Coulomb Excitation of Light Mercury Isotopes

The study of shape-coexistence near the Z=82 shell closure

Liam Gaffney

Introduction

 * 0+ states: heads of differently shaped intrinsic structures * 186Pb: triplet of 0+ states * Particle hole configurations Spherical Prolate Oblate Oblate On-Ob 2n-2h An-Ah 	*	Shape coexis over 30 yea	stence disco rs ago	overed	3.5					
 * 186Pb: triplet of 0+ states * Particle hole configurations Spherical Prolate Oblate Obl	*	0+ states: h shaped intri	eads of dift insic struct	ferently ures	3					
* Particle hole configurations Spherical Prolate Oblate On-Oh 2n-2h An-Ah	*	¹⁸⁶ Pb: triple	t of 0+ sta	tes	AeW (MeV)				1	
Spherical Prolate Oblate	*	Particle hole	configurat	ions	Ū 1					
$\beta_2 \cos(\gamma + 30) = \frac{10}{20} + \frac{10}{20} + \frac{10}{20} $		Spherical Op-Oh	Prolate 2p-2h	Oblate 4p-4h	-20 B_2 sin(7+30)	20 0 5	$\frac{10}{15}$ β ₂ cos(γ+30)	20	25	30

A. N. Andreyev, Nature 405 (2000) Pg 430-433

Introduction · Mercury

- Protons excited across Z=82 shell gap driving deformation
- * Ground state predicted slightly oblate, excited band prolate
- Model-independent determination of quadrupole moment, Q₀, required
- * Sign of diagonal matrix-elements obtained from Coulomb Excitation

S. Frauendorf and V.V. Pashkevich Phys. Lett. 55B 4 (1974)

Introduction · Mercury

- * Protons excited across Z=82 shell gap driving deformation
- * Ground state predicted slightly oblate, excited band prolate
- Model-independent determination of quadrupole moment, Q₀, required
- * Sign of diagonal matrix-elements obtained from Coulomb Excitation

S. Frauendorf and V.V. Pashkevich Phys. Lett. 55B 4 (1974)

Introduction · Mercury

- Protons excited across Z=82 shell gap driving deformation
- * Ground state predicted slightly oblate, excited band prolate
- Model-independent determination of quadrupole moment, Q₀, required
- * Sign of diagonal matrix-elements obtained from Coulomb Excitation

S. Frauendorf and V.V. Pashkevich Phys. Lett. 55B 4 (1974)

Introduction · Coulex

112 Cd(184 Hg, 184 Hg*) 112 Cd*

- Inelastic scattering involving EM force
- * Cross-section sensitive to quadrupole moment
- Different angular ranges exploits dependence
- * Vary matrix elements to reproduce γ -ray yields

Introduction · Coulex

Experimental Set-up

- REX-ISOLDE delivers > 600
 isotopes post-accelerated up to
 3.2 A.MeV to MINIBALL
- * PS Booster: 1 or 1.4 GeV protons on molten Pb primary target
- * REXTRAP/EBIS: trap, bunch and charge breed ions to $4 \le A/q \le 5$
- * REX-Linac: Mass separator RFQ, IHS, 7-gap and 9-gap

Experimental Set-up

Analysis · Kinematics

- Inverse kinematics reaction 112Cd(184Hg, 184Hg)112Cd
- Identify products in Energy vs. Angle plot
- * Gates on projectile define coincident γ -rays
- * Coincident target particle kinematically reconstructed for Doppler correction

Analysis · Kinematics

- Inverse kinematics reaction 112Cd(184Hg, 184Hg)112Cd
- Identify products in Energy vs. Angle plot
- * Gates on projectile define coincident γ -rays
- * Coincident target particle kinematically reconstructed for Doppler correction

Analysis · Spectra

- 2 particles required in opposite quadrants
- * Energy gate on target -> beam
- 3 distinct angular ranges
- * Better Doppler correction

Gate on target in low centre of mass angular range

Fuergy [wev] 1000 2 particles required in opposite * quadrants Energy gate on target -> beam * **3** distinct angular ranges * Better Doppler correction Δ Annular Strip Number

Analysis · p-p- y

Analysis · Spectra

100	CM	Hg(2+->0+)	Cd(2+->0+)		
400	Low	y iela 1038 ± 47	y leid 179 ± 19		-
300	Mid	964 ± 45	156 ± 25		
	High	576 ± 35	100 ± 15		-
200				Cd(2 ⁺ -> 0 ⁺)	
100	ſ		ուլիսյի		

Analysis · Minimisation

GOSIA least squares fit Fortran code

* Error analysis yet to be performed

LEVEL	LIFETIME(PSEC)	EXP	ERRUR
2	1000E+01		
3	0.2355E+02	0.3000E+02	0.7000E+11
- 4	0.1068E+04	0.9000E+03	0.3000E+13
5	0.1248E+03		
6	0.2288E+02	0.3280E+02	0.3400E+11
7	0.1018E+02	0.8100E+01	0.3100E+11
8	0.7449E+00		
9	0.5479E-01		

CALCULATED LIFETIMES

MATRIX ELEMENTS

*	Proliminary 1844 matrix elemente	MULTI	POLARII	ΓY=2		
-1-	rienaly nation elements.	INDEX	NE	NS	ME	RED. TRANS. PROB.
		1	1	3	1.57219	0.49436
		2	1	5	0.19856	0.00789
	(2+	3	3	3	0.51657	
	$\langle Z E Z / U 0.5 \rangle = 1.7 / ED$	4	3	4	0.22870	0.05230
		5	3	5	0.87943	0.15468
		6	3	6	-3.69149	1.51412
		7	3	8	2.21473	0.54500
	$\tau = 736 \text{ ng} = 30(7) \text{ ng} Rudd of al$	8	4	6	-0.25174	0.00704
	c zaw po zavni po kouu ci. ai.	9	5	5	-0.36546	
		10	5	6	5.12651	2.92012
		11	5	8	-0.35359	0.01389
		12	6	6	-1.80823	xokokokokokok
		13	6	7	4.62143	1.64289
*	$FO(2^{+}_{2} \rightarrow 2^{+}_{1})$ transition to be understood	14	6	8	0.56963	0.03605
		15	6	9	2.90912	0.65100
		16	7	7	-1.84570	xolokolokokok
		17	7	8	0.37800	0.01588
		18	7	9	-0.16572	0.00211
×	$FO(0^+2^-) 0^+$, transition is nonligible	19	8	8	1.61731	xxxxxxxxxxxx
	\mathbf{r}	20	8	9	-4.97438	1.90342
		21	9	9	1.77290	xotokokokokokok
		MULTIPOLARITY=7				
		INDEX	NF	NS	ME	RED. TRANS. PROB.
		22	2	4	0.05877	0.00345
		23	3	5	0.26490	0.01403
		********* END OF EXECUTION ******				

Thursday, 25 February 2010

*

Summary and Future Work

- * Preliminary matrix elements shown (¹⁸⁴Hg)
- Initial indication of oblate/prolate
- Investigate 22⁺->21⁺ E0/M1/E2 effect
- Error bars expected to span 0 when calculated

- * Lifetime measurements planned at Argonne
- * EO SAGE proposal accepted at JYFL
- * Branching ratios, lifetimes and δ values
 - add data points to fit

IS452 Collaborators -Coulex of 182, 184, 186, 188Hg

A. Petts¹, N. Bree², P.A. Butler¹, P. Van Duppen², A. Andreyev², B. Bastin², A. Blazhev³, B. Bruyneel³, M. Carpenter⁴, J. Cederkäll⁵, E. Clement⁶, T.E. Cocolios², J. Dirkin², J. Eberth³, L. Fraile⁵, C. Fransen³, L.P. Gaffney¹, T. Grahn¹, M. Guttormsen⁷, K. Hadynska⁸, R.-D. Herzberg¹, M. Huyse², D.G. Jenkins⁹, R. Julin¹⁰, S. Knapen², Th. Kröll¹¹, R. Krücken¹¹, A.C. Larsen⁷, P. Marley⁹, P.J. Napiorkowski⁸, J. Pakarinen¹, N. Patronis², P.J. Peura¹⁰, E. Piselli⁶, P. Reiter³, M. Scheck¹, S. Siem⁷, I. Stefanescu², J. Van de Walle⁶, D. Voulot⁶, N. Warr³, D. Weissharr³, F. Wenanders⁶, M. Zielinska⁹

Oliver Lodge Laboratory, Department of Physics, University of Liverpool, Liverpool, UK,
 Institut voor Kern- en Stralingsfysika, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
 Institut für Kernphysik, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
 Argonne National Laboratory, Chicago Illonois
 Department of Physics, Royal Institute of Technology, Stockholm, Sweden
 CERN, Genève, Switzerland
 Department of Physics, University of Oslo, P.O.Box 1048, Blindern, N-0316 Oslo, Norway
 Heavy Ion Laboratory, University of York, UK
 Department of Physics, University of York, UK

11 Physik-Department E12, TU München, 85748 Garching, Germany

Gate on target in low centre of mass angular range

Thursday, 25 February 2010

Gate on target in low centre of mass angular range

Thursday, 25 February 2010

Gate on target in mid centre of mass range

Gate on target in mid centre of mass angular range

Thursday, 25 February 2010

Gate on target in high centre of mass range

Gate on target in high centre of mass angular range

