Study of shape coexistence in Neutron deficient mercury isotopes

Liam Gaffney University of Liverpool

TALK OUTLINE

- X-ray analysis
- Effect of E0 component
- Lifetime measurements
- Matrix elements in ^{182,186}Hg
- Future work and conclusions

X-RAY ANALYSIS

- Excess of x-rays are seen in ^{182,184}Hg
- Source? Attributed to E0 transitions
- $2_2^+ \rightarrow 2_1^+$ in coincidence with $2_1^+ \rightarrow 0_1^+$
- Xray = Internal Conversion + E0

Transition	Energy	Counts
Hg $2^+_1 \rightarrow 0^+_1$	351 keV	3591 ± 81
Hg $2^+_2 \rightarrow 0^+_1$	549 keV	510 ± 39
Hg $4^+_1 \rightarrow 2^+_1$	262 keV	321 ± 33
Hg $2^+_2 \rightarrow 2^+_1$	196 keV	101±29
Hg k X-ray	68 keV	1260 ± 53
$\operatorname{Cd} 2^+_1 \rightarrow 0^+_1$	605 keV	768 ± 40

X-RAY ANALYSIS

- Excess of x-rays are seen in ^{182,184}Hg
- Source? Attributed to E0 transitions
- $2_2^+ \rightarrow 2_1^+$ in coincidence with $2_1^+ \rightarrow 0_1^+$

Transition	Energy	Counts
k x-ray	68 keV	78 ± 15
$2^+_2 \rightarrow 2^+_1$	196 keV	23.3 ± 5.2
$4^{\scriptscriptstyle +}_{\scriptscriptstyle 1} \to 2^{\scriptscriptstyle +}_{\scriptscriptstyle 1}$	262 keV	62.9 ± 9.6

• Xray = Internal Conversion + E0

EO ANALYSIS

- Internal conversion of $2^+_2 \rightarrow 2^+_1$ depends on ratio of E2/M1, i.e. $\pmb{\delta}$
- δ is unknown so how do we know the exact contribution?
- One needs to find solution which fits best in Gosia ... [Andrew Petts]

EFFECT OF E0 COMPONENT

- Additional E0 contribution mimicked by artificially increasing M1 component
- Variation of matrix elements not huge with variation of δ .

EFFECT OF E0 COMPONENT

- Additional E0 contribution mimicked by artificially increasing M1 component
- Variation of matrix elements not huge with variation of δ .
- Without E0 feeding $\langle 2^+_1 \| E2 \| 2^+_1 \rangle$ is shifted to small positive values
- Significant effect which needs further study

LIFETIME ANALYSIS

- Lifetimes of yrast states have been recently measured in ^{180,182}Hg
- 184,186,188 Hg RDDS measurement took place recently at ANL using Gammasphere
- States J^π≥2⁺ in ^{180,182}Hg have similarly structured wavefunctions
- Similar for $J^{\pi} \ge 4^+$ in 184,186 Hg, indicating a difference between $J^{\pi} = 2^+$ and $J^{\pi} = 4^+$

Figure: T. Grahn, A. Petts, M. Scheck et. al, Phys. Rev. C 80, 014324 (2009)

- $\langle 2_1^+ \| E2 \| 2_1^+ \rangle$ varied and yield reproduced by matching $\langle 2_1^+ \| E2 \| 0_1^+ \rangle$
- Overlap region of 1 sigma suggests slightly -ive DME.
- GOSIA minimisation:

¹⁸²Hg 2⁺₁ Hurst Plot

- $\langle 2_1^+ \| E2 \| 2_1^+ \rangle$ varied and yield reproduced by matching $\langle 2_1^+ \| E2 \| 0_1^+ \rangle$
- Overlap region of 1 sigma suggests slightly -ive DME.
- GOSIA minimisation:

¹⁸²Hg 2⁺₁ Hurst Plot

- $\langle 2_1^+ \| E2 \| 2_1^+ \rangle$ varied and yield reproduced by matching $\langle 2_1^+ \| E2 \| 0_1^+ \rangle$
- Overlap region of 1 sigma suggests slightly -ive DME.
- GOSIA minimisation:

¹⁸²Hg 2⁺₁ Hurst Plot

- More definitive positive DME suggested from simple view
- Gosia minimisation:
- $\langle 2_1^+ || E2 || 0_1^+ \rangle = (|.|7 \pm 0.08) \text{ eb}$
- $\langle 2_1^+ || E2 || 2_1^+ \rangle = (|.89 \pm 0.64) \text{ eb}$
- Oblate deformation
- Supported by lifetime analysis

FUTURE WORK / CONCLUSIONS

- Diagonal and transitional matrix elements extracted in ¹⁸²Hg and ¹⁸⁶Hg by Andrew Petts from Coulex experiment with MINIBALL at REX-ISOLDE
- RDDS lifetime measurements in ^{184,186,188}Hg at Argonne just taken place using Köln plunger coupled with Gammasphere Ge array.
- E0 component to be studied using gamma-electron coincidences at Jyväskylä with the electron spectrometer, SAGE and the JUROGAM Ge array.
- Further analysis of Coulex data, reducing errors with new measurements.

COLLABORATORS

A. Petts¹, N. Bree², P.A. Butler¹, P. Van Duppen², A. Andreyev², B. Bastin²,
A. Blazhev³, B. Bruyneel³, M. Carpenter⁴, J. Cederkäll⁵, E. Clement⁶, T.E. Cocolios²,
J. Diriken², J. Eberth³, L. Fraile⁵, C. Fransen³, L.P. Gaffney¹, T. Grahn¹,
M. Guttormsen⁷, K. Hadynska⁸, R.-D. Herzberg¹, M. Huyse², D.G. Jenkins⁹,
R. Julin¹⁰, S. Knapen², Th. Kröll¹¹, R. Krücken¹¹, A.C. Larsen⁷, P. Marley⁹,
P.J. Napiorkowski⁸, J. Pakarinen¹, N. Patronis², P.J. Peura¹⁰, E. Piselli⁶, P. Reiter³,
M. Scheck¹, S. Siem⁷, I. Stefanescu², J. Van de Walle⁶, D. Voulot⁶, N. Warr³,
D. Weissharr³, F. Wenanders⁶, M. Zielinska⁹

I Oliver Lodge Laboratory, Department of Physics, University of Liverpool, Liverpool, UK,
2 Institut voor Kern- en Stralingsfysika, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium 3 Institut für Kernphysik, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany 4 Argonne National Laboratory, Chicago, Illinois 5 Department of Physics, Royal Institute of Technology, Stockholm, Sweden 6 CERN, Genève, Switzerland
7 Department of Physics, University of Oslo, P.O.Box 1048, Blindern, N-0316 Oslo, Norway 8 Heavy Ion Laboratory, University of Varsaw, Pasteura 5A, O2-093 Warszawa, Poland 9 Department of Physics, University of Jyväskylä, P.O.Box 35, 40014 Jyväskylä, Finland 11 Physik-Department E12, TU München, 85748 Garching, Germany

MIXING ANALYSIS

$|u\rangle = \alpha |\text{oblate}\rangle + \beta |\text{prolate}\rangle$

¹⁸² Hg		β (yrast)
0 ⁺ states:	α -hinderance	16%
	energy levels	7%
2 ⁺ states:	lifetimes	80%
	energy levels	70%
¹⁸⁴ Hg		
0 ⁺ states:	α -hinderance	18%
	energy levels	5%
	E0 strength mixing	0.2%
2 ⁺ states:	energy levels	3%
¹⁸⁶ Hg		
0 ⁺ states:	energy levels	3%
	E0 strength mixing	>4%
2 ⁺ states:	energy levels	8%
	E2 matrix elements	< 0%

References:

Wauters et al. 1993, 1994 Richards et al. 1997 Grahn et al. 2009 NNDC