Internal y Decay and the Superallowed Branching Ratio for the B+ Emitter ³⁸K^m Presented by Liam Gaffney UNIVERSITY OF **IIVERPOOL**

K. G. Leach et. al PRL 100, 192504 (2008)

Outline

Background
Level scheme of ³⁸K^m
The experiment
Results
Implications

Superallowed ^{β+} decay

- Pure fermi decay (ν spin paired with β spin; S=0) between nuclear isobaric analogue states
- \odot I_P = I_D + L(=0 for allowed tranistions) + S(=0)
- G_V (Vector coupling constant), and the Fermi coupling constant, G_F , determine the first element of the Cabibbo– Kobayashi–Maskawa (CKM) matrix $V_{ud} = G_V/G_F$

Link to nuclear physics

- f is the statistical rate function, and t, the partial half life of the superallowed branch
- o ft values are almost nucleus independent
- Corrections for radiative and Coulomb effects, give a transition-independent Ft

 $Ft = ft(1 + \delta_R^1)(1 + \delta_{NS} - \delta_C) = \frac{K}{2G_V^2}(1 + \Delta_R)$

- For high precision, good calculations of these corrections are necessary
- Updated correction calculations^[2] reduced the uncertainty on the V_{ud} matrix element by half, and shifted the central value by 1.5σ (largest in 20 years)

[2] I.S. Towner and J. C. Hardy, Phys. Rev. C 77, 025501 (2008)

model calculations^[8]

[8] B. A. Brown et al., Phys. Rev. C 22, 842 (1980)

The Experiment

TRIUMF - ISAC

- 500MeV, 65µA proton beam on 22 g cm⁻² Ta target
- 30keV beam of ³⁸K and ³⁸K^m ions
- Implanted in mylar tape
- \odot SPECTAR for β detection
- \odot 8 π array for γ spectrometry

Photos of 8π array (above) and the tape system (left) taken from ref. [10] G.C. Ball et al., J. Phys. G **31**, S1491 (2005) and [11] C. E. Svensson et al., Nucl. Instrum. Methods. Phys. Res. Sect. B **204**, 660(2003)

Enlarged low-energy section of the $\beta\gamma$ anti-coincidence spectrum

Results

Projection of the 130 keV peak with time, showing half-life of state

Literature value: $t_{1/2} = 0.92433(27)$ ^[1]

Experimental Results

- Yields M3 branching ratio of 237(31) ppm
- B(M3) value of 0.21(3) W.u. Shell model predicts 1.2x10⁻⁴ W.u.
- Total internal decay b.r. = 330(43) ppm
- Revised superallowed branching ratio of 99.967(4)%
- Alters the partial half life to t = 0.92542(57) s from total half life of ${}^{38}K^{m}$: $t_{1/2} = 0.92433(27)$ s ^[1]
- Together with $f = 3298.10(33)^{[1]}$ ft = 3052.1(10) s
- Applying corrections from ref [2]
 Ft = 3072.7(24) s
- Increases world average Ft by 0.12 s to 3071.5(8) s

[1] J. C. Hardy, and I.S. Towner Phys. Rev. C 71, 055501 (2005)

[2] I.S. Towner and J. C. Hardy, Phys. Rev. C 77, 025501 (2008)

ft and Ft values shown with average Ft = 3071.5(8)

Conclusion

Revised superallowed branching ratio in ³⁸K^m of 99.967(4)%
Revised ft and Ft values, as well as revised world average Ft
Shift in the central value of up-down element of the CKM matrix
From V_{ud} = 0.97418(13)(14)(18) this paper reports a revised value

 $V_{ud} = 0.97416(26)$