ = 261(13) ps), is consistent with the analysis here under all circumstances. This

data point is therefore used to attest to the validity of the analysis procedure and

the independence of the results. Using the B(E2) values in Table 5.6, lifetimes for

the even-spin states that have not yet been measured, assuming the decay branch

is 100% E2, are calculated as τ6+ = 76± 6 ps and τ8+ = 30−7
+8 ps.

The transition multipole moments for each measured matrix element, assuming

the rigid-rotor model of Equation 1.7 have been calculated and plotted as a func-

tion of initial spin in Figure 5.5. The assumption that Qλ is independent of spin
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Table 5.6: Magnitude of measured matrix elements in 224Ra, extracted from the
Gosia analysis. Error bars represent 1σ while limits are 3σ.

Matrix elements [efmλ] B(Eλ) ↓ [W.u.] Qλ [efmλ]

〈0+||E1||1−〉 < 0.018 < 1.5× 10−3 < 0.02

〈2+||E1||1−〉 < 0.03 < 3× 10−3 < 0.019

〈2+||E1||3−〉 0.026± 0.005 3.9+1.7
−1.4 × 10−5 3.0± 0.6× 10−3

〈4+||E1||5−〉 0.028± 0.009 3.0+2
−1.6 × 10−5 2.6± 0.8× 10−3

〈6+||E1||7−〉 < 0.10 < 3× 10−4 < 0.10

〈0+||E2||2+〉 199± 3 98± 3 632± 10

〈2+||E2||4+〉 315± 6 137± 5 623± 11

〈4+||E2||6+〉 405± 15 156± 12 630± 20

〈6+||E2||8+〉 500± 60 180± 60 660± 80

〈1−||E2||3−〉 230± 11 93± 9 540± 30

〈3−||E2||5−〉 410± 60 190± 60 710± 110

〈0+||E2||2+
γ 〉 23± 4 1.3± 0.5 73± 12

〈0+||E3||3−〉 940± 40 42± 3 2520± 90

〈2+||E3||1−〉 1370± 140 210± 40 3200± 300

〈2+||E3||3−〉 < 4000 < 600 < 8000

〈2+||E3||5−〉 1410± 19 61± 17 2400± 300

fits well to the data, especially in the case of quadrupole deformation, where the

transition, or intrinsic, quadrupole moments, measured up to Iπi = 8+, are con-

sistent with a weighted average of Q2 = 624(10) efm2. However, the quadrupole

moment calculated from 〈3−||E2||5−〉 implies a drop in collectivity for the odd-spin,

negative-parity states. The large uncertainty on this value, and the lack of more

data points, may not be enough to draw definitive conclusions on the differences

between the odd- and even-spin structures, however, a similar feature is seen in the

neighbouring 226Ra [3].

The octupole moments, Q3, shown in the bottom panel of Fig. 5.5, also fol-

low the prediction of the rigid-rotor model. This may imply that the odd-spin,

negative-parity states are coupled rotationally to the ground-band, even-spin states

(see Section 6.1).
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Discussion

The results presented in the previous chapter, Tables 5.5 and 5.6, show that sen-

sitivity to the E3 matrix elements can be achieved using Coulomb excitation of

post-accelerated radioactive ion beams (RIB). This sensitivity is demonstrated in a

Gosia simulation of the 224Ra experiment (see Figure 6.1), where the E3 matrix

elements are switched off and the resulting γ-ray yields are compared. The popula-

tion of the odd-spin negative-parity states are shown to be strongly dependent on

the octupole coupling, allowing for the determination of B(E3; 3− → 0+) with less

than 10% precision.

To help interpret the multipole moments, it is useful to calculate the βλ de-

formation parameters. These are evaluated numerically using Equations 1.3 to 1.6

(assuming β5, β6 = 0) and have been compared to neighbouring nuclei in Table 6.1,

where the Qλ values are calculated from 〈0+||Eλ||λ(−1)λ〉 in each case. These pa-

rameters do not differentiate between dynamic and static collectivity and therefore,

supplementary information is required to distinguish these modes. A representation

of the surfaces of the two nuclei of interest have been drawn according to Equa-

tion 1.2 in Figure 6.2.
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6.1 Interpretation of Collectivity

Collective odd-spin negative-parity states can be either vibrational or rotational in

nature. The former produces I− states via the coupling of an octupole phonon to

(I − 3)+ rotational states while the latter arise due to the rotation of an reflection-

asymmetric charge distribution. For octupole-vibrations it is expected that all E3

matrix elements between states other than those coupled via an octupole phonon,

i.e. 〈(I − 3)+||E3||I−〉, vanish.

Information is available in part for 224Ra, specifically the measurements of

〈2+||E3||1−〉 and 〈2+||E3||3−〉, which are both consistent with the rigid-rotor pre-

diction, however, there is no sensitivity in either nucleus to matrix elements such as

〈1−||E3||4+〉 and 〈3−||E3||6+〉. This would require a much larger number of (Z, θ)

combinations, or the observation of an E3-decay branch, which is unreasonable due

to the negligible probability compared to E1 or E2 decay.
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Table 6.1: Multipole moments, Qλ, and deformation parameters, βλ, in 220Rn and
224Ra, determined from this analysis. For comparison, values in neighbouring nuclei
measured via Coulomb excitation are also included along with their references.

Nucleus Q2 [efm2] Q3 [efm3] β2 β3 β4 Refs.

208Pb 179± 4 2100± 20 0.048 0.102 0.067 [100, 101]
220Rn 434± 14 2180± 30 0.119 0.095 0.002a —
224Ra 632± 10 2520± 90 0.154 0.097 0.080a —
226Ra 717± 3 2890± 80 0.165 0.104 0.123 [3]
230Th 900± 6 2140± 100 0.202 0.074 0.114 [98, 102]
232Th 962± 5 1970± 100 0.211 0.070 0.192 [99, 103]
234U 1047± 5 2060± 120 0.220 0.067 0.138 [98, 102]

a) Value of β4 is taken from Ref. [13] and normalised to the measurement of 226Ra.

Looking to the behaviour of the energy levels, specifically the relative alignment

of the negative-parity states to the positive-parity rotational band it is possible to

characterise the structure of the nucleus as a function of spin [22]. The energy

displacement can be defined as

δE(I) = E(I−)− 1

2

[
E
(
(I + 1)+

)
+ E

(
(I − 1)+

)]
. (6.1)

In the limit of stable octupole deformation δE tends towards zero while the ratio

of the rotational frequencies of the positive- and negative-parity bands becomes

unity. At increasing spin, however, the sphericity driving pairing force is weakened

by the Coriolis force allowing for a stabilisation of odd-even staggering for states

coupled by an octupole phonon. To distinguish between this case and static octupole

deformation, one needs to look to the relative alignment of the positive- and negative-

parity bands, ∆ix. Alignment of an octupole phonon with the even-spin rotational

band would give ∆ix = 3~, whereas if the positive- and negative-parity states are

part of the same rotational band, then the relative alignment will be zero.
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Figure 6.2: Representation of the nuclear surfaces of 220Rn (top) and 224Ra (bottom)

6.1.1 220Rn

At high angular momentum, I ≥ 10, in the even-mass radon isotopes with

218 ≤ A ≤ 222, the behaviour of δE (shown in Figure 6.3) is much like that of

an octupole-rotor [104]. This behaviour can be attributed to a weakening of the

pairing force as explained in Section 6.1, however, at low spin significant deviations

are observed in δE indicating its low-spin vibrational structure. The relative align-

ment, ∆ix, for these nuclei are plotted in Figure 12 of Reference [104]. Each is

consistent with the alignment of an octupole phonon across the range of rotational

frequencies.
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Figure 6.3: The energy displacement as a function of spin, δE(I), between postive-
and negative-parity states shown for isotopes of Rn and Ra.

This is collated with the measurement in this thesis to reinforce the assignment

of the negative-parity states in 220Rn as an octupole phonon coupled to the even-

spin rotational band. The Q3 in particular is similar to that in 230Th and indeed

232Th, which can both be interpreted in terms of octupole vibrations [105] although

the intrinsic quadrupole moment varies significantly. The behaviour of the octupole

3− states in these nuclei are proposed to be similar due to the high excitation en-

ergy and comparable electric-octupole moments, however, comparison of β3 suggests

that 220Rn is likely to have a greater degree of octupole softness. Nevertheless, the

mutual dependence of β3 on the quadrupole deformation, β2, cannot be ignored. As

Figure 6.2 illustrates, the instantaneous surface shape at (β2, β3, β4) does not rep-

resent an enhanced pear-shape when compared to 224Ra, even though the octupole

deformation is similar.

As can be seen in Table 6.1, β3 alone can be misleading since it does not account
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for the differences between dynamic and static deformation. For example, 208Pb is

a doubly-magic nucleus, which is spherical in the ground state and its first excited

3− state is of a vibrational nature. The β3 is pronounced, and comparable to that

of the octupole-deformed nucleus 226Ra, yet there is no suggestion of a ground state

deformation. The softness to the octupole degree of freedom, via a vibrational mode,

may appear large, though the excitation energy of the 3− state (2.6 MeV) rules out

strong octupole correlations in the ground state.

6.1.2 224Ra

Considering the energy displacement, δE, plotted in Figure 6.3, 224Ra approaches

the limit of stable octupole deformation at ∼ 8~. At lower spin the deviation from

this limit is much less significant than in the radon isotopes. The relative alignment

of the positive- and negative-parity bands in 224Ra, and indeed 222,226Ra, (plotted in

Figure 13 of Reference [104]), is less than 3~ for the whole range of rotational fre-

quencies measured and drops to zero as the rotational frequency increases, showing

a stabilisation of the deformation. The electric-octupole moment, Q3, measured in

this thesis is consistent with an enhancement of the octupole deformation. Although

it remains ' 13% smaller than in 226Ra, the level energy arguments coupled with

this enhancement supports the interpretation of static octupole deformation in these

nuclei.

The variation of the octupole deformation parameter, β3, is smaller (' 8% to

226Ra and even less to 220Rn), however, the interpretation of this parameter requires

more careful consideration, such as the effect of the quadrupole deformation, β2, and

whether the deformation is dynamic or static. The role of this quadrupole-octupole

coupling in the deformation is apparent in Figure 6.2. Although the β3 in 224Ra

is similar to that in 220Rn, the larger quadrupole deformation, β2, enhances the

reflection-asymmetric pear shape to a greater degree.
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6.2 Theoretical Predictions

One of the first theoretical suggestions that nuclei can become stable about a non-

zero equilibrium value of octupole deformation came from a microscopic-macroscopic

interpretation [11]. Since then, self-consistent mean-field theory has advanced and

predicted stable octupole minima in many nuclei while the electric-octupole mo-

ments are alternatively interpreted in the cluster-model approach.

6.2.1 Mean-field approach

Self-consistent mean-field Hartree-Fock-Bogoliubov (HF-Bogoliubov or HFB) cal-

culations utilising the Skyrme SIII interaction [106] in 222Ra were the first such

calculations to predict a deformed minima with Q3 6= 0 in the actinide region. Cal-

culations using the HF+BCS method and the Gogny interaction [107, 108] have

been used to obtain the excitation energy of 1− states in Ra isotopes along with

B(E1; 1− → 0+) and B(E3; 3− → 0+) values and appear to have some success.

An extensive review of octupole excitations was performed more recently by

Robledo and Bertsch [109] where they predict the B(E3) values with several variants

of the Gogny interaction in the HFB mean-field theory on a global level. Presented

in Figure 6.4 are some of these predictions using the Gogny interaction for the

isotopic chains of Rn and Ra nuclei around N ∼ 134. Discrepancies are apparent

between the two different parameterisations showing improvement in the calculations

is necessary. The trend in the Ra isotopes suggests a peak at A = 224, which is not

observed since the measured B(E3; 3− → 0+) for 224Ra of 42(3) W.u. in this work

is smaller than the 54(3) W.u. in 226Ra.

The small dipole moments in 224Ra have been explained as a cancellation of the

microscopic shell effects and the collective E1 moment. It has been shown, in the

radium isotopes in particular, that this balance is maximised around A = 224 with

shell effects becoming more dominant in heavier nuclei where larger negative dipole
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moments are expected [110]. Importantly, the experimentally observed trends in

B(E1; 1− → 0+), nonetheless insensitive to the sign, can be reproduced within the

mean-field approach using the Gogny force [111].

6.2.2 Cluster models

Buck et al. [112] used a cluster model with an effective charge or an amputated

wave function to reproduce the E2 and E3 matrix elements in 226Ra obtained by

Wollersheim et al. [3]. Using a Pb-core and a 14C cluster, the model fits well to the

measured E2, E3 and E4 moments, but not to the E1 moments. The same thing is

apparent in the other isotopes for which calculations were performed, 222,224Ra, and

isn’t fully overcome. The authors suggest that a pure cluster-core picture is perhaps

too idealistic and nucleon transfer between the core and cluster, or a superposition of

different cluster-core combinations, would “smear-out” the effective charge to mass
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ratio of the two bodies. The E1 operator is sensitive to this effect but there is no

method of calculating these effects within this model.

A more recent cluster model [113] also fails to reproduce the small D0, but does

predict Q30(3− → 0+) = 2889 efm3 to reasonable agreement with the measurement

presented in this thesis (2520± 90 efm3). The values for the radium (and thorium)

isotopic chain(s), however, indicate an increase in the electric-octupole moment with

decreasing mass number, a trend bucked by the experimental data (see Figure 6.5).

6.3 Summary

For the first time, the B(E3; 3− → 0+) value has been determined in radioactive

actinide nuclei (with the exception of the long-lived 226Ra) at the same time as
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demonstrating the ability to measure E3 matrix elements to less than 10% precision

with Radioactive Ion Beams (RIBs).

The Gosia analysis relies on the simulation and comparison of γ-ray yields

following Coulomb excitation to fit the electromagnetic matrix elements connecting

excited states in the nucleus. Figure 6.6 shows the comparison of the simulated γ-

ray spectrum using the final results in 224Ra and the experimentally observed yields.

The comparison is remarkable, demonstrating that the process is well defined and

that the fitted matrix elements are reliable.

It has been shown that the electric-octupole moments, Q3, are enhanced as ex-

pected for nuclei exhibiting octupole collectivity, however, there is not sufficient

information from the experiment here alone to interpret fully the mode of this col-

lectivity, be it dynamic vibrations or static deformation. Previous interpretations of

220Rn as an octupole-vibrational nucleus and 224Ra as octupole-deformed are drawn
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on and the new measurements are used to support these suggestions. Compar-

isons to theoretical mean-field approaches and cluster models are also made. While

there is some success in both, the most well matched predictions come from the

GCM extension of the Hartree-Fock-Bogoliubov theory [109]. The predicted trend

of Q3(3− → 0+) values, plotted in Figure 6.5, do not reproduce experimental obser-

vations, although more data along the isotopic chains of Rn and Ra are required.

What is apparent is the deviation of the cluster model from the experimental values

as mass number decreases.

6.3.1 Electric-Dipole Moment (EDM)

The search for a permanent electric-dipole moment in atoms has gained momentum

in heavy odd-mass reflection-asymmetric nuclei [114, 115]. This is because of an

enhancement of the nuclear-Schiff moment [116] when parity doublets, observed in

odd-mass radium and thorium isotopes around N ∼ 137, become almost degenerate,

i.e. the energy difference |E(I−) − E(I+)| is minimised [117]. The Schiff moment

is also dependent on the strength of the interaction between the states forming the

parity doublet, something which has the potential and is proposed [118, 119] to

be measured in a similar way to the even isotopes studied in this thesis. Thus, a

large E3 matrix element coupling the degenerate states will also enhance the Schiff

moment and since this induces the atomic EDM, the sensitivity over non-octupole

systems such as 199Hg can be improved by a factor of 100-1000 [120].

Strong quadrupole-octupole deformation is a requirement to observe such en-

hancements in the nuclear-Schiff moment [114]. A weakening of the quadrupole-

octupole collectivity in radon isotopes, observed in this thesis for 220Rn, coupled

with the requirement of near-degenerate parity doublets, so far unobserved in the

proposed candidates 221,223Rn [114], may disfavour their candidacy for atomic EDM

measurements. The radium isotopes, however do exhibit strong potentially static
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reflection-asymmetry, while the observed parity splitting in 225Ra is just 55 keV and

is therefore a strong candidate for the atomic EDM search [115, 121, 122].

6.4 Outlook

To constrain the nuclear models making predictions of octupole collectivity, a single

data point is not sufficient. This is proven with the calculations of the radium

isotopic-chain where the peak B(E3; 3− → 0+) is expected at A = 224, but has

now been shown not to be the case with the new measurements in this thesis.

Extending the measurements to further Ra isotopes will clarify the appropriateness

of the models discussed and provide new input to refine such models. Specifically

the already proposed 222Ra [123] plus 228Ra should be studied to determine the

experimental trend of B(E3) values.

It is also feasible, and proposed [123], to measure 222Rn and extend the knowl-

edge of the radon isotopes, especially since there is so far only one data point,

that of 220Rn from this thesis. The strongest octupole correlations are predicted

by the HFB calculation to be in the uranium isotopes, specifically 226−230U, a re-

gion already known to exhibit octupole behaviour [124], where the B(E3; 3− → 0−)

values are calculated to be ∼ 70 W.u. [125]. Studying E3 transitions in these nu-

clei requires major advancements in RIB technology and may be possible at the

yet-to-be-completed FRIB facility at Michigan State University, US [126].

Extending the current measurements to odd-mass nuclei [118, 119] is key for

input to the EDM search. The first part of this experimental campaign has already

been performed with Coulomb excitation of 221Rn at REX-ISOLDE [127] and γ-ray

transitions have been observed for the first time in this nucleus. A proposal to extend

the study of octupole collectivity at REX-ISOLDE to the region around Z ∼ 56 and

N ∼ 88, utilising the principles of the current work, has been accepted [128].
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Kinematic approximations

Presented below are a set of approximations used to calculate the kinematics of

the scattering process in Coulomb excitation. Since the experiment was inverse

kinematics, calculating the laboratory angles of the collision partners was more

difficult and assumptions and simplifications had to be used. Below is a list of

parameters consistently used in the following equations:

AP Mass of the scattered projectile nucleus [u]

AT Mass of the recoiling target nucleus [u]

Eb Incoming beam energy [A.MeV]

EP,T Energy of the scattered projectile/target nucleus after exit from the target [MeV]

QCE The Q-value of the reaction, or the excitation energy of the nucleus [MeV]

τ = AP/AT ; τp = AP/AT

θP,T Scattering angle in the laboratory frame for the projectile/target

EP
loss Energy loss of the projectile at incident energy, Eb, in the target material [MeV/(cm2)]

EP,T
loss Average energy loss of the projectile/target in the target material [MeV/(cm2)]

93



Appendix A Kinematic approximations

Projectile energy

It is assumed that the target nuclei is at rest before the collision and so the centre

of mass energy is equal to that of the incoming projectile energy. An approximation

of the Q-value had to be used, however, in sub-barrier Coulomb excitation, this is

usually quite small and in this case is less than 1% of the centre of mass energy. En-

ergy loss through the target also had to be approximated, since the exact interaction

point within a target of thickness t (MeV/(cm2)), is not known. Here, an additional

parameter, d or depth, is introduced to allow a certain amount of optimisation of

the overall Doppler correction, however, this is an arbitrary solution since the true

depth cannot be ascertained.

In the case where the projectile is identified in the CD detector, it is possible to

use the measured energy directly. However, since the experiments in this thesis rely

on the detection of a target recoil, it is necessary to calculate the projectile energy

from the measured recoil energy, ET :

EP = AP · Eb − dt · EP
loss − (1− d) t · cos (θP ) · ET

loss − ET . (A.1)

Of course, the energy loss is dependent on the energy of the beam, but for the

purposes of simplifying the calculations, and average is calculated using SRIM [79]

with the assumption that an average beam energy can be represented as EP =

EP − 0.5t · EP
loss. For the purposes of calculating the average recoil energy loss,

ET
loss, a neutral beam of target species nuclei are assumed to pass through the target

material with an average energy of ET = 0.5EP .
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Experimental Yields

This Appendix tabulates the experimental yields from the experiments performed

in this thesis. All intensities presented are efficiency corrected and their uncer-

tainties include errors from background subtraction and efficiency correction, added

quadratically to the statistically uncertainty.

Table B.1: Efficiency corrected, γ-ray yields in 220Rn for each observed transition in

the experiments tabulated in Table 5.1 plus the “total statistics”, p-γ data.

Experiment No. Transition Energy [keV] Intensity Error

1
2+ → 0+ 241.0 2828 109

4+ → 2+ 292.7 354 25

2
2+ → 0+ 241.0 4281 157

4+ → 2+ 292.7 321 25
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Table B.1: – Continued

Experiment No. Transition Energy [keV] Intensity Error

3

2+ → 0+ 241.0 42883 1427

4+ → 2+ 292.7 5193 185

5− → 4+ 318.2 85 16

6+ → 4+ 340.2 338 27

3− → 2+ 422.0 123 18

1− → 0+ 645.4 70 15

2+
γ → 2+ 696.9 236 26

2+
γ → 0+ 937.8 73 21

4

2+ → 0+ 241.0 66178 2194

4+ → 2+ 292.7 5359 191

5− → 4+ 318.2 118 22

6+ → 4+ 340.2 202 25

3− → 2+ 422.0 213 25

1− → 0+ 645.4 78 17

2+
γ → 2+ 696.9 213 24

2+
γ → 0+ 937.8 75 27

5

2+ → 0+ 241.0 19546 660

4+ → 2+ 292.7 1053 50

6+ → 4+ 340.2 25 13

3− → 2+ 422.0 94 14

2+
γ → 2+ 696.9 40 12
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Table B.1: – Continued

Experiment No. Transition Energy [keV] Intensity Error

6

2+ → 0+ 241.0 22565 760

4+ → 2+ 292.7 774 41

6+ → 4+ 340.2 18 10

3− → 2+ 422.0 122 15

2+
γ → 2+ 696.9 78 18

p-γ

2+ → 0+ 241.0 589000 19000

4+ → 2+ 292.7 45800 1500

5− → 4+ 318.2 800 70

6+ → 4+ 340.2 2330 110

1− → 2+ 404.2 140 60

3− → 2+ 422.0 1900 100

1− → 0+ 645.4 540 60

2+
γ → 2+ 696.9 1940 110

2+
γ → 0+ 937.8 920 80

unplaced 836(2) 300 60
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Table B.2: Efficiency corrected, γ-ray yields in 224Ra for each observed transition in

the experiments tabulated in Table 5.1 plus the “total statistics”, p-γ data. Note

that the 205.9 keV and 207.7 keV transitions are part of an unresolved doublet.

Experiment No. Transition Energy [keV] Intensity Error

1

2+ → 0+ 84.4 2773 293

1− → 2+ 131.6 142 34

4+ → 2+ 166.4 6914 207

5− → 4+ 182.3 67 22

3− → 2+

7− → 5−

205.9

207.6

 177 24

1− → 0+ 216.0 213 23

6+ → 4+ 228.5 1397 68

8+ → 6+ 275.7 125 27

2

2+ → 0+ 84.4 4351 449

1− → 2+ 131.6 120 48

4+ → 2+ 166.4 5695 177

5− → 4+ 182.3 41 18

3− → 2+

7− → 5−

205.9

207.6

 150 25

1− → 0+ 216.0 198 24

6+ → 4+ 228.5 639 45

8+ → 6+ 275.7 42 30
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Appendix B Experimental Yields

Table B.2: – Continued

Experiment No. Transition Energy [keV] Intensity Error

3

2+ → 0+ 84.4 869 133

1− → 2+ 131.6 59 17

4+ → 2+ 166.4 2443 85

3− → 2+

7− → 5−

205.9

207.6

 59 17

1− → 0+ 216.0 73 13

6+ → 4+ 228.5 549 34

8+ → 6+ 275.7 52 17

4

2+ → 0+ 84.4 1231 176

1− → 2+ 131.6 58 18

4+ → 2+ 166.4 2074 75

5− → 4+ 182.3 39 11

3− → 2+

7− → 5−

205.9

207.6

 62 19

1− → 0+ 216.0 52 11

6+ → 4+ 228.5 269 25

8+ → 6+ 275.7 30 22
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Appendix B Experimental Yields

Table B.2: – Continued

Experiment No. Transition Energy [keV] Intensity Error

5

2+ → 0+ 84.4 5002 440

1− → 2+ 131.6 179 35

5− → 3− 142.0 58 24

4+ → 2+ 166.4 6014 185

5− → 4+ 182.3 34 13

3− → 2+

7− → 5−

205.9

207.6

 289 27

1− → 0+ 216.0 332 26

6+ → 4+ 228.5 556 35

8+ → 6+ 275.7 34 19

2+
γ → 2+ 881.1 29 9

6

2+ → 0+ 84.4 6789 596

1− → 2+ 131.6 98 40

4+ → 2+ 166.4 4537 147

5− → 4+ 182.3 27 30

3− → 2+

7− → 5−

205.9

207.6

 314 31

1− → 0+ 216.0 199 25

6+ → 4+ 228.5 234 26
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Appendix 6 Experimental Yields

Table B.2: – Continued

Experiment No. Transition Energy [keV] Intensity Error

p-γ

2+ → 0+ 84.4 53000 3000

1− → 2+ 131.6 1460 130

5− → 3− 142.0 440 100

4+ → 2+ 166.4 81500 1900

5− → 4+ 182.3 780 90

3− → 2+ 205.9 2490 170

7− → 5− 207.6 380 150

1− → 0+ 216.0 3030 120

6+ → 4+ 228.5 13600 400

9− → 7− 265.3 180 60

8+ → 6+ 275.7 1260 90

10+ → 8+ 312.6 90 50

2+
γ → 2+ 881.1 410 80

2+
γ → 0+ 965.5 360 90
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