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TALK OUTLINE

• X-ray analysis

• Effect of E0 component

• Lifetime measurements

• Matrix elements in 182,186Hg

• Future work and conclusions



X-RAY ANALYSIS
• Excess of x-rays are seen in 182,184Hg

• Source?  -  Attributed to E0 transitions

•                 in coincidence with

• Xray = Internal Conversion + E0
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Xrays= 290 counts 
from 1260 in total

549
24

261

334

352

197

0

2

0

2

4

6

182Hg



X-RAY ANALYSIS
• Excess of x-rays are seen in 182,184Hg

• Source?  -  Attributed to E0 transitions

•                 in coincidence with

• Xray = Internal Conversion + E0

2+
2 → 2+

1 2+
1 → 0+

1



E0 ANALYSIS
• Internal conversion of                 depends on ratio of E2/M1, i.e. δ

• δ is unknown so how do we know the exact contribution?

• One needs to find solution which fits best in Gosia ... [Andrew Petts]
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EFFECT OF E0 COMPONENT
• Additional E0 contribution mimicked by artificially increasing M1 component

• Variation of matrix elements not huge with variation of δ.

• Without E0 feeding 
is shifted to small positive values

• Significant effect which needs
further study
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LIFETIME ANALYSIS
• Lifetimes of yrast states have been recently measured in 180,182Hg

• 184,186,188Hg RDDS measurement took place recently at ANL using Gammasphere

• States Jπ≥2+ in 180,182Hg have similarly structured wavefunctions

• Similar for Jπ≥4+ in 184,186Hg, indicating a difference between Jπ=2+ and Jπ=4+T. GRAHN et al. PHYSICAL REVIEW C 80, 014324 (2009)
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FIG. 5. (Color online) Sample decay curves of the four lowest
yrast states in 182Hg constructed from the recoil-gated γ γ -
coincidence projections recorded with five JUROGAM detectors at
158◦. The smooth lines are drawn to guide the eye.

III. RESULTS

By using the rotational model with the assumption of a
rotating quadrupole deformed nucleus, the absolute values of
transition quadrupole moments Qt and deformation parame-
ters β

(t)
2 (see Ref. [2] for their definition) have been extracted

from the experimental B(E2) values. The final mean lifetime
τ, B(E2), |Qt |, and |β(t)

2 | values are listed in Table I for all the
states under study. Intensity balances Jfeed/Jdepop, indicating
the amount of the unobserved feeding, are also given. These
values have been deduced from the relative intensities J of the
γ -ray transitions.

IV. DISCUSSION

A. Yrast states in 180Hg and 182Hg

Experimental |Qt | values for the even-mass 180−186Hg
isotopes have been plotted in Fig. 6. The low |Qt | values for the
2+ states reflect a transition from the weakly oblate deformed
ground state to the more deformed 2+ state of these nuclei
and are constant within the error bars for all four isotopes.
Interestingly, the |Qt | values for the low-spin states do not
decrease with decreasing valence neutron space as one would
expect for nuclei beyond the neutron mid-shell. This could be
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FIG. 6. (Color online) Experimental |Qt | values for the yrast
levels up to Iπ = 8+ in light Hg nuclei extracted from measured
lifetimes. The data for 184Hg and 186Hg are taken from Refs. [24]
and [25]. Some of the data points are slightly offset from their actual
A value to maintain the clarity of presentation.

related to the mixing of the prolate intruder structure with the
spherical vibrational structure, which has been identified in
172Hg [26].

The empirical mixing amplitude for the 2+ state in 182Hg
can be estimated from the experimental |Qt | values in the
same way as in Refs. [3] and [14]. The weakly deformed
oblate configuration of the ground state of 182Hg [7] mixes
with the coexisting strong prolate deformed structure of the
intruder states at Iπ = 2+. This results in lower collectivity
of the 2+ → 0+ transition when compared to the other yrast
transitions and the wave function of the 2+ state being an
admixture of oblate and prolate components.

The quadrupole moment for a transition between prolate
states can be obtained as an average of the |Qt | values of the
6+, 8+, and 10+ states. Assuming interband transitions to be
forbidden, ≈80% prolate contribution to the wave function of
the 2+ state is found. In Ref. [12] band mixing calculations
have been carried out for 182Hg. In that work ≈76% prolate
contribution to the 2+ state was found, agreeing well with the
present value.

For the 4+ states the |Qt | values are largest at A = 180
and 182, whereas the corresponding values for A = 184 and

TABLE I. Electromagnetic properties of the states under investigation in 180Hg and 182Hg. Gamma-ray energies
and I π values are taken from Refs. [15] and [16] and K = 0 is assumed.

Eγ (keV) Iπ τ (ps) B(E2) (W.u.) |Qt | (e b) |β (t)
2 | Jfeed/Jdepop

180Hg 434.3 2+ 15–20 60–40 4.1–3.6 0.15–0.13 0.75(3)
272.4 4+ 28.1(12) 282(12) 7.7(2) 0.250(6) 0.89(6)
326.0 6+ 12.7(6) 267(12) 7.2(2) 0.232(5) 0.79(7)
404.5 8+ 3.3(3) 360(40) 8.2(4) 0.263(12) 0.57(4)
317.2 9− 10.2(12) 380(50) 8.3(5) 0.27(2) 0.85(16)

182Hg 351.8 2+ 41(3) 57(4) 4.17(14) 0.135(5)
261.4 4+ 35.7(15) 264(11) 7.53(16) 0.244(6)
333.1 6+ 8.2(5) 370(30) 8.5(3) 0.274(9)
414.0 8+ 2.9(3) 380(40) 8.4(5) 0.271(13)
487.4 10+ 1.2(3) 400(100) 9(1) 0.28(4)

014324-4

Figure:  T. Grahn, A. Petts, M. Scheck et. al, Phys. Rev. C 80, 014324 (2009)
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•                     varied and yield reproduced by matching

• Overlap region of 1 sigma suggests slightly -ive DME.

• GOSIA minimisation:

•                  = (1.33 ± 0.06) eb

•                  = -(0.39 ± 0.42) eb

• Suggestive of prolate

• Sensitivity restricts error bar
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186Hg MATRIX ELEMENTS
• More definitive positive DME suggested from simple view

• Gosia minimisation:

•                  = (1.17 ± 0.08) eb

•                  = (1.89 ± 0.64) eb

• Oblate deformation

• Supported by lifetime analysis
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• Diagonal and transitional matrix elements extracted in 182Hg and 186Hg by 
Andrew Petts from Coulex experiment with MINIBALL at REX-ISOLDE

• RDDS lifetime measurements in 184,186,188Hg at Argonne just taken place using 
Köln plunger coupled with Gammasphere Ge array.

• E0 component to be studied using gamma-electron coincidences at Jyväskylä with 
the electron spectrometer, SAGE and the JUROGAM Ge array.

• Further analysis of Coulex data, reducing errors with new measurements.

FUTURE WORK / CONCLUSIONS
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MIXING ANALYSIS

182Hg β(yrast)
0+ states: α-hinderance 16%

energy levels 7%

2+ states: lifetimes 80%

energy levels 70%
184Hg

0+ states: α-hinderance 18%

energy levels 5%

E0 strength mixing 0.2%

2+ states: energy levels 3%
186Hg

0+ states: energy levels 3%

E0 strength mixing >4%

2+ states: energy levels 8%

E2 matrix elements <10%

|u〉 = α|oblate〉 + β|prolate〉
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