Hg lifetime analysis Liam P. Gaffney – University of Liverpool

Workshop on "Shape coexistence in the Pb region" – Leuven, 15th January 2012

Gammasphere + Köln plunger

photo credit: The Hulk movie and Matthias' Hackstein

 $E_{obs} \approx E_0 \cdot \left(1 + \frac{v}{c}\cos\theta\right)$

Gammasphere + Köln plunger

152Sm(40Ar,4n)188Hg @ 195MeV 150Sm(40Ar,4n)186Hg @ 195MeV 148Sm(40Ar,4n)184Hg @ 200MeV

photo credit: The Hulk movie and Matthias' Hackstein

 $E_{obs} \approx E_0 \cdot \left(1 + \frac{v}{c}\cos\theta\right)$

Gammasphere + Köln plunger

152Sm(⁴⁰Ar,4n)¹⁸⁸Hg @ 195MeV 150Sm(⁴⁰Ar,4n)¹⁸⁶Hg @ 195MeV 148Sm(⁴⁰Ar,4n)¹⁸⁴Hg @ 200MeV

photo credit: The Hulk movie and Matthias' Hackstein

Ring	GS Angle		Ring	GS Angle	
0	17.27465	x0	9	99.29040	x5
1	31.71747	x5	10	100.81232	x5
2	37.37737	x5	11	110.17967	x10
3	50.06504	x10	12	121.71747	x5
4	58.28253	x5	13	129.93496	x10
5	69.82033	x10	14	142.62263	x5
6	79.18768	x5	15	148.28253	x5
7	80.70960	x5	16	162.72535	x5
8	90.00000	x10			

	Ring	Ave Angle
	A	34.54742
	В	52.80420
	С	69.82033
2	D	110.17967
	E	127.19580
	F	145.45258
	G	162.72535

 $E_{obs} \approx E_0 \cdot \left(1 + \frac{v}{c}\cos\theta\right)$

AA	AB	AC	AD	AE	AF	AG
	BB	BC	BD	BE	BF	BG
		CC	CD	CE	CF	CG
			DD	DE	DF	DG
				EE	EF	EG
					FF	FG
ху						GG

- Unpacked events into γ-γ-matrices
- Each ring against all 7 rings = 28
- Gate lists for each ring and transition

gate on y-, project to x-axis sum 7 spectra —> Ring A	AA	AB	AC	AD	AE	AF	AG
		BB	BC	BD	BE	BF	BG
			CC	CD	CE	CF	CG
				DD	DE	DF	DG
					EE	EF	EG
Unpacked events into γ-γ-matrices						FF	FG
Each ring against all 7 rings = 28	xy						GG

Gate lists for each ring and transition

Gate lists for each ring and transition

Gate lists for each ring and transition

Shifted, stopped, total??

- Gate on shifted component of feeding transition, A
- Nucleus in flight and in state of interest, y
- Time(distance) behaviour of depopulating transition, B, describes lifetime of state y in a clean way.

Shifted, stopped, total??

- Gate on stopped component of depopulating transition, B
- Nucleus stopped when y decays
- Time(distance) behaviour of feeding transition, A, describes lifetime of state x but susceptible to de-orientation (Matthias)

Shifted, stopped, total??

- Gate on total line-shape of depopulating transition, B and also, feeding, A
- Intensities of A, gated on B and B gated on A need to be known simultaneously
- Time(distance) behaviour of B-A, describes lifetime of state y

¹⁸⁴Hg - Shifted!

• Simplest and cleanest way of determining the lifetime with coincidence method

•

¹⁸⁴Hg - Gates

¹⁸⁴Hg - Shifted!

• Simplest and cleanest way of determining the lifetime with coincidence method

- Good statistics, confident gating
- Possible up to 8+
- $12^+ \rightarrow 10^+$ not clean

¹⁸⁴Hg - Unshifted?

Counts per keV

400

300

200

100

ſ

700

• Gate from below on $(2^+ \rightarrow 0^+)_{us}$ could give access to non-yrast 4⁺ lifetime

- Careful gating as before
- Not enough statistics to fit shifted peak

Gate on unshifted component of $2^+ \rightarrow 0^+$ transition in ¹⁸⁴Hg

Gate on unshifted component of $2^+ \rightarrow 0^+$ transition in ¹⁸⁴Hg

 $(4_2^+ \rightarrow 2_1^+)_{sh}$

730

740

750

760

Energy [keV]

 $(4^+_{\scriptscriptstyle 2} \rightarrow 2^+_1)_{\rm us}$

720

710

¹⁸⁴Hg - Lifetimes

• Napatau program used to fit both shifted and unshifted intensities simultaneously.

- Polynomial fit makes for easier differential
- Shifted component corrected for difference in relative efficiency (max. ~1%)
- Statistical error only, including normalisation of the distances
- Can be done for each 'ring' semiindependently (7 lifetimes)

¹⁸⁴Hg - Lifetimes (2+)

¹⁸⁴Hg - Lifetimes (2+)

¹⁸⁴Hg - Lifetimes (4+)

¹⁸⁴Hg - Lifetimes (4+)

 $B(E2; 4^+ \rightarrow 2^+) = (188 \pm 6) \text{ W.u.}$

¹⁸⁴Hg - Lifetimes (6+)

¹⁸⁴Hg - Lifetimes (6+)

 $τ(6^+)$ weighted mean = (9.0 ± 1.3) ps $| < 4^+ ||E2||6^+ > | = (4.9 ± 0.4)$ eb B(E2; 6⁺ → 4⁺) = (300 ± 40) W.u.

¹⁸⁴Hg - Lifetimes (8+)

¹⁸⁴Hg - Lifetimes (8+)

B(E2; $8^+ \rightarrow 6^+$) = (310 ± 30) W.u.

¹⁸⁴Hg - Lifetimes

¹⁸⁴Hg - Lifetimes

¹⁸⁸Hg - Contaminated!

- 134ns (I^π=12⁺) isomer at 2.7MeV --> **d > 8m**
- 5n and 6n channels cause contamination with similar γ -ray energies

Gate on $14^+ \rightarrow 12^+$ transition feeding isomer in ¹⁸⁸Hg

¹⁸⁸Hg - Contaminated!

- 134ns (I^π=12⁺) isomer at 2.7MeV --> d > 8m
- 5n and 6n channels cause contamination with similar $\gamma\text{-ray}$ energies
- Other strong channels less of a direct problem in coincidence

Gate on peak at 301keV

¹⁸⁸Hg - Contaminated!

- 134ns (I^π=12⁺) isomer at 2.7MeV --> d > 8m
- 5n and 6n channels cause contamination with similar γ -ray energies

350

400

450

- Other strong channels less of a direct problem in coincidence
- Cleanest and widest possible gate on (4+ -> 2+)sh
- Unidentified lines present along with lines in ¹⁸⁷Hg and ¹⁸⁶Hg.
- τ fits are inconsistent vs angle or if gates or changed
- Sum gate not possible either

marked with ● and ¹⁸⁶Hg with ●

Gate on shifted component of $4^+ \rightarrow 2^+$ transition in ¹⁸⁸Hg Counts per keV 300 $8^+ \rightarrow 6^+$ 250 6 200 $10^+ \rightarrow 8^+$ 150 100 50 known transitions in ¹⁸⁷Hg are

500

550

600

650

Energy [keV]

FIG. 1. Proposed level scheme for ¹⁸⁴Hg.

Level scheme from: F. Hannaci *et al.* Nucl. Phys. A **481** (1988) 135

6401

22+