# RDDS lifetime measurements in <sup>184,186</sup>Hg

### Liam P. Gaffney KU Leuven

Workshop on "Shape coexistence across the chart of nuclides" - York, April 2013





### Shape coexistence in the Hg region...

## (a) <sup>184</sup>Hg - (b) <sup>186</sup>Hg













 $E_{shifted} = E_0 \cdot (1 + v/c \cos\theta)$ 



### $E_{shifted} = E_0 \cdot (1 + v/c \cos\theta)$





### $E_{shifted} = E_0 \cdot (1 + v/c \cos\theta)$



### Gammasphere @ ANL



### <sup>150</sup>Sm(<sup>40</sup>Ar,4n)<sup>186</sup>Hg @ 195MeV

### <sup>148</sup>Sm(<sup>40</sup>Ar,4n)<sup>184</sup>Hg @ 200MeV

### Gammasphere @ ANL



### <sup>150</sup>Sm(<sup>40</sup>Ar,4n)<sup>186</sup>Hg @ 195MeV

### <sup>148</sup>Sm(<sup>40</sup>Ar,4n)<sup>184</sup>Hg @ 200MeV

|  | Ring | Ave Angle |
|--|------|-----------|
|  | A    | 34.54742  |
|  | В    | 52.80420  |
|  | С    | 69.82033  |
|  | D    | 110.17967 |
|  | E    | 127.19580 |
|  | F    | 145.45258 |
|  | G    | 162.72535 |

| Ring | GS Angle |     | Ring | GS Angle  |     |
|------|----------|-----|------|-----------|-----|
| 0    | 17.27465 | x0  | 9    | 99.29040  | x5  |
| 1    | 31.71747 | x5  | 10   | 100.81232 | x5  |
| 2    | 37.37737 | x5  | 11   | 110.17967 | x10 |
| 3    | 50.06504 | x10 | 12   | 121.71747 | x5  |
| 4    | 58.28253 | x5  | 13   | 129.93496 | x10 |
| 5    | 69.82033 | x10 | 14   | 142.62263 | x5  |
| 6    | 79.18768 | x5  | 15   | 148.28253 | x5  |
| 7    | 80.70960 | x5  | 16   | 162.72535 | x5  |
| 8    | 90.00000 | x10 |      |           |     |

### Coincidence method - shifted



- Gate on shifted component of feeding transition, A
- Nucleus in flight *and* in state of interest, **y**
- Time(distance) behaviour of depopulating transition, **B**, describes lifetime of state **y**.



### Coincidence Method - stopped



- Gate on stopped component of depopulating transition, **B**
- Nucleus stopped when **y** decays
- Time(distance) behaviour of feeding transition, A, describes lifetime of state y but susceptible to side-feeding



## <sup>184</sup>Hg - Analysis

• Simplest and cleanest way of determining the lifetime with coincidence method

• Feeding history not important



## <sup>184</sup>Hg - Analysis

• Simplest and cleanest way of determining the lifetime with coincidence method

- Feeding history not important
- Good statistics, clean gates
- **τ** possible up to 8<sup>+</sup>
- $12^+ \rightarrow 10^+$  not clean

Gate on shifted component of  $4^+ \rightarrow 2^+$  transition in <sup>184</sup>Hg Counts per keV 1400 1200  $_6^+ \rightarrow 4^+$  $\rightarrow 6^{\dagger}$ 1200  $\rightarrow 0^{+}$ 1000 10<sup>+</sup> → 8<sup>·</sup> 800 600  $12^+ \rightarrow 10^+$ 400 200 0 300 350 450 500 550 600 400 650 700 Energy [keV]

## <sup>184</sup>Hg - Analysis

• Simplest and cleanest way of determining the lifetime with coincidence method

- Feeding history not important
- Good statistics, clean gates
- **τ** possible up to 8<sup>+</sup>
- $12^+ \rightarrow 10^+$  not clean
- 9- state also measured



#### <sup>184</sup>Hg - Lifetimes $\tau(6^+) = 9.06 \pm 0.26 \text{ ps}$ 9.6 9.2 $\tau \, [\mathrm{ps}]$ 8.8 8.4 8.0 $I_{sh}$ र् 6000 र्ट 5000 4000 3000 2000 1000 0 $I_{us}$ 2000 15001000 500

<u>ৰু</u> কু

100

Distance  $[\mu m]$ 

1000

• Differential Decay Curve Method (DDCM) [1]

• Can be done for each 'ring' independently

• 7 measurements for each state.

[1] Dewald, A., Möller, O., & Petkov, P. (2012).
 *Prog. Part. Nucl. Phys.*, **67**(3), 786–839.
 doi:10.1016/j.ppnp.2012.03.003

0

<sup>184</sup>Hg - Lifetimes



### <sup>186</sup>Hg - Analysis

- "Gate from above" up to yrast 10<sup>+</sup>
- Weighted average of intensities in each ring used, leading to 1 decay curve for each state.





### <sup>186</sup>Hg - Analysis

**1**4<sup>+</sup>

- "Gate from above" up to yrast 10<sup>+</sup>
- Weighted average of intensities in each ring used, leading to 1 decay curve for each state.



## <sup>186</sup>Hg - Doublet





[1] Grahn, T., et al. (2009). *Phys. Rev. C*, **80**(1), 14324. doi:10.1103/PhysRevC.80.014324

• Mixing calculations from Robert Page... To be discussed.



[1] Mariscotti, M. A. J., Scharff-Goldhaber, G., & Buck, B. (1969).
 *Phys. Rev.*, **178**(4), 1864–1886.
 doi:10.1103/PhysRev.178.1864

• Mixing calculations from Robert Page... To be discussed.

• VMI model; extract quadrupole moment from moment of inertia.



[1] Mariscotti, M. A. J., Scharff-Goldhaber, G., & Buck, B. (1969).
 *Phys. Rev.*, **178**(4), 1864–1886.
 doi:10.1103/PhysRev.178.1864

• Mixing calculations from Robert Page... To be discussed.

• VMI model; extract quadrupole moment from moment of inertia.

• Gives pure matrix elements.

10<sup>-24</sup>cm<sup>2</sup> 14 45  $Q_{02} = k \sqrt{J_{02}} [1]$ ЧO 12 MOMENT QI (IN UNITS Sm <sup>152</sup> (2+) 39 41 10 Sm<sup>150</sup> (2+) 37 Q02= k J 1/2  $k = (39.4 \pm 2.6) \times 10^{-24} \text{ cm}^2 \text{ keV}^{1/2}$ QUADRUPOLE 356 36 • Q<sub>02</sub> (FROM B(E2)'s) vs  $J_{02}$ = Q<sub>2</sub> (STATIC, 2<sup>+</sup>) vs  $J_{2}$ INTRINSIC  $k = (45 \pm 2) \times 10^{-24} \text{ cm}^2 \text{ keV}^{1/2}$  [2] 0.01 0.02 0.03 0.04 0.06 0.05 0.07 0.08 0.09 MOMENT OF INERTIA  $J_{I}$  (keV<sup>-1</sup>)

[1] Mariscotti, M. A. J., Scharff-Goldhaber, G., & Buck, B. (1969).
 *Phys. Rev.*, **178**(4), 1864–1886.
 doi:10.1103/PhysRev.178.1864

• Mixing calculations from Robert Page... To be discussed.

• VMI model; extract quadrupole moment from moment of inertia.

• Gives pure matrix elements.

• Some assumptions, i.e. interband MEs equal to zero.



[1] Mariscotti, M. A. J., Scharff-Goldhaber, G., & Buck, B. (1969).
 *Phys. Rev.*, **178**(4), 1864–1886.
 doi:10.1103/PhysRev.178.1864

• Mixing calculations from Robert Page... To be discussed.

• VMI model; extract quadrupole moment from moment of inertia.

• Gives pure matrix elements.

• Some assumptions, i.e. interband MEs equal to zero.

• Experimental B(E2)s



[1] Mariscotti, M. A. J., Scharff-Goldhaber, G., & Buck, B. (1969).
 *Phys. Rev.*, **178**(4), 1864–1886.
 doi:10.1103/PhysRev.178.1864





### Collaboration

#### **Oliver Lodge Laboratory, University of Liverpool, UK**

L.P. Gaffney, P.A. Butler, T. Grahn, M. Scheck, R. Carroll, F.F.E. Filmer, S.V. Rigby, H. Watkins

Institut für Kernphysik, Universität zu Köln, Cologne, Germany M. Hackstein, C. Fransen, A. Dewald, J. Jolie, W. Rother, K. O. Zell

**INRNE, Bulgaria** P. Petkov

Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany M. Scheck

**JYFL, Jyväskylä, Finland** T. Grahn, P. Nieminen, R. Julin, J. Pakarinen

Argonne National Laboratory, Argonne, IL, USA M. Carpenter, R. Janssens, F. Kondev, T. Lauritsen, K. Lister, S. Zhu

Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium L.P. Gaffney, N. Bree, P. Van Duppen, M. Huyse

**CERN, Switzerland** J. Pakarinen





### Lifetimes

|                   | $E_{\gamma} \; (\mathrm{keV})$ | $I^{\pi}$    | $	au_{ave} \ (ps)$ | $	au_{prev}$ (ps)   | B(E2) (W.u) | $ Q_t $  |
|-------------------|--------------------------------|--------------|--------------------|---------------------|-------------|----------|
| <sup>184</sup> Hg | 366.7                          | $2_{1}^{+}$  | 35.8(15)           | 30(7)               | 52(2)       | 4.03(8)  |
|                   | 287.0                          | $4_{1}^{+}$  | 30.2(10)           | 32.8(34)            | 191(6)      | 6.46(10) |
|                   | 340.1                          | $6_{1}^{+}$  | 8.7(4)             | 8.1(31)             | 307(15)     | 7.81(19) |
|                   | 418.3                          | $8^+_1$      | 3.19(14)           | $2.9^{+1.1}_{-1.6}$ | 309(13)     | 7.65(17) |
|                   | 329.1                          | $9_3^{(-)}$  | 12.2(8)            | —                   | 160(30)     | 5.5(5)   |
| $^{186}$ Hg       | 405.3                          | $2_{1}^{+}$  | 24(3)              | 26(4)               | 47(6)       | 3.9(2)   |
|                   | 402.6                          | $4_{1}^{+}$  | 5.6(20)            | 13(4)               | 200(70)     | 6.6(12)  |
|                   | 356.7                          | $6_{1}^{+}$  | 9.1(4)             | 7(3)                | 231(10)     | 6.82(15) |
|                   | 424.2                          | $8_{1}^{+}$  | 4.5(3)             | $\approx 4$         | 202(14)     | 6.2(2)   |
|                   | 488.9                          | $10^{+}_{1}$ | 1.9(2)             | —                   | 238(25)     | 6.7(4)   |



20

## Mixing results

$$B(E2) \downarrow values$$

$$E_{2} \xrightarrow{(-\sin x) \phi_{1} + (\cos x) \psi_{1}} E_{1}$$

$$E_{2} \xrightarrow{(-\sin x) \phi_{1} + (\cos x) \psi_{1}} \Phi_{1}$$

$$\psi_{1} \xrightarrow{\phi_{1}} \Phi_{1}$$

$$\overline{\psi_{1-2} \quad \phi_{1-2}}$$

$$E_{3} \xrightarrow{(\sin y) \phi_{1-2} + (\cos y) \psi_{1-2}} \xrightarrow{(\cos y) \phi_{1-2} + (-\sin y) \psi_{1-2}} E_{4}$$

$$B(E2; 1 \rightarrow 3) = \frac{5}{16\pi} e^{2} [\cos x \sin y \langle IK_{\varphi} 20 | I - 2K_{\varphi} \rangle Q_{\varphi} + \sin x \cos y \langle IK_{\varphi} 20 | I - 2K_{\psi} \rangle Q_{\psi}]^{2}$$

$$B(E2; 1 \rightarrow 4) = \frac{5}{16\pi} e^{2} [\cos x \cos y \langle IK_{\varphi} 20 | I - 2K_{\varphi} \rangle Q_{\varphi} - \sin x \sin y \langle IK_{\psi} 20 | I - 2K_{\psi} \rangle Q_{\psi}]^{2}$$

| AA | AB | AC | AD | AE | AF | AG |
|----|----|----|----|----|----|----|
|    | BB | BC | BD | BE | BF | BG |
|    |    | CC | CD | CE | CF | CG |
|    |    |    | DD | DE | DF | DG |
|    |    |    |    | EE | EF | EG |
|    |    |    |    |    | FF | FG |
| ху |    |    |    |    |    | GG |

- Unpacked events into  $\gamma$ - $\gamma$ -matrices
- Each ring against every other = 28
- Gate lists for each ring ( $\theta$ ) and each transition

| AA | AB | AC | AD | AE | AF | AG |
|----|----|----|----|----|----|----|
|    | BB | BC | BD | BE | BF | BG |
|    |    | CC | CD | CE | CF | CG |
|    |    |    | DD | DE | DF | DG |
|    |    |    |    | EE | EF | EG |
|    |    |    |    |    | FF | FG |
| xy |    |    |    |    |    | GG |

| gate on y-, project to x-axis<br>sum 7 spectra —> Ring A | AA | AB | AC | AD | AE | AF | AG |
|----------------------------------------------------------|----|----|----|----|----|----|----|
|                                                          |    | BB | BC | BD | BE | BF | BG |
|                                                          |    |    | CC | CD | CE | CF | CG |
|                                                          |    |    |    | DD | DE | DF | DG |
|                                                          |    |    |    |    | EE | EF | EG |
|                                                          |    |    |    |    |    | FF | FG |
|                                                          | xy |    |    |    |    |    | GG |







FIG. 1. Proposed level scheme for <sup>184</sup>Hg.



Level scheme from: F. Hannaci et al. Nucl. Phys. A 481 (1988) 135



22+