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1.1: Overview: Waves.

Classification of waves and their properties
Wave speed

Energy in a wave

The principle of superposition
Interference

Reflections and Boundaries
Standing waves

Resonance

Introduction to sound waves
The decibel scale

Beats

The physics of music

Doppler Effect

The wave equation
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1.2: Some Reference Books.

1. Fundamentals of Physics Halliday, Resnick, and
Walker,
sixth edition, John Wiley 2001.

. Berkeley physics course Vol 3: Waves, Frank S.
Crawford.
This book is more math oriented.

. The Feynman Lectures in Physics (Vol I), Feynman,

Leighton, Sands

I will follow Halliday, Resnick and Walker very closely.

Recommended study time: 36 h.

At the end of each lecture are suggestions for exercises

and revision.
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1.3: Introduction I

Classification of waves:

Mechanical waves -, Light waves
(need medium) (needs NO medium)

sound, water waves, radio, light, X-rays
earthquakes, etc etc

N

longitudinal transversal purely transversal

sound waves water waves

Periodic waves: /\/\/\/\/\/

Non-periodic waves (pulses):

In quantum mechanics: matter and probability waves!
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Consider a transversal periodic sinusoidal wave travelling
along, e.g. a water ripple and take a snapshot of it at a
time t = O:

3 ‘

Vi

Xo

0

Ym : amplitude
A @ wavelength

y(z,t) = y(z,t = 0) = ym sin(k(z — z0))
Substitute ¢g = kxg to give
y(z,t) =y(x,t =0) = ym sin(kz — ¢p)
The wave is periodic, therefore we must have
y(x + A, 0) = y(z,0)

for all x. Thus:

Ym SIn(k(x + X) — ¢g) = ym sin(kx — ¢g)
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We know for a sine function:

sin(a + 27) = sin(a)

and therefore kA = 2.

_ 2n
k_)\

We call k£ the angular wave number. Units:

Al =m
[27] = rad
[k] = rad/m

It is also useful to define the wave number k:

k

o

k=1/A
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A
MV

|
02 04 06 08 1 12 14
X /'m

We measure A = 0.2 m.
Thus k = 27 /A = 31.4rad/m
and kK = 1/A=5m 1.
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1.5: Time dependence:'

Now look at a given point and let the wave pass by:
y =y(z,t) = y(xo, 1)

Take the same wave as before. Two observations:
1. 1t again is a sine

2. it “goes down” first

Y = —Ym sin(wt) = yy, sin(—wt)

The time it takes from one crest to the next is called the

120 140
t/s
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Again: sin(wt) = sin(w(t + 7))

2T
W Tl w

Define f = 1/T = 3=
Units:

period|T]
angular frequency|w]

frequency|f]
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1.6: Example: I

T=5s

We measure 17" = 5s.
Thus w =27 /T = 1.26 rad /s
and f =1/T = 0.2Hz.
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1.7: The complete wave:'

How can we combine these things into one description
for the entire wave?

y(0,t) = Yy, sin(—wt)

y(z,0) = y,, sin(kx)

Look at a single “point on the wave”.
E 3 T T
= t=0 t=At

> ‘ /

RVAYAY

0 2 4 6 8 10 12 14
X /'m

The wave moved by Ax in the time At. The speed is
therefore

m/s]

m/s]
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If the point stays fixed on the wave then the argument of

the sine function must remain constant.

If x increases as t increases, then choosing kxr — wt as the

argument of the sin will have the desired effect:

y(z,t) = ymsin(kz — wt — ¢o)

Note the importance of the phase constant ¢,. We will
see that k depends on the frequency and the medium
through which the wave travels. That leaves y,, and ¢q

to be determined by initial conditions. This makes sense:

You decide how big a wave you want to create (y,,) and

you also determine which point on the wave you consider

as your point of reference (¢g).
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1.8: Wave speed:'

When we say “the wave moves”, what is actually
moving? The only real motion is up and down, not
forward!

The position of a point with a certain phase changes

with time, and it is that speed that is the wave speed.

The phase of the wave is given by

kxr — wt — ¢y = const.

Differentiate with respect to t:

Check the dimension:
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1.9: Example: I

Consider the wave

y(x,t) = (0.1m)sin(2x — 4t + 7/3)

What are y,,,, T, A\ k., f, Kk, w, ¢p?

Fasy:

0.1m
2rad/m

4rad/s

4rad/s

27 rad

1/f = 1.571s
2
21 [k = m rad =3.14m
2rad/m
1/A=0.318m !

—7/3

w/2m = = 0.636 Hz

What is the wave speed?
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What if we want to move in the other direction?

we need decreasing x with increasing ¢:

kx + wt — ¢pg = const

dax w
/l) _—

T dt Kk

just as we wanted.

So the two types of sinusoidal waves are:

y(z,t) = ymsin(kzr — wt — ¢o) =

y(x,t) = ym sin(kx + wt — ¢g) <
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1.10: Physical WaveSI

Consider a real physical system, a very long, elastic,
massive string in x direction. At the point x = 0 we
move the string up and down in a periodic sine motion.
The string has a mass density u = m/l and a tension 7
and the wave is described by y(z,t) = y., sin(kz — wt).

Each element of the string travels up and down

periodically.

yA

The kinetic energy for a string element of length Az is

A 2

2 dt

dy

47 = Um cos(kr — wt) - (—w)

A 2 2
AEy;, = == cos® (kx — wt)
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The potential energy in the stretched part of the string
is AE,,: =(tension in string) - (elongation of string)

AE,, (Al — Az)
Al? Az + Ay?
Al — Az VAZ2 + Ay? — Az

Ay?
Al — A A 14+ —2 —1
T x( + . )

For small oscillations we can use the Taylor expansion:
2 4 2

\/1+a2—1:1+a——a—+---—1:a—

2 8 2

Finally use ﬁ—g % = Ymk cos(kx — wt) and collect it
all:

AEpot T(Al - AZC)

T(A:U(\/l + (
1 [ Ay ?

Ty2 k?Ax
2

cos®(kx — wt)

2 1.2
k2A
AEpo = Pme=% cos? (kz — wt)

The average energy in the wave can be found by
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integrating the energy over one period and dividing by

t=T
/ E(z,t)dt
t

=0

that period:

Azpw?y?, 1 (T
(AFEkin) = THY m —/ cos®(kx — wt)d t
> T/,

This integral is easy. Since sin(kxz — wt) looks exactly
like cos(kz — wt), only a little further left, the integral
over one period will be the same.

1 (7T
— / cos®(kx — wt)d t
T Jo

T
sin? (kz — wt)d t
(sin?(kx — wt) + cos®(kx — wt))d t

T
1dt¢

1

R-D Herzberg



PHYS126 Waves and Optics

This leaves us with:

Azpw?y?,
(ABin) = —H—

AxTk?y?
4

<AEpot> —

Recall from the mechanics course:

In every oscillating system, the average kinetic

energy equals the average potential energy.

(ABkin) = (AEpot)

Azpw?yZ,  Aztk®yZ,
4 4

w T
pw? =Tk = — =, /- =v
k I
So the speed of a wave on a string with mass density u

and tension 7 is given by
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1.11: Summary: I

transversal sinusoidal waves

y(x,t) = ym sin(kz F wt — )

% 9.

: Travels in positive x-direction

747 Travels in negative x-direction

Amplitude y,,

Wavelength A\ [m)]

angular wave number k = 27/ [rad/m)]
wave number k£ = 1/ [1/m]

Period T [s]

angular frequency w [rad/s]

frequency f [1/s] or [Hz]

Wave speed v = £ = 2 = \f[m/s]

Wave on a string with tension 7 and mass density pu:

T
7

Wave speed v =
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1.12: Exercises: I

Halliday Resnick & Walker:
Reading: HRW Chapter 17 pp 370-382 (Waves I)
Exercises: p.392 ff.: Q3, Q4, 3E, 4E, 6P, 24E, 25P
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1.13: Principle of superposition'

If two (or more) waves travel through the same region of

space, the net displacement at each point is the sum of

the displacements due to the individual waves.

This is the Principle of Superposition for waves.

y(%,t) — yl(xvt) + y2(x7t)

-

T
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1.14: Superposition of WavesI

So far we only looked at sinusoidal waves. How general is
that?

Any function can be treated as a superposition of

(infinitely) many sinusoidal waves.

To find these component sinusoidal waves one does a

Fourier analysis.

We can build up any function as a sequence of

rectangular pieces:
y A

hlig

And we can build a rectangular piece out of sine waves:

y

|
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Consider 77 ) <3 sin((2n + 1)z — (2n + 1)2):

0

25 Terms:
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1.15: Wave speed'

What about the speed of this composite wave?

cos(3)

y(x,t) = cos(1)sin(z —1t)+ sin(3z — 3t)

cos(H)

sin(bz — 5t) + - - -

5)
—gzlm/S

All constituent waves travel at the same speed.
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1.16: Conclusions I

1) We can decompose any periodic or nonperiodic wave

or pulse into an (infinite) number of sinusoidal waves.
2) We can observe Interference.
Take two waves travelling along a string:
y1(x,t) = yo sin(kx — wt)
yo(x,t) = yo sin(kx — wt — D)

We call ® the phase difference between the two waves:
"They are out of phase by ®”.

define o = kx — wt, B = kx — wt — P.
(a+p)/2=kx —wt— &/2
(a—p)/2=+P/2

Use sin(a) + sin(8) = 2sin((a + £)/2) cos((a — 3)/2)

y($7t> yl(xat)+y2($7t>

Yo sin(kx — wt) + yo sin(kx — wt — P)
2yp cos(P/2) sin(kx — wt — P/2)

New amplitude y,, = 2yg cos(®/2) ! The new wave has a
different amplitude and a different phase.
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1.17: Interference I

We can now distinguish several cases:

1) ® = 0: The waves are ”in phase”, we have
Ym = 210 cos(0) = 2yp.

AWAWAWAWAWA
vVVVV VYV

AWAWAWAWAWA
VAAVAAVARVARVARV.

= AAAANN
VWVW

2) ® = m: The wav out of phas
Ym = 2o C 7r/2 0.

AWAWAWAWAWA

VVV VUV

ANNNNNA N
vVVVVVVYV

_I_

_I_
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Generally we will have cases in between these extremes:
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1.18: Applications of interference'

Active earprotection

D Inverter

Microphone
Loudspeaker

If the microphone is 5 cm away from the ear and the
loudspeaker is 2cm away from the ear then we have

0.1 ms to invert the wave - plenty of time!
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1.19: Standing waves II

So far these waves moved in the same direction. What is

they move in opposite directions?

y1(x,t) = yo sin(kx — wt)
yo(x,t) = yo sin(kx + wt — D)

_>

AVAVAVAVAVAY

-

define o = kx — wt, B = kx + wt — ® and use
sin(a) + sin(B) = 2sin((a + 8)/2) cos((a — 3)/2)

y<x7t) — y1<$,t) + y2($7t) —
2yo sin(kx — ®/2) cos(wt + P /2)

This is not a travelling wave anymore, it is a Standing

wave.
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1.20: Standing waves III

R-D Herzberg
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1.21: Summary'

Principle of Superposition: If two (or more) waves
travel through the same region of space, the net
displacement at each point is the sum of the
displacements due to the individual waves.

We can build up any periodic or nonperiodic wave from

sinusoidal waves

Interference:

If two sinusoidal waves with the same wavelength travel
in the same direction the resulting wave is again a
sinusoidal wave with the same wavelength but with a
different amplitude and phase:

y(x,t) Yo sin(kx — wt) + yg sin(kx — wt — P)
2yo cos(P®/2) sin(kx — wt — ®/2)

Standing waves:
If two sinusoidal waves with the same wavelength travel
in opposite directions the result is a standing wave:

y(x,t) = yosin(kx — wt) + yo sin(kx + wt — D)
2yo sin(kx — ®/2) cos(wt + P/2)
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1.22: Reflections I

What hapgens if a wave encounters an obstacle?

_/\

NNNNNNNN

The puls returns inverted!
_>

_/\

NNNNNNNN

N/
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The string exerts a force on the wall. According to
Newtons principle actio = reactio the wall exerts an
equal, but opposite force on the string: The pulse is

inverted and sent back.
We call this type of reflection a “hard”reflection.

The other type of reflection is a “soft”reflection:
Consider this string which is attached to a frictionless

bearing that slides along a rod:
_>

VAN

VA

There is no force on the rod, therefore the rod does not

exert any force back on the string.

The end of the string moves, stretching the string. This
then generates a restoring force proportional to the
elongation of the string. The pulse is sent back, but not

inverted.
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1.23: Momentum transfer.

What is the amount of momentum transferred to the

rod/wall in both cases:

1) Hard reflection: The string element Az closest to the
wall has a momentum Ap. As the pulse is reflected from
the wall, that momentum is reversed: Ap — —Ap. The
total change of momentum in the string element is

—Ap — Ap = —2Ap. As momentum is conserved, the
wall must have experienced a change in momentum of

equal magnitude but opposite direction: +2Ap.

2) Soft reflection: Since the bearing moves frictionless
along the rod, the rod never feels any kind of force.

Therefore no momentum is transferred to the rod.

This is the difference between “hard” and “soft”
reflection: “hard” reflection transfers momentum to the

“mirror”, “soft” reflection does not.
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1.24: Standing waves IIII

If we want to set up a standing wave, we have to use two
waves with the same wavelengths travelling in opposite
directions on the same string. The easiest way to create
such a thing is to use a wave and trap it between two

walls.

Take a string with a length L and a mass density
1= m/L at a tension 7. If we want to have a standing

sinusoidal wave on this string, we must have a node at
both ends.

NNNNNNNN

LSS

L

This means, the length of the string only allows certain

wavelengths to form standing waves:

Ly =)/2

But we can squeeze more nodes onto the string:
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Fundamental mode (First harmonic):

- ==

NNNNNNNN

LSS

A, = 2L/1

Second harmonic:

< > >

)\2 = 2L/2

LSS

NNNNNNNN

Third harmonic:

O >

As

LSS

NNNNNNANN

An
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The length of the string determines the wavelength, the
tension and mass density determine the wave speed,
therefore the frequency is fixed for any mode. Obvious:
A guitar string will sound at a given frequency. To
change the pitch you must shorten the string (normal
play) or change the tension in the string (tuning).

Example: A bass string has a length of 1 m with a mass
density of 2.8 g/m. What tension is required to tune the
string to a frequency of 55 Hz?

Solution:

fA=v=

T = pu(fA)?

7= 2.8 x 10 %kg/m(55s 12m)* = 33.9N

If you have the tension too high by 1N, how will the
pitch change?

Solution:

Foujn = VTN

A
~ \/34.9N/2.8 x 10-%kg/m
N 2m

f — 55.8H2

Basses are easy to tune.
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1.25: Resonance I

Take the string and excite it with a frequency of your
choosing: You still will have a wave travelling back and
forth, but the backward and forward moving waves will

not be in phase, you do not get a nice standing wave.

Only if the frequency approaches the allowed
(fundamental and harmonic) frequencies does a standing

wave emerge. We say the string is in resonance.

Take the bass string of the previous example: The
fundamental mode had a frequency of f; = 55 Hz. What
other resonance frequencies are there?

The wave speed is constant for all waves on that string.

The wavelengths are given by A\, = 2L/n.

nv

fn:v/)\n:ﬁ:nfl

fo =2+ 55Hz = 110Hz
fs = 3+ 55Hz = 165Hz
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1.26: Summary'

Fundamental mode (First harmonic):

- =

A, = 2L

Second harmonic:

< < =

)\2 = 2L/2

LSS
ASNNNNNNN

LSS
NN

Third harmonic:

>

)\3 = 2L/3

N
N
N
N
N
§
N

ANSNNNNNNN

An = 2L/n

A = 2L/n where n is the number of antinodes in the

standing wave.

The speed of the wave is determined by the tension and
the mass density of the string. This together with the
length of the string determines the fundamental and

harmonic frequencies.

A wave undergoing “hard”reflection returns inverted.

A wave undergoing “soft” reflection returns upright.
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1.27: Exercises I

Halliday Resnick & Walker:
Reading: HRW p. 382-391 (Chapter 17: Waves I)
Exercises: p. 392 ff.: Q5, Q9, 29P, 33E, 37E, 46P
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2:Sound.

All waves on the string were transversal waves and were
possible because the vibrating string can store elastic

energy by stretching.

Sound travels through air which is not elastic, so we
need a different mechanism for the propagation of sound

waves.
Sound waves are longitudinal pressure waves!

Take a tube filled with air at a pressure p:

_>

and push on the piston. This will displace the air
molecules next to it and increase the pressure. Then air

will How out from this high pressure region pushing on

the adjacent molecules - a pressure wave forms.
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2.1: Speed of sound'

We shall use Newton’s 2"¢ law F' = ma to find the speed
of sound.

A step in pressure travels through the tube.

The net force on the shaded volume of air is

F:F2_F1 :pA—(p-i—Ap)A:—ApA

The mass of that volume of air is

m = pAV

The acceleration is

a =

This gives
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To relate the change in pressure to a change in volume
we use the Bulk Modulus B. It is a material constant
and has the dimension of a pressure: Pa (Pascal).

AV

We then have

_ApA = BA—VVA — pAV L

At

BA U

v A
The Volume we are looking at is V = AAzx = Ault
u

PAt
B
p

u =

This looks familiar:

elastic parameter

speed = :
inertial parameter

The elastic parameter stores potential energy,

The inertial parameter stores kinetic energy.
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2.2: Speed of sound III

In a medium with bulk modulus B and mass density p,

the speed of sound is

u =

B
P

Examples:
Material Bulk Modulus Density Speed of sound

Air 142 kPa, 1.2kg/m? 344m/s
Helium 179kPa 0.18 kg/m? 1000 m/s
Water 2.05 GPa 1g/cm? 1430 m/s
Steel 165 GPa 7.8g/cm? 4600m/s
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2.3: Sound as longitudinal waves'

Let us look closer at the actual motion of the air:

2

Py v

————-——————-H

)

A
Pryov vy
A

-
7))
"'""""""00

Displacement

What about the pressure? Intuitively we would say that
the pressure is high in regions 1 and 3 since all the air is

flowing toward these regions and lowest for region 2.

Assume for the displacement

s(x,t) = sg cos(kxr — wt)

with sqg << A.
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The pressure at each point can be obtained by looking at
the change of volume brought on by the wave:

V, = AAX
%

_
_
_

A

X X+ A X

This volume is deformed by the wave:
X+s(x,t) X+AX +s(x+Ax,t)

-
-
-
-

4

V.
A

AV = (Ax+sgcos(k(z+Ax)—wt)—sqcos(kr—wt))A—V
Use

cos(a + ) = cos(a) cos(B) — sin(a) sin(/3)

= AAzx + Asgcos(kxr — wt) cos(kAx)
— Asg sin(kx — wt) sin(kAx)
— Asg cos(kx — wt) — AAx

We had a very thin slice, therefore KAz << 1 and we
can approximate cos(kAz) ~ 1 and sin(kAx) ~ kEAx.

R-D Herzberg



PHYS126 Waves and Optics

This leaves us with

—ksgAAx sin(kx — wt)
—ksoVy sin(kx — wt)

Again use the bulk modulus to relate AV and Ap and
collect it all (Ap = —BAV/V):

Ap = sgBksin(kx — wt) = pg sin(kx — wt)

po = soBk = sgpwu

The last step uses u = w/k = \/B/p.

Displacement

A/ /Pressure
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2.4: Sound intensity'

What is the power transmitted by a sound wave?

Sound is not restricted to a one dimensional string, it
will radiate in 3 dimensions. We define the sound
intensity I observed at a distance R from the source as

the power received per unit area:

P

] =
47 R2

The displacement at a distance r from the source is then

s(r,t) = sgsin(kr — wt — @)

T:\/x2+y2+z2
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The kinetic energy in a thin spherical shell around the

source 18

Am

Ly

as(r, t) = sosin(kr —wt — ®g) = —wsg cos(kr — wt — Pg)

Amw?s2

AFEy;, = TO cos?(kr — wt — @)

The next steps are completely analogue to the discussion

we had for waves on strings:

1) Calculate the average kinetic energy over one period.
Amw?s?

2) The average potential energy is the same as the
average kinetic energy, therefore the average total energy
is twice the average kinetic energy:
Amsiw?

<AEtot> — 2

compare wave on a string:

pAzy;, w?

<AEtot> — 2
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For a spherical shell with radius R and thickness Ar we
have Am = 47 R?*Arp

4 R? Arpsiw?
2

<AEtot> —

3) Compute the power (energy transmitted per time)

(AE}ot)
At
4t R?psiw? Ar
2 At
4 R?psiw?u
2

This gives the intensity as

P psawiu

I — _
4 R? 2

Sound intensity is measured in W /m?.
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2.5: Example I

We generate sound with a radio. The power of the radio
is P, = 0.25 W, and we listen to it at a distance of
R = 1m. What is the sound intensity at the ear?

P 2
I oW = 19.9mW /m?

I =
ArR?  12.56(1m)?

If the average human ear has a size of A = 50 cm?, how

much power reaches the ear?

P, 0.25W
= A =
Am R? 12.56(100cm)?

P 50cm? = 0.1mW

Is that a lot?

We cannot really answer that question because we do
not yet have a scale against which to measure sound

intensities. So we must create one.

The softest sounds that the human ear can hear has a
pressure amplitude of 2.8 x 1072 Pa at a frequency of
1000 Hz (very low whisper).

The loudest sounds we can tolerate (at the pain
threshold) has a pressure amplitude of 28 Pa - that is a

starting jumbo jet from a few meters beside the runway!
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What are the displacement amplitudes for these sounds?
We use pg = sgpwu.

f =1000Hz

u=340m/s

p=1.2kg/m3

po = 2.8 x 107 Pa

This gives for the whisper

Pa m?>s?

kg

so = po/(pwu) = 1.1 x 10~

so=1.1x10""m

and for the jumbo jet

So=1.1x10""m = 11pm

The ear is sensitive over 6 orders of magnitude of

pressure!
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2.6: Summary'

Soundwaves are longitudinal pressure waves.

The speed of sound u is related to the bulk modulus
B and the mass density p via u = /B/p.

The bulk modulus relaes the change in volume due

to a change in pressure: Ap = —BAV/V

The displacement amplitude sg and the pressure

amplitude py are related via pyg = sgpwu.

The sound intensity is the power radiated by the
source per unit area: [ = P/(4wR?).

The sound intensity is related to the displacement

amplitude sg via I = pSgw?u/2.
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2.7: Exercises I

Halliday Resnick & Walker:
Reading: HRW p. 398-404
Exercises: p. 420 ff.: Q3, Q10, Q12, 4E, 9E, 17E, 27P
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2.7: The decibel scale.

The human ear covers an enormous range of sound

intensities: The lowest whispers have an intensity
I =10"12W/m?, while the sound of a starting jet has an
intensity of 1 W/m?. That is 12 orders of magnitude.

It is therefore useful to introduce a logarithmic scale: the
decibel scale.

It is not possible to take logarithms of physical
quantities which have units:

1ke = 1000 ¢

10%10(1 kg) — 10%10(1000 g)
0=3 P07

It is possible to take the logarithm of a ratio of physical

quantities.

We can define the lowest audible sound intensity
Io = 10712 W/m?2. Then the definition

B = (10 dB) 10%10(1_/[0)
makes sense.
1dB = 1 decibel = 0.1 bel

The unit bel was named after Alexander Graham Bell.
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The decibel scale

Sound Intensity Pressure
Intensity Level amplitude

dB] [W/m”] [Pal

Displacement

amplitude
[m]

Jet takeoff
Construction site
Rock concert

Shout (1.5m)

Heavy Truck (15m)
Urban Street
Automobile interior
Normal Conversation
Large Office

Living Room
Bedroom at night
Broadcast studio
Rustling leaves
Lowest audible whisper

130 10 90

120 1 28

110 0.1 9

100 0.01 2.8

90 0.001 0.9

80 10~ 0.28

70 10°° 0.09

60 107° 0.028
50 10~7 0.009
40 1078 0.0028
30 1077 0.0009
20 10710 0.00028
10 1071t 9.0x107°
0 10~ 12 2.8%x107°

3.6x107°
1.1x107°
3.6x1076
1.1x107°
3.6x1077
1.1x10™"
3.6x1078
1.1x1078
3.6x107°
1.1x107°
3.6x107 10
1.1x1071°
3.6x107 11
1.1x10~ 1!
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How do we work with the decibel scale?

Remember basic logarithms:

log(ab) = log(a) + log(b) log(a/b) = log(a) — log(b)
log(a®) = blog(a)

One loundspeaker plays music at an intensity
I =10"*W/m?. The sound intensity level is

10~* W /m?
6 (1OdB) 1OglO (1012 W/m2>

10dB) log,,(10%) = 80dB
10

The loudspeaker doubles its intensity:

2 x 1074 W /m?
10-12 W /m?

8 — (10dB)logy, (

(10dB) log,,(2 x 10%)
(10dB) log;,(2) + (10dB) log;,(10%)
3dB + 80dB = 83dB

Doubling the intensity only adds 3 dB.
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Two sounds have sound intensity levels 87 = 50dB and
B2 = 30dB. What is the ratio of the two sound

intensities?

b1 — B2

Iy
50dB — 30dB (10dB) [10%10 (I_O)] ( >
I
i)

20dB (10dB) log;, <

")

I,
Iy
I

1
log (E)

I
I>

The ratio of the two sound intensities is I : I = 100 : 1.
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What are the sound intensities for these two sounds in
W /m??

I
(10 dB) logy, <1—1>

0

1 h
%810 \ 10-12W/m?
I

10-12 W /m?
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2.8: The human ear.

Outer Middle Inner
Ear Far

Vestibular
Apparatus

\— Vestibular ‘

tﬁbund window 1" - f. .""'.":'\

- Ey i Nasal cavit
i Eustachian tube </ - Nasal cavity

-t

Fig. 8.11. Simplified drawing of the human ear. [After Shortley and Williams,
Elements of Physics, 2nd ed., Prentice-Hall, Inc., 1955.]

Outer ear: Concentrate the sound onto the eardrum.

Middle ear: Amplify the sound even more, act as safety

against too loud noise

Inner ear: Decode the different frequencies, transmit

information to the brain.
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The pressure on the eardrum is transferred to the oval

window on the cochlea by a system of levers (Hammer,

Anvil, Stirrup)

Oval window Auditory nerve  Reissner's membrane

Organ of corti

Round window

Cochlear duct Basilar membrane

(b)

Hammer

Oval Window

Stirrup
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2.9: Physics of musical instruments'

Strings - Pipes - Membranes

Standing waves on a string:

e

e —

|

pluck here
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Iron pole piece
(adjustable)

String
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2.10: Pipes'

Take a pipe with a closed and an open end and excite a

standing soundwave in it.

At the closed end the displacement has to vanish.

At the open end, the pressure has to stay the same as in

the outside world.

The pressure nodes coincided with the dislacement

antinodes:
closed L open

—  —

Displacement Pressure
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Of course, all the higher modes are also possible in pipes:

Fundamental mode;:

closed L

——8

Displacement )\=4L  Pressure

Second Harmonic

A =4L/3

Third Harmonic
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membranes

2.11

We are not restricted to one-dimensional patterns.

Take a rectangular membrane fixed around the rim:

n(1,1)

Fundamental mode:

R-D Herzberg
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2.12: Summary'

The decibel scale is a logarithmic scale for the sound

intensity level:

Adding 10dB to a sound intensity level means the
sound intensity has increased by a factor of 10.

The reference sound intensity is Iy = 10~ W /m?.

In a pipe reflection of a soundwave at an open end
means the pressure must have a node at the open

end.

Reflection at a closed end means the displacement

must have a node there.

Standing waves on strings, pipes, membranes, are

used to build musical instruments.

The distribution of power into the harmonic modes

determines the sound quality.
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Exercises I

Halliday Resnick & Walker:
Reading: HRW p. 406-412

Exercises: p. 420 ff.: 17E, 20E, 23E, 26P, 28P, 31E, 33E,
36P
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2.13: The Doppler effect'

So far we have always assumed that the emitter, the
detector and the medium are at rest. That is not
generally true. From experience we know that the
frequency emitted by a car coming toward us is higher
than that of a car moving away from us. That is the

Doppler effect.

Consider the folluwing setup:

u
t=0 >
t=T
W n="Ff,T

The source emits waves with a frequency fo = 1/7y and

a wavelength A = u/ fy with u being the speed of sound.

We assume that the medium (air) is at rest and measure

all velocities (of source and detector) relative to the air.
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Detector moving, source stationary

u

»
P>

A
—N

t=T n
W .

D
\)

The detector moves toward the source at a speed v. After

the time T" we have encountered n + An wavelengths!

T
= — = T
"= Jo

An — vT _ ?}Tf()
A u

So the perceived frequency is

n+An  foT +vfoT/u v
T T :f0(1+_)

f=

higher than the emitted frequency, in accordance with

our experience.
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If the detector moves away from the source we have a

similar picture:

u

»
-

_ An
t=T .
— n

\Y

We now count n — An wavelengths. That gives a
frequency

’I’L—A’n_foT
T —

f=

lower than the emitted frequency.

In total we have for a moving detector and a stationary

source:

=n(is])

7 4+7: detector moves toward the source.

9 9,

. detector moves away from the source.
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Example
A siren wails with a frequency f = 2000 Hz. What

frequency can you hear if you drive toward the siren at
100 km /h? The speed of sound is u=344m/s.

100 000

— 100km /h =
Y m/ 3600

m/s = 27.8m/s

We travel toward the source so we will perceive a greater

frequency:

. 27.8
Y —2500 (14222 |
fo (14 500(+344> 2

2702 Hz

We hear the siren at a frequency f = 2702 Hz.
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When driving away from that siren we hear a frequency
f = 2450 Hz. What is our speed?

We travel away from the source so we will perceive a
lower frequency:

(-3

)
= 2 (1-— ———) H
2450 Hz 500 51 7

2450
2500

2450
v = 344 <1 — m) m/s = 6.88m/s

v = 24.77km/h

We drive at a speed of v = 24.77km /h away from the

source.
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Source moving, detector stationary

u

>

t=

40%

D —
\Y

t:To

A

t:nTo

BRI

n

The source moves toward the detector at speed v. Once
the sound is emitted, it moves with the speed of sound.
At the time ¢t = 0 source and detector are a distance d;

apart.

The crest emitted at t = 0 reaches the detector after the
time t; = dy/u. The next crest is emitted at the time

t =Ty and only has to travel a distance

do =dy — vy =di —v/fo

It arrives at a time to = T() + dg/u = T() + (dl — 'UTO)/U
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We therefore see one wavelength arrive in the time

di — vl d
At = lo—1t1 = T0—|—1—v0——1 = T()—T()’U/u = TO <1 — E)
Uu Uu Uu

The frequency is

1 1 Jo

At T, (1-%) 1-°

u

f

As the source moves toward the detector we hear a

higher frequency!
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If the source moves away from the detector the same
arguments hold:

The crest emitted at t = 0 reaches the detector after the
time t; = di/u. The next crest is emitted at the time
t = Ty and has to travel a distance

doy =dy +vTy =di +v/fo

It arrives at a time to = Ty + do/u = Ty + (d1 + v1p) /u

We therefore see one wavelength arrive in the time

d Ty d
At = to—1t1 = TO-I—w——l = TO-I—T()’U/U =Ty <1 -+ %)

u u

The frequency is

1 1 fo

f

CAt T (142 1+2
The frequency is lower!
In total we have for a moving source and a stationary

detector:

fo

f=13=

% 9.

: source moves toward the detector.
747 source moves away from the detector.
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Example

A train drives past a stationary listener along the track.
The train whistles at a frequency of f = 3500 Hz and

drives at a speed of v = 50m/s.

What frequency do we hear before and after the train

passed us?

1$§

f

First the train comes toward us, and we will hear a

greater frequency:

_
f=1=

3500 H
f = = 4095 Hy

- 344
When the train moves away from us we hear a smaller

frequency:

fo
F=73

_|_

3500 Hz

— 50
L+ 33

f = 3056 Hz
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2.14: General Doppler Effect'

In general both the source and the detector can be

moving:

Let vy be the speed of the source and vy be the speed of
the detector. The speed of sound is v and the frequency
of the emitted sound is fy. All speeds are measured
relative to the air which is assumed to be at rest.

Then we had:

(1): moving detector f1= 1o <1 + U—d)
u

Jo

2): ' =
(2): moving source f2 [T

These can be combined if we replace fy in (1) with the
frequency associated with the moving source:

Ud 1 Ud
_ (14 Y = <1i—)
f fz( U 1F == u

u £ vy
U F vy

The signs can be confusing: If source and detector move
toward each other, the frequency will be greater!
Choose your signs accordingly.
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2.15: Examples I

Speed of sound in air u = 344 m/s. Frequency
fo = 5000 Hz. Calculate the perceived frequency in each

of these cases:

a) v, = 30m/s toward the detector

I 5000 Hz

_ — 5000/0.9128 = 5478 H
-2 1-30/344 / ’

b) v4 = 30m/s away from the source

f = fo(1 = °%) = 5000 Ha(1 — 30/344) = 4564 Hz

c) vs = 60m/s toward the detector, vy = 30 m/s away

from the source.

uivd) — 5000 He (344m/s — 30m/s)

U F v 344m/s — 60m/s

314
f =5000 Hz— = 5528 Hz
284
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2.16: Supersonic speeds'

®
@
@

v<u V=

At v = u each wavecrest is emitted at the position of the
previous crest. We have maximum constructive
interference: The ”sound barrier”. It is this constructive
superposition of all soundwaves that causes enormous

stress on the plane.
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2.17: Mach Cone I

An aircraft flying at supersonic speeds creates a Mach

7
>

Cone:

The opening angle of the cone is

Grtach = 20 = 2sin” ! (u/v,) with vy the speed of the
aircraft and u the speed of sound.
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2.18: Summary'

The source emits waves with a frequency fy. We

assume that the medium (air) is at rest and measure

all velocities (of source and detector) relative to the

air. u is the speed of sound.

moving detector and a stationary source:
CF/
f=Jo (1 + —)
u

747 detector moves toward the source.

% 9.

. detector moves away from the source.

moving source and a stationary detector:
[
Vs
1F =
7_7: source moves toward the detector.

747 source moves away from the detector.

u =+ vy
U F Uy

If source and detector move toward each other, the

general Doppler effect:

frequency will be greater.
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Exercises I

Halliday Resnick & Walker:
Reading: HRW p. 414-420
Exercises: p. 420 ff.: 46E, 48E, 51P, 52P, 55P, 59P
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2.19: Beats.

We have looked at the superposition of waves before.
What hapens if the two waves do not have the same

frequencies?

Take two sinusoidal sound waves

s1(x,t) = sgcos(kix — wit)

so(x,t) = sg cos(kex — wat)

and choose the origin so that for x = 0, £ = 0 both waves

are in phase.

What is the resulting wave?

s(x,t) = si(x,t) + so(z,t)

So COS(]CllC — wlt) + S COS(k2fE — CUQt)

Another useful trigonometric identity is

cos(a) + cos(B) = 2cos 3 (a+ B) cos 3 (o — B)
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With a = kiz — wit and 8 = kox — wot we get:

s(z,t) = 2sgcos(3((k1 — k2)z — (w1 — w2)t))
x  cos(5((k1+ ka)x — (w1 + w2)t))

If w1 = woy this reduces to the expression for two waves

interfering constructively we had before.

In sound waves we are most interested in the frequencies.
Since the speed of sound is u = w/k we can always find k
from w. To make matters convenient, we look at the
displacement as a function of time at the origin (z = 0).

That gives

s(x,t) = 5(0,t) = 250 cos 3 (w1 — wa)t cos 3 (wy + wa)t

Or, defining w, = 3 (w1 + ws), and wy = 3 (w1 — w2) we

have

s(0,t) = 2s¢ cos(wgt) cos(wqt)
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If we observe the displacement amplitude at x = 0 then

we get this picture:

cos(wl*t)+cos(w2*t) ——
2*cos(0.5(w1-w2)t) ——

il

20

VUV RN AR Y

cos(w1*t)
cos(w2*t)
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These big oscillations are called "beats”. Since there are
two maxima during each period, their angular frequency
is the difference between the two angular frequencies:

Wheat = ‘(wl — w2)|

In the picture before I used

fl = 0.5Hz f2 = (0.45Hz

with a beat frequency of fieqr = [(f1 — f2)| = 0.05 Hz.
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Usually the amplitudes are not the same. We still will
get beats:

s(0,1) s1 cos(wit) + So Cos(w2t)
%sl cos(wit) + 5 81 cos(wqt
So cos(wat) + 3 82 cos(wat) +

s1 cos(wat) — —31 cos(wat

)
)
)
)

So cos(wit) — —82 cos(wyt

s1 + s2)(cos(wit) + cos(wat))

N|—= N~ N~ N[~ N~

(
(

s1 — s2)(cos(wit) — cos(wat))

Again use

cos(a) + cos(B) = 2cos 3 (a+ B) cos 3 (o — B)

cos(a) — cos(B) = —2sin 5 (o + ) sin 3 (o — B3)

$(0,t) = (s1+52) cos(wut) cos(wgt)—(s1—52) sin(w,t) sin(wgt)
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Top: $(0,t) = s1 cos(wit) + s9 cos(wat)

Middle: s(0,t) = (s1 + $2) cos(wyt) cos(wqt)

Bottom: s(0,t) = (s1 — $2) sin(w,t) sin(wgt)
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Top: $(0,t) = s1 cos(wit) + s9 cos(wat)
Middle: s(0,t) = (s1 + $2) cos(wyt) cos(wqt)

Bottom: s(0,t) = (s1 — $2) sin(w,t) sin(wgt)
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2.20: The Wave Equation'

Go back to the wave on a string.

We have some disturbance in the string y(z,t), but we
make no assumptions about the nature of this
disturbance except that it is small and ”well behaved”

(continuous and differentiable).

The total vertical force on that linesegment is F; + Fb.

Oy(x,t)

ox
Oy(x,t)
ox

Fi = —7sind; ~ —1ttanv; = —71

r=T1

Fy = 71sintvy >~ 7tanty = 7

=T

_ _ ([ oy.t) Oy(x, 1)
Fy—Fl —|—F2—T< 8;17 8;17 -

L=I9
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u(x,t) = ayé:;, t)

F, =1(u(z2,t) — u(x1,1t))

For a small difference between x; and zo we can use the

Taylor expansion:

u(xo,t) = u(xy, t) + (r2 — x1) du(x, 1)

The vertical force is therefore

ou(x,t)

F, =T1Ax .

or, putting u(x,t) = 8ya(m’t)

T

%y(x,t)
o2

Newton’s law F' = ma then becomes

F, =1Ax

0%y(x,t)
o2 Ot>

0%y (x,t)

TAx = nAx
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0*y(z,t) O*y(z,t)
T——— = l———5—
522 o8

We already know that v = /7 /u, so we can write

x> B ot?

This is the Wave Equation. It appears whenever waves

are present:

In mechanics, acoustics, optics, electrodynamics,

quantum mechanics, etc.

It says that at each point in space and time the
acceleration of a piece of string is proportional to the

curvature at this point.

How do we deal with this differential equation?
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First let us see if the sinusoidal waves we’ve considered

so far are actually solutions of the wave equation.

To do so we must verify that
y(x,t) = yo sin(kxr — wt — P) fulfills the wave equation.

9%y 0%y,
5.2 and 972

We need the second derivatives

Oy(x,1t)
ox
%y(x,t)
x>

= kcos(kx — wt — Pg)

= —k?sin(kz — wt — o)

Oy(x,1)
ot

%y(x,t)
ot?

= —wcos(kr — wt — @)

= —w?sin(kr — wt — o)

2 629 _ 823/
x> ot?

(%

—k*v?sin(kz — wt — ®g) = —w? sin(kx — wt — )

If we set v = w?/k?, the wave equation is fulfilled!
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Is this the only solution?

No, y(x,t) = yo sin(kz + wt — @) also fulfills te wave
equation. That is good, because in the derivation of the
wave equation we made no assumptions about the

direction in which the wave is moving.

Are there more solutions?

Take f(x,t) = f(kz — wt) = f(a) with a = kx — wt.
f can be any function, as long as it is differentiable at
least twice.

0f(c) _ 9f(a)da _, Bf(a)
or  Oa Ox oo

(o) 9 0f(a) 0 _,0°f(0)
O0x? Jda Oa Ox Oa®

And the time derivatives:

0f(a) _ 9f(e) 9 Of(a)

ot 9o ot " oa

f(a) _ 8 9f(@)da _ ,0*f(a)

= W

02~ Y0a 0o ot

Put this into the wave equation:

Oa®

2, 0%y 0°

oy _ oy fla)  ,0°f(a)
oz  Ot?

2k2 _
o 0o’ L%
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Again, with v? = w?/k? the wave equation is fulfilled!

In just the same way we find that any function
f(x,t) = f(kx + wt) fulfills the wave equation.

Any function of (kx £+ wt) is a wave. That is exactly

what the principle of superposition implied.

Example: Take a pulse given by

N

0 1  —2k(kx — wt)
ox (1 + (kx — wt)2> (14 (kx — wt)?)?

0? 1 _ gy 1 — 3(kz — wt)?
0x? \ 1+ (kx —wt)2 ) (14 (kx —wt)?)3
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The time derivatives are:

o 1 o 2w(kx — wt)
ot (1 + (kz — wt) ) (14 (kz — wt)?)?

0 1
ot \ 1+ (kx — wt)?

The wave equation was:

2 azy _ 829
x> ot>

()

g2, 1 —3(kx — wt)? _ 9.2 1 —3(kx — wt)?
(1+ (kx — wt)?)3 (1+ (kx —wt)?)3

Again the wave equation is fulfilled. This time we did

not have any periodic wave, but just a pulse.
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2.21: Summary'

Two travelling waves with different frequencies
produce beats. The beat frequency is given by

fbeat — ‘fl — f2|

The wave equation is

2329_829
v - =

0x> ot?

with the wave speed v.

Any function of (kx £ wt) fulfills the wave equation.

(kx — wt) describes a wave travelling in the positive
x—direction,
(kx + wt) describes a wave travelling in the negative

x—direction.
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2.22: Useful Equations'

cos(a £+ ) = cosacos B F sin asin (3

sin(a £ ) = sin v cos £ cos asin

2 2

cos 2a = cos” a — sin” «

sin 2 = 2 8in & cos &

cos® a = (1 + cos 2a)

sin o = (1 — cos 2)

sina =a —a®/6+ -
1

cosa:1—§a2+---

cos a + cos(a + B) + cos(a+28) + - - - + cos(a+ (n— 1))
sin %nﬁ

= cos(a + 5(n —1)p) Y
2
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Exercises I

Halliday Resnick & Walker:
Reading: HRW p. 412-414
Exercises: p. 420 ff.: 42E, 45P

Show explicitely that the following functions fulfill the

wave equation:
y(x,t) = Acos(kx + wt)

1
kx + wt)?

y(iv,t)=1+<
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3: Geometrical Optics'

What is light? Light is electromagnetic radiation. The

spectrum ranges from very long radio waves (100 m and

longer) to very short y-rays (10”2 m) and shorter.

The visible spectrum covers a range of wavelengths from
400 nm (blue) to 700 nm (red).

Radio

uv ||| | IR Microwaves UHF
| | | | | | | | | | |
6 4 2 0 2

- Y-ray X-ray
| | | |

-10 -8

This wavelength is small compared to the typical
dimensions of optical instruments. We can therefore

learn a lot about optics without treating light as waves.

Treating light as rays travelling in straight lines we can
now study optical instruments, lenses, mirrors,
telescopes, etc.

= Geometrical Optics

Later we will go back and justify our conclusions by
taking the wave nature of light into account.
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3.1: Reflection I

The first phenomenon is Reflection.

” A ray incident on a plane mirror is reflected so that the
reflected ray lies in the plane of incidence and the angle

of reflection is the same as the angle of incidence.”

normal

g\

/ mirror

9 =,

This law holds regardless of the wavelength of the
incident light.
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3.2: Refraction I

The second phenomenon is Refraction. A ray of light
incident on a transparent surface (say, a lake) will split.
Part of the beam is reflected (you can see reflections on a

lake) and part of it will enter the water.

But the ray entering the water does not travel straight,

it is refracted.
normal

<

The diffraction depends on the material and is given by

the index of refraction n.

The law of refraction is (Snell’s law):

The refracted ray lies in the plane of incidence and the
angle of refraction 9, is connected to the angle of
incidence 1; by

n1sind; = ny sin v,
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The index of refraction is connected to the speed of light

in the medium by

n =c/v

In water we have n = 1.33 and thus the speed of light in
water is v = ¢/1.33 = 225500 km/s. We shall discuss the

reasons for this later.

One consequence is, that the refractive index of vacuum
1S n,q. = 1 and that no material can have a refractive

index less than 1.

MEDIUM n

Vacuum 1

Air 1.00029
Water 1.33
Quartz 1.46
Crown glass 1.52
Flint glass 1.65
Sapphire 1.77
Diamond 2.42
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3.3: Examples I

A ray of light is incident on a glass cube with refractive
index n = 1.5. The angle of incidence is 9; = 20°.

What is the angle of reflection? 9" = 20°.

What is the angle of refraction? ng;. =1

Nair SIN 207 = Ngiess SIN VY,

sin ), = L0.342
1.5

J, = 13.2°

The glass cube is now under water ny = 1.33. What is
the angle of refraction?

nw sin 20° = ngigss Sin Y,
1.33
sind,, = ——0.342
1.5

Vv, = 17.7°
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3.4: Total internal reﬂection.

If we shine a ray of light from under the water into the
air, what is the largest angle the incident ray can have?

n,

The law of refraction gives

n1 sin 191 = T29 sin 192

The refracted ray must have an angle smaller than
Y2 = 90°

. ng .
sin; = 2 4in90° < 1
ni

For water and air we get

1
O pip = sin 1 133~ sin~ 1 0.75 = 48.6°
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What happens if we try a larger incident angle? The law
of refraction cannot be fulfilled, we can not get a

refracted beam. We are now left only with a reflected

beam, the ray never leaves the water.

/_/

This phenomenon is called total internal reflection.
Total internal reflection is very useful in optical fibres: It
will transmit light with a minimum of loss. A reflective

coating (Silver etc.) will have much larger losses!
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3.5: Dispersion I

When you shine a beam of white light into refracting
bodies it is sometimes refracted into its colors. The index

of refraction depends on the wavelength of the light!

n

Crown Glass

151

-

300 400 500 600 700 800
A/nm

This means the speed of light in the medium depends on

the wavelength. In glass, red light is faster than blue
light!

This is the first time that we find the wave speed to
depend on the wavelength — in contrast to waves on

strings or sound.
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3.6: Prisms I

We can use this effect in a prism to break white light

into its component colors:

These colors can not be further refracted using another

prism.

<
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3.7: Rainbows I

A rainbow is formed when you look at a cloud consisting

of billions of little spherical droplets of water with the
sun behind you.

Rene Descartes was the first
scientist to explain the
rainbow in 1637 by analysing
several paths of light through
a spherical droplet with two
refractions at the surface and
one total reflection.
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1. Refraction

4 Internal
Reflection

2. Refraction

Of all scattering angles, those around 42° for red and 40°
for blue light are most intense. They correspond to the
shortest optical paths through the droplet.

A

Note that the sun is always behind you when you see a

rainbow.
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Sometimes we can see a second, inverted rainbow over

the first one:

This is formed if the sunlight undergoes two internal

reflections:

Falling Raindmpﬁ’\

Sunlight
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3.8: Polarization I

Light is a purely transversal wave. As light waves move
in one direction, the electric field vector can oscillate

freely in a plane perpendicular to that direction.

Normal sunlight contains many rays with random

polarizations - sunlight is unpolarized.

A A

L

polarized light

o’
)’
|

unpolarized light e

o’ .
Polarizer

By applying filters that transmit light with one
polarization only, we can generate polarized light.
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3.9: The Brewster angle'

We find experimentally that light reflected off a
refracting surface (A normal mirror won’t work!) is
polarized when viewed under a specific angle, the
Brewster angle.

Incident ray
[Circularly polarized) Reflected ray
(Linearly polarized)

Glass \
Refracted

ray

The Brewster angle is the angle where the refracted ray

and the reflected ray are perpendicular to each other:
¥+, = 90.

nysindg = ng sind,. = sin(90 — Ig) = ny cosvp
n2

tanﬁB = —
ni

If medium 1 is air we have n; = 1 and we obtain for the
Brewster angle:
tantdpg = no
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3.10: Summary'

Reflection: ” A ray incident on a plane mirror is
reflected so that the reflected ray lies in the plane of
incidence and the angle of reflection is the same as

the angle of incidence.”

Refraction (Snell’s law): The refracted ray lies in the
plane of incidence and the angle of refraction 6, is
connected to the angle of incidence 6; by

nisinf; = nysin b,

The index of refraction n is the ratio of the speed of

light in vacuum to the speed of light in the medium

n=c/v.

A ray of light trying to cross a boundary from a
large refractive index n; to a small ref. index ny can

undergo total internal reflection. The critical angle is

given by sin¥..;; = Z—f
The refractive index also depends weakly on the
wavelength. This allows prisms to disperse white

light into its colors.

Light can be polarized by reflection off a refractive
boundary. The angle at which the reflected ray is

maximally polarized is called the Brewster angle

tandpg = 22,

1
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Exercises I

Halliday Resnick & Walker:
Reading: HRW pp. 814-825

Exercises: p. 826 ff.: Q6, Q8, Q9, Q12, 45E, 46P, 51P,
61E
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3.11: Mirrors I

The most important quality of a mirror is the ability to
form an image. If you look at your reflection in the
mirror your eyes intercept rays of light that have been
reflected off the mirrors surface and the image they
originate from seems to be behind the mirror.

Mirror

The distance of the image from the mirror |¢| is equal to

the distance of the object from the mirror |p| and its size

is equal to the size of the object.

This solves an old puzzle: It is not left and right that are
swapped in the mirror, but front and back!

Since the image is behind the mirror we can put a solid
block of concrete there without changing the image. The

image is virtual.
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3.12: Spherical Mirrors'

The rays from the sun approach us from far away and
can be taken as parallel. A curved concave mirror with a
radius of curvature R will focus these parallel rays into a
single spot if they are close enough to the optical axis.

Taking a spherical mirror is not ideal, a parabola will

indeed focus all incoming rays into a point. A spherical

mirror is a good approximation to the parabola - for
small distances from the optical axis.

The focus is positioned halfway between the center of the
sphere and the mirror itself.

[fl = R/2

All the rays actually pass through the focus, it is a real
image of the sun.
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What happens if the object is not infinitely far away?

We can distinguish 3 cases:
1. The object is at the focus
2. The object is between focus and mirror

3. The object is beyond the focus

To find out where the image will be in all these cases we

must come up with a quick way to construct the image.

R-D Herzberg



PHYS126 Waves and Optics

3.13: Constructing Images'

We can easily construct the image using only a ruler if
we recall the properties of the focal point:

1) Construct a ray from
the object parallel to the

optical axis. Its reflection Object

will go through the focus. ] /

e

p

2) Construct a ray from
the object through the

focus to the mirror. It

will be reflected parallel

to the optical axis and it

will intersect the first ray

at the position of the

image.

Here we get a real but inverted image!
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If necessary, continue to draw the reflected rays on the

other side of the mirror.

Object Image

This construction gave us a virtual but upright image.

This method to generate images is universal and can be
used for spherical mirrors as well as for lenses. We will

use it a lot!
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3.14: Magnification I

When we look at a plane mirror, the image has the same
size as the object. Clearly, with a curved mirror that is
not the case. What is the magnification of a concave

mirror with a radius R?

Let the height of the arrow be L. The height of the

image is L' and the magnification is |m| = L' /L.
Object \ Image

-

From the similar triangles we find

L L d
L' = |i| tan « L = |p|tan a m|l=—=+—
L P
The magnification has a sign: It is positive if the image
is upright, it is negative if the image is inverted.
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We can also easily relate the image di
distance p and the focal length f:

Object \

stance 7 the object

:

L' = |f|tana

L _ fl = Ip]
— =|m =
L/

[£1lpl

i

) =1

plli]

fl=1pl =

11

1l =

| lo

i

I

L= (fl-

pl) tana

_ Ipl
i

R-D Herzberg




PHYS126 Waves and Optics

Now we have to take into account the signs.

We define the radius R and the focal length f = R/2 to
be positive for concave mirrors. We also take the object

distance p to be positive.

How do we deal with virtual images? Easy: We define
the image distance for a virtual image to be negative!
Specifically, when we wrote earlier for a plane mirror
Ip| = |i| what we meant was that for a plane mirror we

have

p=—t

If we put this sign convention into effect we get

1 1

foop i
And the magnification becomes

m=—-

p
This way we automatically have m > 0 for virtual images
which means they are upright. The real image in our

earlier example was inverted. Since it is real, 2 and p are

both positive, and m = —i/p is negative - everything is

consistent!
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3.15: Examples I

|
<
<
/
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3.16: Convex mirrors.

Convex mirrors can be dealt with in exactly the same

way as before. The focal point is now behind the mirror,

it is a virtual focus. All our rules for constructing

images are still true, though.

This means that for a convex mirror both the focal
length f and the radius R are negative. f = R/2 is still

true.

Image
upright virtual
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Mirror

Type

Mirror Checklist

Object

location

Image

location

type

Sign of

i

Magnif.

7m7

plane

anywhere

behind m.

upr. virtual

—+00

concave

beyond R
betw. R and f

inside f

betw. R and f
beyond R

behind m.

inv. real
inv. real

upr. virtual

_|_

_|_

convex

anywhere

inside f

upr. virtual
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3.17: Thin lensesl

Another very common optical imaging device is the lens.
At first we restrict ourselves to the simplest case:

symmetrical thin lenses.

The radius of curvature is the same for both sides of the
lens, and the distance between the two surfaces is so
small, that we can assume both refractions to take place

at the same position.

Since the index of refraction can vary from lens to lens,
we no longer have a simple relationship between the
focal length f and the radius R.

We also now have two focal points on either side of the

lens.

To alleviate all fears of boredom, the sign conventions for

lenses are not the same as for mirrors.

We can have converging and diverging lenses.
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3.18: Converging Lenses'

The construction of the image is very similar:

First draw a ray from the object parallel to the optical
axis. It will be refracted into the focus on the opposite
side of the lens.

Second draw a ray connecting the object and the focus
on the same side of the lens. It will be refracted parallel

to the optical axis.

Third draw a ray from the object through the center of

the lens. It will pass through unrefracted.

All three rays meet in the image.

If necessary, the rays have to be continued onto the other
side of the lens to form a virtual image.

Image
real inverted

I
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Image

upright
virtual

The relationship between the image distance, the object

distance and the focal length is still

1
For a converging lens f and p are positive. 7 is positive

for a real image and negative for a virtual image.

The magnification is m = —i/p.

A converging lens creates inverted real images on the far
side of the object and upright virtual images on the same

side as the object.
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3.19: Summary'

Plane mirrors produce upright virtual images behind

the mirror.

The focal length f is related to the object and image

distances p and i via f=! = p~! + i~ ! The signs of

f.p, and 7 are important!

The magnification of an image is m = —i/p. Again,
the signs are important. A negative value of m

means an inverted image.

A concave mirror can produce real and virtual

images. Its radius of curvature is R = 2f > 0.

A convex mirror can only produce virtual images.
Its radius of curvature is R = 2f < 0.

The images from mirrors can be constructed with a

ruler.

Thin lenses obey the same rules as mirrors:

f~1 =p~ 1t 447! but the signs are different:
converging lenses (with convex surfaces) have
negative radii and local lengths, diverging lenses
(with concave surfaces) have positive radii and focal
lengths. The relations m = —¢/p and

f~1 =p~ 1 4471 still hold.
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Exercises I

Halliday Resnick & Walker:
Reading: HRW pp. 834-848

Exercises: p. 856 ff.: Q4, Q5, Q6, Q8, 10P, 13P, 14P,
24P, 30P
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3.20: Diverging Lens'

First draw a ray from the object parallel to the optical
axis. It will be refracted so that the backward
continuation of the refracted ray goes through the focus
on the same side of the lens.

Second draw a ray from the object through the lens into
the focus on the opposite side of the lens. It will be
refracted parallel to the optical axis.

Third draw a ray from the object through the center of
the lens. It will pass through unrefracted.

All three rays meet in the image.

Image
upright
virtual

——

f

For a diverging lens f is negative and p is positive. Only
virtual images can be formed with a diverging lens and ¢

is always negative. The magnification is m = —i/p > 0.
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3.21: The Lensmakers Equation'

The focal length f and radius of curvature R of a mirror
were connected by f = R/2. In lenses we can have two
radii of curvature, but only one focal length. The focal
length must also depend on the index of refraction n. So
how can we calculate the focal length from the radii of a

(i)

R, is the radius of the first surface.

lens?

R
"\ IR,

For a symmetrical (R2 = —Rj) thin lens made of flint

glass (n = 1.5) we get as a crude approximation:
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3.22: Examples I

Glasses have lenses with one concave and one convex
surface: Ry = +60cm, Ry = +90cm. n = 1.60. What is

the focal length? Is this lens converging or diverging?

If an object

is placed 150 cm in front

of the lens, what kind of
image will be formed where?

What is the magnification?

f=

(1.60 — 1) (55¢ )

60CIm 90CMm

The focal length is positive: it is a converging lens.

The image distance is calculated as

1 1 1

=+ -i=— — = —300cm

p 300CI0  150CI

Magnification: m = —i/p = —(—300)/150 = 42.0. It is a
virtual, upright image twice the size of the object.
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3.23: The human eye'

Vitreous chamber

Cormnea (transpacent)

Suspensory ligaments of lens

The lens creates an inverted real image on the retina
where sensors process the image into a nerve pattern

which is passed to the brain.

The image on the retina is a real, inverted image, the

brain automatically compensates.

The lens can change its focal length to produce sharp
images on the retina. The closest distance for a sharp

image is typically 25 cm.

The size of the object is determined by the viewing
angle 7.
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3.24: Optical Instruments'

The angular magnification (do not confuse that with
the lateral magnification!) is the ratio of the viewing
angle with an optical instrument ¢ to the maximum

viewing angle obtainable with the naked eye ¥:

m19:19’/19

The reference angle 9 depends on a convention for the
viewing distance. In HR&W d,,cq. is chosen as the
reference distance. Usually the distance of most distinct
vision (dq = 25 cm) is chosen as the reference distance.

In earlier editions of HRW d; = 15 cm is sometimes used.
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The easiest optical instrument is the magnifying glass. It
consists of a single converging lens. The object is placed
at or just inside the focal length of the lens.

Arear =25 CmM

—>
image is infinitely
far away

The maximum viewing angle without the lens is

tand ~ Y ~ h/dpeqr

The image at an infinite distance appears under the
viewing angle tan ' ~ ¢’ ~ h/f. The total angular

magnification is therefore:

dpear  25cm
f f
We can obtain magnifications of 10-20 with good

my =

magnifiers.
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3.25: The Microscope'

The microscope probably was invented by the Dutch
lensmakers Hans and Zacharias Janssens between 1590
and 1610 in Middleburg, The Netherlands. The modern,

two lens compound microscopes, however, have not been

widely used until the end of the 18" century, again by

Dutch lensmakers Jan and Harmanus van Deyl.

It consists of two converging lenses, the Objective and

the Eyepiece.
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The object is placed just outside the focus of the
objective, creating a huge, inverted real image. This real
image is then viewed with the eyepiece acting as a

magnifier.

Eyepiece Objective

fo\/ fo

The magnification of the real image is

fo+s s
moz——:— ~

p Jo __ﬁ

The angular magnification of the eyepiece acting as a

magnifier is
25cm
my =
fe

The total magnification is the product of the

magnifications of objective and eyepiece:

25hcm s

fe fo

Mtot =mymey, = —
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3.26: The Refracting Telescope'

Eyepiece Objective

The object is at a distance D very far away, so the image
will be produced very close to the focus of the objective.
The focus of the eyepiece is chosen to coincide with the
focus of the objective and again acts as a magnifier to
view the enlarged, real, inverted image of the objective.

What is the magnification obtainable with this setup?
tand ~ 9 =h/D
The real image inside the telescope has a size
h' = —f,tand ~ — f,2

It is viewed under a viewing angle of

tant ~ ' = h'/f,

We have for the angular magnification
v W1 —f0
mo9 = — — —— ™~ s

YT 9
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3.27: The Astronomic Telescope'

Astronomical telescopes consist of a system of parabolic
mirrors rather than lenses. The main advantage is that
they do not suffer from chromatic aberration.

The most popular design goes back to Sir Isaac Newton:

How do astronomical telescope help us seeing faint

objects in the sky?

Point sources: A point source will remain a point source
even with very high magnification. But all the light from
that source will stay in one point while all the
background light will be distributed over a larger area.
Thus the contrast between the point source and the
background is improved and you can see it.

Extended objects: Extended objects are magnified and
can therefore be seen more easily.
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3.28: Summary'

Diverging lenses can only produce virtual images.

The magnifier lens has an angular magnification of

25cm
my = f

The microscope has a magnification that is the
product of the individual magnifications of objective

and eyepiece.

25cm - s
fofe

The refracting telescope has a magnification

my == —

~ _Jo

my =~

fe
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Exercises I

Halliday Resnick & Walker:
Reading: HRW Ch35, pp843-855.

Exercises: pp 858ff: 17E, 18E, 19E, 20E, 23P, 24P, 26P,
32E, 33E, 37P
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4: Wave Optics'

In 1818, Augustin Fresnel submitted a paper on the
theory of diffraction for a competition sponsored by the
French Academy. His theory represented light as a wave,
as opposed to a bombardment of hard little particles,
which was the subject of a debate that lasted since
Newton’s day. Simeon Poisson, a member of the judging
committee for the competition, was very critical of the
wave theory of light. Using Fresnel’s theory, Poisson
deduced the seemingly absurd prediction that a bright
spot should appear behind a circular obstruction, a
prediction he felt was the last nail in the coffin for

Fresnel’s theory.

However, Dominique Arago,
another member of the judging
committee, almost immediately
verified the spot experimentally.
Fresnel won the competition,

and, although it may be more
appropriate to call it "the Spot of

Arago,” the spot goes down in history with the name

”Poisson’s bright spot” like a curse.
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4.1: Plane and spherical WavesI

We can no longer use a one dimensional description for

waves. We distinguish two main cases:
1. Plane waves or wavefronts

2. Spherical waves

L
X

Plane waves are descibed by
s(F,t) = sgsin(kF — wt — ®)

with the position 7= (x,y, 2z) and the wave vector

k= (ky, ky, k). If you choose the direction of motion as
one of your coordinate axes, say the x-axis, then the
wave vector k only has components in that direction

k= (kz,0,0) and you get back the simple description

s(7,t) = sgsin(kyx — wt — Pg)
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A spherical wave is described by

s(7,t) = sgsin(kr — wt — ®g)

Note: no vectors. The phase of the wave depends on the
distance to the origin, all points ¥ on a sphere with

radius r = /22 + 2 + 22 have the same displacement as

a function of time.
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4.2: Huygens’ Principle'

The mechanism by which any wave propagates can be

described by Huygen’s Principle:

Each point on a wavefront acts as a
source of a new spherical wavelet with
the same phase. The envelope around
these secondary wavelets after a time ¢

is the new wavefront.
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If the wavefront encounters an obstacle, this principle

determines the motion of the wavefront:
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In general waves will diffract around obstacles. We

distinguish two cases:

1. Fraunhofer diffraction: Here the waves are plane
waves. The source and detector are infinitely far

away from the obstacle.

. Fresnel diffraction: The source and detector are at a
finite distance from the obstacle. Here we have to
consider spherical waves and the discussion becomes

a bit more involved.
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4.3: Snell’s Law with waves.

Take a wavefront incident on a refracting surface at an
angle 91 as before. The speed of the wave in medium 1 is
v1, the speed in the second medium is vy. The wavefront
at the time t = 0 has just reached the surface, and
according to Huygen’s principle we must construct new

wavelets from each point and find the envelope:

After a time t the left part of the wavefront will have
progressed a distance d = vt while the right side of the

wavefront has not quite reached the boundary yet.
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We find that the wavefront in the second medium moves

at an angle to the incident wave: it is refracted.

We can also determine the angle of refraction: From the

construction we read that

v1t Vot
J— it 2

sindy  sint,

1 . 1 .
— sin¥y; = — sin ¥,
U1 V2

This is valid for any wave crossing a boundary between
two media with a different wave speeds!

For light we use n = ¢/v and get:

n1sint; = ng sin v,

Snell’s law!
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4.4: Interference I

For light just like for any other waves the principle of
superposition holds and we can observe constructive and

destructive interference.

In general light from a lamp consists of many small
wavetrains with random phases between them. We see

only an average intensity where all constructive and

destructive interferences cancel out.

MAAOY
A

If we want to observe an interference pattern, we have to
provide lightwaves with a fixed phase between them -

we need coherent light.
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One easy way to create two coherent sources of light is

given through Fresnel’s double mirrors:

Here the two virtual images of the source act as two

coherent sources of light and we can observe an

interference pattern.
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4.5: Young’s Double Slits'

Another way to create coherent light is used in Young’s

double slit experiment.

A plane wavefront hits a narrow slit and is diffracted. If
the slit is small enough, only one Huygens wavelet

becomes the source for the entire wave beyond the slit.

This (now spherical) wavefront hits another set of two

slits. These two slits now act as two coherent sources of
light since they were created from the same wavelet and
the only phase difference at the slits is created through

the constant different in pathlengths.
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We can now calculate the positions of the bright spots

on a screen far behind the double slits.

The two wavefronts travelling at an angle a will be in
phase at their respective origins, the slits. The phase
difference on the screen will be determined by the

different pathlengths they have to travel to get there.

To observe a bright spot, we must have constructive
interference, i.e. the path difference must be an integer
multiple of the wavelength \:

As d SIn Oy , n

A A d

Similar arguments lead to the observation of minima

when the path difference is just half a wavelength:

2n-|—1é
2 d

As = n\+ %)\ & sin Qi =
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4.6: Summary'

Waves will diffract around obstacles. The effect is
strongest when the dimensions of the object and the

wavelength are comparable.

Huygens principle states that each point on a
wavefront acts as a source of a new spherical
wavelet with the same phase. The envelope
around these secondary wavelets after a time

t is the new wavefront.

Fresnel diffraction has to be calculated with

spherical waves going in and out.

Fraunhofer diffraction assumes the wave source and

detector to be infinitely far away from the obstacle.

Snell’s law is a dircet consequence of the fifferent

wave speeds in two media.

Light obeys the principle of superposition. In order
to see stable interference patterns we must use

coherent light sources.

Young’s Double Slit Experiment shows a stable
interference pattern. The bright spots are found at

an angle sin a,,,ar = n\/d, the interference minima
are found at angles sin @, = (2n + 1)A/(2d).
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Exercises I

Halliday Resnick & Walker:
Reading: HRW CH36, pp. 862-870
Exercises: p. 882 ff.: Q3, Q4, 5P, 11E, 13E, 16E, 21P
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4.7: Interferometry I

In the previous examples

(Young’s slits, Fresnel’s
Mirrors) the coherent
light was provided
through the division of

the wave front. Another G G
way to get coherent ﬁg
light is by division of

the amplitude. The most

[
prominent representative

of this class of interferometers is the Michelson

Interferometer:

The glass plate G; is sometimes silvered so that the

transmitted and reflected beams have equal intensities.

The glass plate G5 is inserted so that the optical path
lengths in glass are equal in both arms.

In order to observe interference fringes three

requirements must be fulfilled:

1) The light source must be extended

2) The mirrors must be absolutely perpendicular.

3) The light used must be monochromatic
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4.8: Fringe formation'

In the Michelson interferometer circular fringes are seen:

virtual images of P M, M),

y

A A

=]
v

e e

The reflection of the same spot of the extended source in

P

2d

both mirrors act as two coherent light sources. If the
difference of the armslengths of the interferometer is d,
then the two sources will be at a distance 2d. The path
difference for two rays at an angle ¥/ to the optical axis is
2d cos?) and we get bright fringes when that

pathdifference is a multiple of the wavelength:

2d cost = n\
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4.9: Fringe Intensity'

What is the intensity of the fringes?

An electromagnetic wave is given by

—

E = Eq sin(k7 — wt)
The intensity is the average power delivered by the wave

and is given through the Poynting vector:

S = x B

1
,u

Its magnitude is

_ E§ sin? (k7 — wt)
CHo

We get the intensity as the time average of S

I .
I= E2 sin? (ki — wt)d t
Tepo o

1
I = E;
2,LL()C
The intensity is proportional to the square of the

amplitude!
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To calculate the intensity of the fringes in the Michelson
interferometer, we calculate the superposition of waves
at each point on the screen. Then we square the wave
and take the time average.

We know the path difference on each point on the screen
is § = 2m2d cos /A so the total wave on a circle seen at
an angle 1 is:

y(R,t) = FEpsin(kR — wt)+ Eysin(kR — wt — 9)
= 2FEycos(d)sin(kR — wt — 6/2)

And the intensity is

1

] =
2/,L()C

(2E( cos(8))? = Iy cos®(2m2d cos /)

Plotted for A = 500nm, d = 20, I, = 100 W.
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4.10: White Light Fringes'

If white light is used the fringes disappear, except when
the difference in optical path lengths vanishes: d = 0.

white

—— T

The spacing between fringes of different colours is
different. In the center the path difference for all colours
vanishes and we get a bright white spot surrounded by
coloured fringes. Eventually enough coloured fringes

meet again to form a white fringe.
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4.11: Limits I

How long can the path difference be? For white light it
can not be more than a few wavelengths. For more
monochromatic light the path difference can be found to

be a few centimeters.

1

My
Lens

\

We can not get truly monochromatic light, even the
narrowest spectral lines contain a range of wavelengths.
They will eventually get out of step, just like white light
fringes.

A different way of looking at the problem is that the
light emitted by the source is emitted over a finite time
producing a wavetrain of finite length. If the path
difference for the wavetrain going through either arm of
the interferometer exceeds the length of the wave, it can
no longer produce an interference pattern.

The two pictures are actually equivalent and are at the
heart of the uncertainty principle.
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Consider this finite wavetrain:

y(x,t) = sin(kx — 1000t) 0<t<T

What is its frequency? It seems like wg = 10007ad/s, but
that is only true for an infinite wave. We have to do a
Fourier analysis and find that the range of frequencies
required to form a finite wave increases as the wave

grows shorter:

sin(wgt) sin(wt)d ¢

2 wp cos(wT) sin(wT') — wsin(wyT) cos(wT)
7

2 _ 2
Wy — w
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B ‘ a e
998 1000 1002 1004

—-‘\

980 1000 1020 1040

Here 2(F(w))?/n are plotted for T'=10s (red) 1s (blue)
0.1s (magenta).

Aw-T=1 & AEAt:g

The last step uses E = hf = hw/27.
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4.12: Wavelength Measurements'

The Michelson Interferometer was used by Michelson

and Benoit to measure the wavelengths of three intense

green, red and blue lines of Cadmium against the

standard meter in Paris.

They measured

in steps using

nine etalons, each

twice the length of
the other. The longest

was 10 cm long.

< >
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. Make M; and M] coplanar using white light fringes

. Using Cd light, count the number of fringes as M is
moved to position B and white light fringes reappear
in M. This gives the length of the short etalon in

wavelengths.

. Now move the shorter etalon until the white light

fringes reappear in M;.

. Move M to position C until white light fringes
reappear in M2

. Using Cd light, count the number of fringes passing
to make My and M} coplanar. This gives the length

of the longer etalon in terms of wavelengths.

. Repeat until the longest etalon was moved through
its length 10 times. The difference between the mark
on the meter and the etalon was measured counting

fringes.

This process gives the wavelengths of the Cd lines as

Colour Wavelength [nm]

Red 643.84722
Green 508.58240
Blue 479.99107
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4.13: Jamin Interferometer.

Another useful application of an interferometer is the

measurement of the refractive index of gases.

Two evacuated tubes of length d are inserted into the
arms of the interferometer. One tube is slowly filled with
a gas with refractive index n and the passing fringes are
counted. If the Number of fringes is m, then the optical
path length has changed by mA and we have

(n —1)d =mA\
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Exercises I

Halliday Resnick & Walker:
Reading: Ch36 HRW pp. 880-882
Exercises: p. 887 ff.: 54E, 55E, 57P, 58P, 60

R-D Herzberg



PHYS126 Waves and Optics

4.14: Interference by multiple reﬂection'

A thin film of soap or oil produces coloured stripes. The
mechanism responsible is interference.

We have to take a closer look at reflections at a
boundary between two media before we can understand
the coloured thin film interference patterns:

a

1
/
4

4
l‘/
/
7
art «
1
,/atr

Let a be the amplitude of the incident wave. The
fraction of the amplitude transmitted is ¢ and the
fraction of the amplitude reflected is r.

Conservation of energy requires t2 + r? = 1.

Now consider the time-reversed process where two waves
of amplitude ar and at meet to combine. The first ray
coming from above splits into a reflected ray of
amplitude arr and a refracted ray art. The second one
coming from below splits into a refracted ray att’ and a
reflected ray atr’ where ' and t’ denote the reflection
and transmission coefficients from below.

R-D Herzberg



PHYS126 Waves and Optics

Since the time-reversed process must be the same as the

original we must have

arr + att' = a art +atr' =0 r=—1r
Either a phase change occurs on reflection from above or
from below. Experimentally we find that the phase
change occurs for the ray travelling in the medium with

the faster wave speed.

This is like the hard and soft reflection of a mechanical

wave.

A reflection at a boundary to a medium with higher

index of refraction (ray in air reflected off glass) is a hard

reflection and a phase change of 7 occurs.

A reflection at a boundary to a medium with lower index
of refraction (ray in glass reflected off air) is a soft

reflection and no phase change occurs.

Reflections of silvered surfaces are soft reflections.
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4.15: Thin Films.

We take a film of material with refractive index ns

between two materials with refractive indices n; and ns.

no

d

A ray incident on the boundary is partially reflected and
partially transmitted into the film. Another reflection
happens at the back of the film and the two rays can

interfere with each other.

The Phase difference due to the extra distance travelled

in the film is

2d 2n2d
2m— =21

A2 A

with the wavelengths in the film A; and in vacuum .
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An additional phase difference of © can come from either

reflection.

If both reflections are hard (n; < ng < ng) or soft
(n1 > mo > ng) there is no additional phase change to
consider and the condition for constructive interference
becomes

2nod = mA

If one of the two reflections is hard
(n1 < ng and ny < ng) or (ny > ng and ny; > ng) then
we have an additional phase of 7 and the condition for

constructive interference becomes

2nod = (m + 1)\

The transmitted light must also show interference effects.
Energy is conserved, so if a lot of light is reflected, very
little can be transmitted and vice versa. If the condition
for an interference minimum in the reflected light is
fulfilled we get an interference maximum in the

transmitted light.

Similarly if the condition for an interference maximum in
the reflected light is fulfilled we get an interference

minimum in the transmitted light.
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Thin Films Checklist
Transmitted Light Reflected Light

Maximum Minimum Maximum Minimum

ZTLQd = ZTLQd = 2n2d = ZTLQd =

ni,ng < No

ni,ng > N2

m\ (m+%))\ (m—l—%))\ m\

(7?,1 < ng < Tbg)
(77,1 > Ny > ?13)

In all cases A is the wavelength of light in vacuum
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4.16: Nonreflective coatings'

An important application of thin film interference is a

nonreflective coating.

Consider a ray incident on a thin film with refractive
index no deposited on a piece of glass with refractive
index n3 > ny. We assume that the ray strikes the
surface almost perpendicular. Since now both rays have
one hard reflection in them, the condition for an

interference minimum in the reflected light is

2nod = (m + 2)\

For m = 0 that gives a condition

A
d= -
4’)12

For orange light (A = 600nm) and ne = 1.5 we get a
thickness d = 100 nm

A coated lens has a purple hue. The condition d = ﬁ

can only be fulfilled exactly for one wavelength, usually
chosen near the middle of the spectrum. The outer ends
(red and blue) then are reflected more strongly and the

coating looks purple.
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4.17: Soap ﬁlms'

Now we can understand the colours of an oil film: The
thickness of the film is of the order of the wavelength of

light and the maximum reflection (or transmission)

condition is fulfilled for each wavelength in turn:

white light

yvw y \ VY

The film changes thickness between two green fringes by:
Ad = 5-550nm = 225/1.33nm = 170 nm.

The fringes of the same colour are repeating with
different rates. This gives rise not only to pure rainbow

colours, but to mixed colours like pink or brown as well.

When the thickness of the film is less than 150 nm no
bright fringe can be formed anymore.
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4.18: Newton’s Rings'

If the thickness of the film changes continually, the
condition for a bright reflected fringe will be met
periodically. This can be used to measure the radius of

curvature R for lenses.

Here the film is made of air (n = 1) contained between
two glass surfaces. The condition for a bright fringe in

the reflected light is 2d = (m + 1)A. The thickness of the
film changes by \/2 between bright fringes.

0]

The thickness of the film is d = R(1 — cos ¢) ~ = R¢? and
we see a circular bright fringe of radius p = Rtan¢ ~ R¢
if Rp? = (m + 1)\

Plotting the square of the radius of the m" fringe
against m gives a rather precise measurement of p.

pP=(m+ 3\ R
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4.19: Thin film - again'

Take a closer look at a thin plane parallel film

illuminated from above:

s=d tand’
L=2s sind

Along the length L = 2d tan’ sin ¢ ray one changes
phase by

L 2d tan ¥’ sin ¥ o2nd sin? v’
L=t 7T)\ mrem A mam A cos)

Ray 2 changes phase by

2d 2nd

Ady =2 =
2 d cos '\ 7TCOS WA

The total Phase difference is

ond (sin®9 —1 2nd )
;) =7+ 2r—— cos v

Ad = 2
™+ 27 \

cos 1V

For a nearly vertical angle of incidence (cos?)’ = 1) this
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reduces to

Only ray 1 contains a phase inverting hard reflection,

rays 2,3,... have only internal (soft) reflections.

The phase difference between any two neighboring rays

except the first one is therefore

2nd
Ad = 2%% cos 1y’

Look at an angle where rays 1 and 2 interfere
destructively. Then rays 2.3,4... must interfere

constructively.

To finally decide if we see a bright or dark reflection we

must look at the amplitudes.
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If a is the amplitude of the incident ray then ray 1 has

an amplitude ar, ray 2 has an amplitude atrt’, ray 3 has

an amplitude atr3t’ etc.

% %
% &

Summing all amplitudes from ray 2 on gives
A atrt’ + atr3t’ + atr®t +atr’t’ + - -
atrt'(1+r2 4+t 4+ 070 +..)
atrt’

1 —1r2
ar

The last step uses tt' =1 — r2.

So the first ray has an amplitude of ar and ALL other
rays have a combined amplitude ar and they interfere
destructively: We get an interference minimum in the
reflected light if 2nd cos?’ = mA like we had before.
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4.20: Summary'

Reflections of light at a refracting boundary are
hard if the “mirror” has a larger index of
refraction. These reflections change the phase of the
reflected light by .

All other reflections including those off silvered
surfaces are soft reflections without a phase change.

Interference of light from a thin film will produce
bright fringes in the reflected and transmitted light.

A nonreflective coating is made of a film with a

thickness d = A/4n to give a maximum in the

transmitted light (=minimum in reflected light).
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Exercises I

Halliday Resnick & Walker:
Reading: Ch36 HRW pp. 874-880

Exercises: p. 885 ff: 30E, 31E, 32F, 34E, 36E, 38P, 40P,
43P, 49P, 51P.
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4321:ﬁFabryéPerot]iwerﬁﬂxuneterl

The sharpness of fringes in transmitted light through a
thin film of air can be used to build highly sensitive

spectrometer and narrow colour filters.

as

n>1 n=1

The inner surfaces are silvered, therefore we have only
soft reflections and the condition to get a bright fringe in

the reflected light becomes

2d cos¥) = (m + 3)A

If the interferometer is illuminated with an extended
light source we can observe similar circular fringes as in
the Michelson interferometer. If the reflectivity of the
surfaces is high enough, the fringes will be very sharp.
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Michelson

Fabry-Perot r=0.8 r=0.96

V.

\J

15

20
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4.22: Resolving power'

If we want to analyse the spectrum of light emitted from

a source (e.g. an excited atom) we must be able to

decompose the light into its wavelength components. A
prism will do that, but it is a much too coarse

instrument for the fine analysis of a spectrum.

Let an atom emit light of two wavelengths A\; and
Ao = A1 + AN

120 ‘ ‘ !
Michelson Fabry-Perot
100 -

. |

%4

These are for wavelengths 500 nm and 501 nm

respectively.

A Fabry-Perot interferometer with a reflectivity of
r = (0.8 has a tenfold higher resolving power than a

Michelson interferometer under the same conditions.
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4.23: Single Slit Diffraction'

We can now compute the diffraction pattern from a
single slit. We will proceed in two stages: First we will
obtain the angles at which we observe interference

maxima and minima in a purely geometrical way.

Secondly we will compute the complete intensity pattern
as a function of the angle of diffraction.

We position the screen sufficiently far away from the slit
so we can deem all rays to be parallel (Fraunhofer
diffraction).

Let 11 be the angle for which the top and bottom rays
from the edges of the slit have a path difference of
exactly A. Then the top ray and the ray in the center of

the slit will have a path difference of %)\ and will cancel.
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Each ray in the top half of the slit will find exactly one
ray in the bottom half to cancel. The total effect at ¥, is
a minimum. We find bsind; = A

The second minimum is found when the path difference
is 2X: Here you divide the slit into 4 equal parts and
each pair of rays in the first and second as well as in the
third and fourth part will cancel.

Generally a minimum is found if the path difference
between the top and bottom part of the slit is a full

wavelength:

bsind = mA\ Minimum

Straight behind the slit the central (principal) maximum

will be located.

To obtain a secondary maximum you can divide the slit
into 3 parts such that the path difference between the
top and bottom rays is 3/2\. Then each pair of rays
from the first and second partition cancel, leaving those
from the third.

Generally a maximum is found if the path difference
between the top and bottom part of the slit is a full

wavelength and a half:

bsind = 1(2m + 1)\ Maximum
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4.24: Intensity I

The intensity can be computed easily if one divides the
slit into narrow parts of width As. All rays then have an
amplitude yoAs/b.

The ray emerging from the center of the slit is chosen as
the reference ray. The phase difference between a ray

emitted at position s = s and a ray emitted at position

s:OiS(S:ZW@:kssinﬁ

H

The sum of two rays emitted from positions +s and —s is

A
dy = dyss+dy_s = yob S(sin(kac—wt—(S)+Sin(kx—wt+(5))

We use sina + sin 8 = 2sin(3(a + () cos(3 (a — B)) and

find
o 2y0 As

d
4 b

sin(kx — wt) cos(d)
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. ZyQAS
b

We now must sum up all the contributions from each

dy

sin(kx — wt) cos(kssin )

pair:

b/2

21 sl —
yosin(kz — wb) cos(kssind)d s

b 0
290 [sin(ks sin 19)] b/2

; P sin(kx — wt)

<sin(%kb sin 1))
Y\ " Tkbsing

0

) snes — )

The amplitude can be rewritten as AOS”‘TO‘ with
o = %kb sin ).
The intensity pattern then is

sin?

=1~

bk/2=3
bk/2=15
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4.25: Examples I

A slit of width b = 40 ym is illuminated with blue light
A =400nm. What is the distance between the central
maximum and the second minimum (the fourth

interference maxima on either side) in the interference

pattern on a screen 2m away?

Interference minimum: bsin = mA\ The first minimum
is obtained for m = 1, the second minimum is obtained

for m = 2.

400
sind = 2)/b = 2 T 0.02

Opm

The distance on the screen is
d = 200cm tan(sin~ ' 0.02) = 4cm

The condition for a maximum is bsina = 1(2m + 1)A.
The first secondary maximum is obtained for m = 1 and

the fourth secondary maximum is at m = 4.

400
sing = 4.5)/b = 4.5 — (0.045
40pm

The distance between the fourth maxima is
d = 2-200cm tan(sin~' 0.045) = 18 cm.
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What is the intensity ratio between the third and
seventh maximum?

.2
I:I()Sln2& a:%kbsinﬁ
o)

The condition for a maximum is then

am = skbsind = 2k2(2m +1)A = 2 (2m + 1)

The third maximum is found at a3 = 3.57, the seventh

maxiumum at ay = 7.57

Iy Iy 88515? B 7.5%

I Iyggsr 357

= 4.6
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4.26: Resolving power'

By the resolving power of an optical instrument we mean
its ability to produce two separate images of two objects

very close together,

A slit of width b produces a central maximum with a
width inversely proportional to b. If the two images are
much closer than the width of either central image, they

can clearly not be seen as separate images.

If the principal maximum of the second image falls into
the first minimum of the diffraction pattern of the first
image, we can just barely see them as two separate

maxima.

The resolving power is therefore defined as as the

minimum angle of resolution ¥y. For a slit it is given by

A
19025

Note: As 9 increases, the resolving power decreases!
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4.27: Diffraction from Extended Apertures

In general the diffraction pattern will involve rays from
every point on the aperture. Two special cases are worth
mentioning: A rectangular aperture and a circular

aperture.

The rectangular aperture can be seen as a combination

of a vertical slit and a horizontal slit.

-
D
G

G

-

The circular aperture is important because almost all
lenses are circular, and the rims of the lenses or the tube
of a telescope or a microscope is a circular opening that
ultimately limits the resolving power of these

instruments.
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4.28: Rayleigh’s criterion

Unfortunately the exact treatment of a circular aperture
is rather involved and does not teach us anything new.
One finds that the first minimum is found at a slightly
different angle:

A
Vo = 1.223

Compared with a slit the only difference is the factor
1.22.

We can now formulate Rayleigh’s criterion for the

resolution of two images:

Two images can be resolved if the diffraction
maximum of one image coincides with the first
diffraction minimum of the second image. For
a circular aperture of diameter d this means

that the angular separation must be

A
Yo = 1.223
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4.29: Summary'

Rayleigh’s Criterion: Two images can be resolved if
the diffraction maximum of one image coincides with
the first diffraction minimum of the second image.
For a circular aperture of diameter d this means that

the angular separation of the two images must be at
least ¥y = 1.22\/d.

A single slit of width b will produce an interference
pattern of the form

sin? o

1(9) = I

with o = %kbsinﬁ

2

The secondary minima are found at angles ¥ such
that bsinv = mA.

The secondary maxima are found at angles ¥ such
that bsind = (m + 3)\.

The resolving power of a Fabry-Perot interferometer
is highest for high reflectivities.
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Exercises I

Halliday Resnick & Walker:
Reading: Ch37 HRW pp. 891-900

Exercises: p. 912 ff.: Q1, Q4, Q6, 1E, 2E, 3E, 6P,10E,
15E, 17E, 25P
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4.30: Double Slit Diffraction.

We have already discussed Young’s double slit
experiment and found the conditions for interference
maxima and minima. Now we can look at the complete

intensity pattern produced on a screen behind the slits

At an angle ¢ the path difference is As = dsin ¢ and the
phase difference is

Agp = 27rd81;”9 — kdsind

On the screen the two waves will therefore have
amplitudes

asin(kr — wt)

asin(kr — wt — kd sin )
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We know how to deal with this sum:

y(:z:,t) yl(xvt) +y2(x7t)
2a cos(4kdsin¥) sin(kz — wt — kdsind)

The intensity is the square of the amplitude:

I = 4a” cos®(2kdsind) = 41 cos” (3 kd sin0))

Or, if we substitute g = %kd sin 1, we have
I = 41, cos?(B)
The conditions for a maxima/minima of order m are:

Maximum: dsin v = m\

Minimum: dsind = (m + 3)\

d=10A

f\
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4.31: Examples I

Two narrow slits are a distance d = 40 ym apart. They
are illuminated with light of two different wavelengths:
A1 = 600nm and Ay = 550 nm. A screen is 300 cm
behind the slits.

What is the distance of the third maximum from the

center on the screen in each case?

Condition for a maximum with narrow slits:
dsin iy = m\

600 0.6
sinty = 3 e B
40pm 40pum

s1 = LtanvY; = 300cm - 0.045 = 13.5cm

= 0.045

550 0.55
sindy = 320 — 3. ZO2M
40pm 40pm

s9 = Ltanvy = 300cm - 0.041 = 12.4cm

= 0.041

We use sin v ~ tan v ~ 9 valid for angles less than
0.1rad. (~6°)
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Red light with a wavelength A\ = 638 nm illuminates a
double slit. On a screen 200 cm behind the slits the
distance between the central and the second order
maximum is found to be 7.8 cm. What is the distance
between the two slits?

tand — O _ 039
200cm

Y = 2.23°

2 - 638
d= """ _ 39700 nm = 32.7um
sin 2.23°
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4.32: Diffraction Grating'

What happens if we take more than two very narrow
slits with equal spacings d between each slit?

If we take the ray from the topmost slit as the reference

ray then the ray from the N*” slit down will have a

phase difference of

N§ =27rNdsind/\ = kNdsin
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The total wave at that angle then is obtained by

summing the waves from all slits:

A(xz,t) = alcos(kr — wt) + cos(kx — wt — §)
+ cos(kx — wt — 20) + - - -
+ cos(kx — wt — (N — 1)9)]
in1N§
acos(kx — wt — (N — 1)(5)81{1#1
sin 50

And its intensity is
sin? %Ncs ,
[ =T —>*— 0 = kdsind

2 1
sin 55

The maximum intensity in each order is I,,qp = IgN?!

d=10 A
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4.33: Resolving Power'

In order to use the grating as a spectrometer we must be
able to distinguish two wavelengths A and A + A\.

According to Rayleigh’s criterion we can distinguish two
lines, if the main maximum of one line falls into the first
minimum of the second line. Clearly, if the maximum is

high and narrow, we will be able to resolve lines differing
by only a small wavelength difference and the resolving

power is large.

We define the resolving power

A
T AX

We can find the position of the minima closest to the

R

main peaks easily by looking at the intensity equation:

sin® 2N § _
I =1—F— 0 = kdsinv

. 21
sin 55

We denote the angle for the main maximum in m'” order
with ¢,, and the angle for the immediately adjacent

minimum with ¢,,.
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The main maxima are found at those angles where the

denominator vanishes:

%kdsinﬁm =mnm < dsind,, = mA

In the numerator this becomes

Ndsind,, = Nm\

Next we need to find the angles at which the next
minimum is located, that is, where the numerator

vanishes next.

Ndsin ¢, = (Nm + 1)\

We can now write the criterion for resolution of the
wavelengths A and A + AX: The maximum for (A + A\)

must coincide with the minimum for \.
Nm(A+ AXN) = (Nm+ 1)\

NmA+ NmAN = Nm\ + \
A

= —=N
R AN m

A grating with many lines has a higher resolving power
than one with few lines independent of the spacing of

the lines!

The resolving power is higher in the higher orders.
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4.34: Dispersion I

We also want to be able to measure the angles
reasonably comfortably. This means that they must be
fairly large. The grating must have a large dispersion.

_dv
~dA

Again we can easily derive an expression for D. The

D

principal maximum for the m** order is found at an
angle:

dsind,, = mA\

dA d cost
dd  m

9 m
d)\ dcosd

The dispersion is proportional to the order and inversely

D

proportional to the spacing but is independent of the
number of lines in the grating or the wavelength of the
light!

The dispersion is inversely proportional to the spacing.

Resolving power R and dispersion D are independent of
each other, and a grating is characterized through both.

R-D Herzberg



PHYS126 Waves and Optics

Two red lasers with wavelengths \; =7 and Ay =7 shine
through a grating with 300 lines/mm onto a screen

L = cm behind the grating. d = 3333 nm.

The distance between the principal and the first order

maximum on the screen is

S1= cim

So=

What are the wavelengths of the lasers?

S
tand = —
an 7

sin 191

sin 191

A1 = dsinv; = 3333nm-

Ao = dsin ¥y = 3333nm-
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4.35: Examples I

A grating is 1 mm wide and has 80 lines. What is the
dispersion and resolving power for red light (A = 700 nm)

in 3" order?
d = 1mm/80 = 12500nm

m
D:
dcost

700nm
12500nm

dsintd =3\ = 9 =sin ! <3

) = 0.169rad = 9.7°

3 rad degrees
= = 0.00024— = 0.014
12500nm cos(9.7°) nm nm

A
R ) m =3 - 80 0

This means we can resolve wavelength differences as
small as A = \/240.

The grating is illuminated with yellow sodium light
A1 = 9589.00, Ay = 589.59. How many lines must the
grating have to allow the two lines to be resolved in
second order?

A ~ 589nm
mAX  2-0.59nm

A grating with 500 lines will resolve the two sodium lines

in second order.
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4.36: Summary'

The intensity distribution far behind two narrow
slits is

I1(¥) = Iycos® 3 B = Lkdsind

2
The maxima are found at angles dsinv = mA.
The minima are found at angles dsind = (m + ).

A diffraction grating consisting of N very narrow
slits with a uniform spacing d between slits produces
an intensity pattern

sin? %N(S

- 21
sin 55

1(9) = I § = kdsin®

The maximum intensity in the peaks is N21I.

The resolving power of a grating in m'” order is

A

The dispersion of a grating with spacing d is

d19_ m

D= dX  dcos?

Dispersion and resolving power are independent
quantities!
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Exercises I

Halliday Resnick & Walker:

Reading: Ch37 HRW pp. 901-912

Exercises: p. 914 ff.: 27E, 31P, 32P, 33E, 35E, 37P, 41P,
43P, 45P, 47E, 51P
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4.37: Double Slit Diffraction.

We have already discussed Young’s double slit
experiment and found the conditions for interference
maxima and minima. Then we used very narrow slits.

In general the slits have a finite width, and the intensity
pattern on a screen behind the double slits will be a
combination of two single slit diffraction patterns and
the double slit interference pattern.

The single slit had an intensity pattern

sin” « :
Iss = Io— o = %kb sin 9
Q
Young’s double slits with infinitesimal width at a
distance d created an interference pattern

Iy gs = 41 cos® B b= %kdsinﬁ

We can combine the two if we define d to be the distance
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between the centers of the two slits of width b and look
at a screen sufficiently far away so that we can treat all

rays as parallel:

sin? o

I =1 Iygs = 4IO 2
8%

cos® 3

If b tends towards 0, the central single slit maximum
tends towards an infinite width, and the intensity
pattern of Young’s double slits is obtained. If b >> d the
pattern becomes that of a single slit.
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4.38: Realistic Grating'

The same is true for a realistic diffraction grating with
finite slitwidth.

The total intensity pattern will be a product of the
diffraction pattern created by one finite slit and the
interference between the contribution from the N
different slits.

Sin(%]\m) sin? o

sin(36)  a?

—= I,

with 0 = kdsind and « = %kbsinﬁ.

One must be careful here. A diffraction pattern is really
nothing but a complicated interference pattern created
by all the Huygens wavelets originating at the slit. It is
therefore a matter of semantics to call one a diffraction

pattern and the other an interference pattern.
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4.39: Missing orders'

Take a grating with slits 2 ym wide and spaced 6 pm
apart illuminated with light at a wavelength A = 600 nm.
What is the intensity distribution?

60
50 |
I
30
20

10

| LN e

ol AAAAA AR AR LR KRR LA

-1 -0.5 0 0.5 1

We seem to lose every other line from the grating
pattern because the diffraction pattern created by each
slit does not produce any light at those angles!
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4.40: Group VelocityI

If a pulse of light moves through a dispersive medium, all
the different wavelengths making up the pulse move at
different speeds. What then is the speed of the signal
progressing through the medium?

Go back to our discussion of beats. If two waves of
slightly different wavelengths A and A" and slightly
different velocities v and v travel together, we can find

the resulting wave easily:

y1(x,t) = yo sin(kx — wt) = yo sin(k(x — vt))

yo(x,t) = yosin(k'z — w't) = yo sin(k'(z — v't))

with w' =w+dw and k' = k + d k.
The resultant wave will be
y(x,1) yi(x,t) + y2(z, 1)
yo sin(kx — wt) + yo sin(k'z — w't)
2sin(2(k+ k)x + & (w + w')t)
x cos(3(k — k)z + L (w — w')i)
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The first part has a velocity

(wHw)

w
k+ k) K

Y

2

and represents the small oscillations.

The second part is the speed of the envelope of the beats:

2w —u) _dw

Lk—k) — dk

It is this speed that we need to look at if we try to

transmit a signal!
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We call v the phase velocity and u the group velocity. To

get a relationship between u and v we take

dw  dou(k)k
- dk dk

u

We can rewrite this in terms of the wavelength A = 27 /k:

do(k)  do(k)dX  do(k) —2n
dk  dx dk  dX k2

B dv(k) do(k) —27
u=v+k Tr —v+k B =

This form is useful because it shows that the group
velocity is always smaller than the phase velocity,
provided the wave speed is low for small wavelengths and

increases monotonously.

This is the normal case in all dispersive media.
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4.41: Summary'

e The intensity pattern produced by realistic gratings
and double slits is the product of the intensity
pattern for a single slit and the intensity pattern for

an appropriate number of very narrow slits:

Double slit:

sin? o

I = Iss ) IYds — 4IO 5
(8%

cos? B
Grating:
Sin(%N(S) sin® o

sin(40) a2

=1

with o = %kbsinﬁ, b= %kdsinﬁ and 0 = kdsin.

The interplay of minima from both patterns can lead

to missing orders.

A signal can only be transmitted with a pulse. In a
dispersive medium this pulse travels with the group

velocity
dw

T dk

The group velocity u and the phase velocity v are

u

connected via

do(k)
d A

U=v—N\
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Exercises I

Halliday Resnick & Walker:

Reading: Ch37 HRW pp. 901-906

Exercises: p. 914 ff.: 27E, 31P, 32P, 33E, 35E, 37P, 41P,
43P, 45P, 47E, 51P
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