Coulomb Excitation of Light Mercury Isotopes

The study of shape-coexistence near the $Z=82$ shell closure

Liam Gaffney

Introduction

* Shape coexistence discovered over 30 years ago
* 0+ states: heads of differently shaped intrinsic structures
* 186 Pb : triplet of $0+$ states
* Particle hole configurations

Spherical Prolate Oblate
Op-0h $\quad 2 p-2 h \quad 4 p-4 h$

A. N. Andreyev, Nature 405 (2000) Pg 430-433

Introduction • Mercury

* Protons excited across $Z=82$ shell gap driving deformation
* Ground state predicted slightly oblate, excited band prolate
* Model-independent determination of quadrupole moment, Q_{0}, required
* Sign of diagonal matrix-elements obtained from Coulomb Excitation

S. Fravendorf and V.V. Pashkevich Phys. Lett. 5534 (1974)

Introduction • Mercury

* Protons excited across $Z=82$ shell gap driving deformation
* Ground state predicted slightly oblate, excited band prolate
* Model-independent determination of quadrupole moment, Q_{0}, required
* Sign of diagonal matrix-elements obtained from Coulomb Excitation

${ }^{184} \mathbf{H g}$
$29_{9 / 2}$
$N=126$
$3 p_{1 / 2}$
$2 f_{5 / 2}$
$3 p_{32}$

$v=104$
S. Fravendorf and V.V. Pashkevich Phys. Lett. 5584 (1974)

Introduction • Mercury

* Protons excited across $Z=82$ shell gap driving deformation
* Ground state predicted slightly oblate, excited band prolate
* Model-independent determination of quadrupole moment, Q_{0}, required
* Sign of diagonal matrix-elements obtained from Coulomb Excitation

S. Fravendorf and V.V. Pashkevich Phys. Lett. 5584 (1974)

Introduction • Coulex

${ }^{112} \mathrm{Cd}\left({ }^{184} \mathrm{Hg},{ }^{184} \mathrm{Hg}^{*}\right){ }^{112} \mathrm{Cd}^{*}$

* Inelastic scattering involving EM force
* Cross-section sensitive to quadrupole moment
* Different angular ranges exploits dependence
* Vary matrix elements to reproduce γ-ray yields

Introduction • Coulex

${ }^{112} \mathrm{Cd}\left({ }^{184} \mathrm{Hg},{ }^{184} \mathrm{Hg}^{*}\right){ }^{112} \mathrm{Cd}^{*}$

* Inelastic scattering involving EM force
* Cross-section sensitive to quadrupole moment
* Different angular ranges exploits dependence
* Vary matrix elements to reproduce γ-ray yields

Experimental Set-up

* REX-ISOLDE delivers > 600 isotopes post-accelerated up to 3.2 A.MeV to MINIBALL
* PS Booster: 1 or 1.4 GeV protons on molten Pb primary target
* REXTRAP/EBIS: trap, bunch and charge breed ions to $4 \leq A / q \leq 5$
* REX-Linac: Mass separator RFQ, IHS, 7-gap and 9-gap

Experimental Set-up

* MINIBALL - 8 triple cluster Ge detectors, 6-fold segmentation
* $\varepsilon>7 \%$ at 1.3 MeV FWHM $=7 \mathrm{keV}$

Projectile - Hg

* DSSSD gives θ, φ
and energy loss information

Analysis • Kinematics

* Inverse kinematics reaction

* Identify products in Energy vs. Angle plot
* Gates on projectile define coincident γ-rays
* Coincident target particle kinematically reconstructed for Doppler correction

Analysis • Kinematics

* Inverse kinematics reaction

* Identify products in Energy vs. Angle plot
* Gates on projectile define coincident γ-rays
* Coincident target particle kinematically reconstructed for Doppler correction

Analysis ' Spectra

Analysis • 2 Particle

* 2 particles required in opposite quadrants
* Energy gate on target \rightarrow beam
* 3 distinct angular ranges
* Better Doppler correction

Analysis • 2 Particle

* 2 particles required in opposite quadrants
* Energy gate on target $->$ beam
* 3 distinct angular ranges
* Better Doppler correction

Analysis • 2 Particle

* 2 particles required in opposite quadrants
* Energy gate on target \rightarrow beam
* 3 distinct angular ranges
* Better Doppler correction

Analysis - 2 Particle

* 2 particles required in opposite quadrants
* Energy gate on target \rightarrow beam
* 3 distinct angular ranges
* Better Doppler correction

Analysis • 2 Particle

* 2 particles required in opposite quadrants
* Energy gate on target \rightarrow beam
* 3 distinct angular ranges
* Better Doppler correction

Analysis • 2 Particle

* 2 particles required in opposite quadrants
* Energy gate on target \rightarrow beam
* 3 distinct angular ranges
* Better Doppler correction

Gate on target in low centre of mass angular range

Analysis • p-p- γ

Analysis ' Spectra

Analysis • Minimisation

CALCULATED LIFETIMES

* GOSIA least squares fit Fortran code
* Error analysis yet to be performed
* Preliminary ${ }^{184} \mathrm{Hg}$ matrix elements:
$\left\langle 2^{+}\right|\left|E(2) \| 0^{+}{ }_{g . s}\right\rangle=1.57 \mathrm{eb}$
$\tau=23.6 \mathrm{ps} \Rightarrow 30(7)$ ps Rudd et. al.
* EO(2+ $\left.2 \rightarrow 2^{+}+1\right)$ transition to be understood
* EO(O ${ }^{+} 2 \rightarrow \mathrm{O}^{+}{ }_{\mathrm{g} . \mathrm{s}}$) transition is negligible

LEVEL	LIFETIME(PSEC)	EXP	ERROR
2	$-.1000 \mathrm{E}+01$		
3	$0.2355 \mathrm{E}+02$	$0.3000 \mathrm{E}+02$	$0.7000 \mathrm{E}+11$
4	$0.1068 \mathrm{E}+04$	$0.9000 \mathrm{E}+03$	$0.3000 \mathrm{E}+13$
5	$0.1248 \mathrm{E}+03$		
6	$0.2288 \mathrm{E}+02$	$0.3280 \mathrm{E}+02$	$0.3400 \mathrm{E}+11$
7	$0.1018 \mathrm{E}+02$	$0.8100 \mathrm{E}+01$	$0.3100 \mathrm{E}+11$
8	$0.7449 \mathrm{E}+00$		
9	$0.5479 \mathrm{E}-01$		

MATRIX ELEMENTS

MULTIPOLARITY=2				
INDEX	NF	NS	ME	RED. TRANS
1	1	3	1.57219	0.49436
2	1	5	0.19856	0.00789
3	3	3	0.51657	*********
4	3	4	0.22870	0.05230
5	3	5	0.87943	0.15468
6	3	6	-3.69149	1.51412
7	3	8	2.21473	0.54500
8	4	6	-0.25174	0.06704
9	5	5	-0.36546	*********
10	5	6	5.12651	2.92012
11	5	8	-0.35359	0.01389
12	6	6	-1.80823	*********
13	6	7	4.62143	1.64289
14	6	8	0.56963	0.03605
15	6	9	2.90912	0.65100
16	7	7	-1.84570	*********
17	7	8	0.37800	0.01588
18	7	9	-0.16572	0.06211
19	8	8	1.61731	*********
20	8	9	-4.97438	1.90342
21	9	9	1.77290	*********
MULLT IPOLARITY $=7$				
INDEX	NF	NS	ME	RED. TRANS
22	2	4	0.05877	0.00345
23	3	5	0.26490	0.01403
********* END OF EXECUTION				**********

Summary and Future Work

* Preliminary matrix elements shown $\left({ }^{184} \mathrm{Hg}\right)$

\author{

* Initial indication of oblate/prolate
}
* Investigate $22^{+}->21^{+}$ E0/M1/E2 effect
* Error bars expected to span 0 when calculated
* Lifetime measurements planned at Argonne
* EO SAGE proposal accepted at JYFL
* Branching ratios, lifetimes and δ values add data points to fit

IS452 Collaborators Coulex of 182, 184, 186, 188 Hg

A. Petts ${ }^{1}$, N. Bree ${ }^{2}$, P.A. Butler ${ }^{1}$, P. Van Duppen², A. Andreyev², B. Bastin², A. Blazhev³, B. Bruyneel ${ }^{3}$, M. Carpenter ${ }^{4}$, J. Cederkäll ${ }^{5}$, E. Clement ${ }^{6}$, T.E. Cocolios ${ }^{2}$, J. Dirkin ${ }^{2}$, J. Eberth ${ }^{3}$, L. Fraile ${ }^{5}$, C. Fransen ${ }^{3}$, L.P. Gaffney ${ }^{1}$, T. Grahn¹, M. Guttormsen ${ }^{7}$, K. Hadynska ${ }^{8}$, R.-D. Herzberg ${ }^{1}$, M. Huyse ${ }^{2}$, D.G. Jenkins ${ }^{9}$, R. Julin ${ }^{10}$, S. Knapen ${ }^{2}$, Th. Kröll ${ }^{11}$, R. Krücken ${ }^{11}$, A.C. Larsen ${ }^{7}$, P. Marley ${ }^{9}$, P.J. Napiorkowski${ }^{8}$, J. Pakarinen ${ }^{1}$, N. Patronis ${ }^{2}$, P.J. Peura ${ }^{10}$, E. Piselli6, P. Reiter ${ }^{3}$, M. Scheck ${ }^{1}$, S. Siem ${ }^{7}$, I. Stefanescu ${ }^{2}$, J. Van de Walle ${ }^{6}$, D. Voulot ${ }^{6}$, N. Warr ${ }^{3}$, D. Weissharr ${ }^{3}$, F. Wenanders ${ }^{6}$, M. Zielinska ${ }^{9}$

1 Oliver Lodge Laboratory, Department of Physics, University of Liverpool, Liverpool, UK, 2 Instituut voor Kern- en Stralingsfysika, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
3 Institut für Kernphysik, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
4 Argonne National Laboratory, Chicago Illonois
5 Department of Physics, Royal Institute of Technology, Stockholm, Sweden
6 CERN, Genève, Switzerland
7 Department of Physics, University of Oslo, P.O.Box 1048, Blindern, N-0316 Oslo, Norway
8 Heavy Ion Laboratory, University of Warsaw, Pasteura 5A, 02-093 Warszawa, Poland
9 Department of Physics, University of York, UK
10 Department of Physics, University of Jyväskylä, P.O.Box 35, 40014 Jyväskylä, Finland
11 Physik-Department E12, TU München, 85748 Garching, Germany

Analysis - 2 Particle

Gate on target in low centre of mass angular range

Analysis • 2 Particle

Analysis - 2 Particle

Gate on target in low centre of mass angular range

Analysis - 2 Particle

Gate on target in mid centre of mass range

Analysis - 2 Particle

Gate on target in mid centre of mass range

Analysis - 2 Particle

Gate on target in mid centre of mass angular range

Analysis - 2 Particle

Analysis • 2 Particle

Analysis - 2 Particle

Gate on target in high centre of mass angular range

