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1.1: Overview: Waves� Classi�
ation of waves and their properties� Wave speed� Energy in a wave� The prin
iple of superposition� Interferen
e� Re
e
tions and Boundaries� Standing waves� Resonan
e� Introdu
tion to sound waves� The de
ibel s
ale� Beats� The physi
s of musi
� Doppler E�e
t� The wave equation
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1.2: Some Referen
e Books1. Fundamentals of Physi
s Halliday, Resni
k, andWalker,sixth edition, John Wiley 2001.2. Berkeley physi
s 
ourse Vol 3: Waves, Frank S.Crawford.This book is more math oriented.3. The Feynman Le
tures in Physi
s (Vol I), Feynman,Leighton, SandsI will follow Halliday, Resni
k and Walker very 
losely.

Re
ommended study time: 36 h.At the end of ea
h le
ture are suggestions for exer
isesand revision.
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1.3: Introdu
tionClassi�
ation of waves:

transversal

water waves

Periodic waves:

Non-periodic waves (pulses):

(need medium)                         (needs NO medium)

sound, water waves,
earthquakes, etc

radio, light, X-rays
etc

Mechanical waves Light waves

sound waves

longitudinal purely transversal

In quantum mechanics: matter and probability waves!
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Consider a transversal periodi
 sinusoidal wave travellingalong, e.g. a water ripple and take a snapshot of it at atime t = 0:
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ym : amplitude� : wavelengthy(x; t) = y(x; t = 0) = ym sin(k(x� x0))Substitute �0 = kx0 to givey(x; t) = y(x; t = 0) = ym sin(kx� �0)The wave is periodi
, therefore we must havey(x+ �; 0) = y(x; 0)for all x. Thus:ym sin(k(x+ �)� �0) = ym sin(kx� �0)
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We know for a sine fun
tion:sin(�+ 2�) = sin(�)and therefore k� = 2�. k = 2��We 
all k the angular wave number. Units:[�℄ = m[2�℄ = rad[k℄ = rad/mIt is also useful to de�ne the wave number �:� = 1=� = k2�[�℄ = m�1

R-D Herzberg
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1.4: Example:
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x  / mWe measure � = 0:2m.Thus k = 2�=� = 31:4 rad/mand � = 1=� = 5m�1.
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1.5: Time dependen
e:Now look at a given point and let the wave pass by:y = y(x; t) = y(x0; t)Take the same wave as before. Two observations:1. it again is a sine2. it \goes down" �rsty = �ym sin(!t) = ym sin(�!t)The time it takes from one 
rest to the next is 
alled theperiod T .
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Again: sin(!t) = sin(!(t+ T ))!T = 2� =) ! = 2�TDe�ne f = 1=T = !2�Units:

period[T ℄ = sangular frequen
y[!℄ = rad/sfrequen
y[f ℄ = s�1 or Hz

R-D Herzberg
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1.6: Example:

T = 5 s
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t  / sWe measure T = 5 s.Thus ! = 2�=T = 1:26 rad/sand f = 1=T = 0:2Hz.
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1.7: The 
omplete wave:How 
an we 
ombine these things into one des
riptionfor the entire wave?y(0; t) = ym sin(�!t)y(x; 0) = ym sin(kx)Look at a single \point on the wave".
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The wave moved by �x in the time �t. The speed istherefore v = �x�t [m/s℄Or: v = dxdt [m/s℄
R-D Herzberg
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If the point stays �xed on the wave then the argument ofthe sine fun
tion must remain 
onstant.
If x in
reases as t in
reases, then 
hoosing kx� !t as theargument of the sin will have the desired e�e
t:

y(x; t) = ym sin(kx� !t� �0)
Note the importan
e of the phase 
onstant �0. We willsee that k depends on the frequen
y and the mediumthrough whi
h the wave travels. That leaves ym and �0to be determined by initial 
onditions. This makes sense:You de
ide how big a wave you want to 
reate (ym) andyou also determine whi
h point on the wave you 
onsideras your point of referen
e (�0).

R-D Herzberg
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1.8: Wave speed:When we say \the wave moves", what is a
tuallymoving? The only real motion is up and down, notforward!The position of a point with a 
ertain phase 
hangeswith time, and it is that speed that is the wave speed.The phase of the wave is given bykx� !t� �0 = 
onst:Di�erentiate with respe
t to t:kdxd t � ! = 0 =) dxd t = !kv = d xd t = !kChe
k the dimension: radsradm = ms

R-D Herzberg
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1.9: Example:Consider the wavey(x; t) = (0:1m) sin(2x� 4t+ �=3)What are ym; T; �; k; f; �; !; �0?Easy: ym = 0:1mk = 2rad/m! = 4rad/sf = !=2� = 4 rad/s2� rad = 0:636HzT = 1=f = 1:571 s� = 2�=k = 2� rad2 rad/m = 3:14m� = 1=� = 0:318m�1�0 = ��=3

What is the wave speed?v = !k = �T = �f = f� = 2 ms
R-D Herzberg
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What if we want to move in the other dire
tion?we need de
reasing x with in
reasing t:kx+ !t� �0 = 
onstv = dxd t = �!kjust as we wanted.So the two types of sinusoidal waves are:y(x; t) = ym sin(kx� !t� �0) =)y(x; t) = ym sin(kx+ !t� �0)(=

R-D Herzberg



PHYS126 Waves and Opti
s
1.10: Physi
al wavesConsider a real physi
al system, a very long, elasti
,massive string in x dire
tion. At the point x = 0 wemove the string up and down in a periodi
 sine motion.The string has a mass density � = m=l and a tension �and the wave is des
ribed by y(x; t) = ym sin(kx� !t).Ea
h element of the string travels up and downperiodi
ally.

x∆

y∆ x

y

The kineti
 energy for a string element of length �x is�Ekin = m2 v2 = �x�2 �d yd t�2
d yd t = ym 
os(kx� !t) � (�!)Thus �Ekin = �x�!2y2m2 
os2(kx� !t)

R-D Herzberg
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The potential energy in the stret
hed part of the stringis �Epot =(tension in string) � (elongation of string)�Epot = �(�l ��x)�l2 = �x2 +�y2�l ��x = p�x2 +�y2 ��x�l ��x = �x(s1 + �y�x2 � 1)
For small os
illations we 
an use the Taylor expansion:p1 + �2 � 1 = 1 + �22 � �48 + � � � � 1 ' �22Finally use �y�x = d yd x = ymk 
os(kx� !t) and 
olle
t itall: �Epot = �(�l ��x)= �(�x(s1 + ��y�x�2 � 1))= ��x12 ��y�x�2

= �y2mk2�x2 
os2(kx� !t)
�Epot = �y2mk2�x2 
os2(kx� !t)The average energy in the wave 
an be found by

R-D Herzberg
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integrating the energy over one period and dividing bythat period: hEi = 1T Z t=Tt=0 E(x; t)d t

h�Ekini = �x�!2y2m2 1T Z T0 
os2(kx� !t)d tThis integral is easy. Sin
e sin(kx� !t) looks exa
tlylike 
os(kx� !t), only a little further left, the integralover one period will be the same.
A = 1T Z T0 
os2(kx� !t)d tA = 1T Z T0 sin2(kx� !t)d t2A = 1T Z T0 (sin2(kx� !t) + 
os2(kx� !t))d t2A = 1T Z T0 1d tA = T2T = 12

R-D Herzberg
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This leaves us with:

h�Ekini = �x�!2y2m4h�Epoti = �x�k2y2m4Re
all from the me
hani
s 
ourse:
In every os
illating system, the average kineti
energy equals the average potential energy.

h�Ekini = h�Epoti�x�!2y2m4 = �x�k2y2m4�!2 = �k2 =) !k =r �� = vSo the speed of a wave on a string with mass density �and tension � is given by
v =q ��

R-D Herzberg
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1.11: Summary:transversal sinusoidal wavesy(x; t) = ym sin(kx� !t��0)"-": Travels in positive x-dire
tion"+": Travels in negative x-dire
tionAmplitude ymWavelength � [m℄angular wave number k = 2�=� [rad/m℄wave number � = 1=� [1/m℄Period T [s℄angular frequen
y ! [rad/s℄frequen
y f [1/s℄ or [Hz℄Wave speed v = !k = �T = �f [m=s℄Wave on a string with tension � and mass density �:Wave speed v =q ��

R-D Herzberg
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1.12: Exer
ises:Halliday Resni
k & Walker:Reading: HRW Chapter 17 pp 370{382 (Waves I)Exer
ises: p.392 �.: Q3, Q4, 3E, 4E, 6P, 24E, 25P

R-D Herzberg



PHYS126 Waves and Opti
s
.

R-D Herzberg



PHYS126 Waves and Opti
s
1.13: Prin
iple of superpositionIf two (or more) waves travel through the same region ofspa
e, the net displa
ement at ea
h point is the sum ofthe displa
ements due to the individual waves.This is the Prin
iple of Superposition for waves.y(x; t) = y1(x; t) + y2(x; t)

R-D Herzberg
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1.14: Superposition of wavesSo far we only looked at sinusoidal waves. How general isthat?Any fun
tion 
an be treated as a superposition of(in�nitely) many sinusoidal waves.To �nd these 
omponent sinusoidal waves one does aFourier analysis.We 
an build up any fun
tion as a sequen
e ofre
tangular pie
es:

x

y

And we 
an build a re
tangular pie
e out of sine waves:
y

R-D Herzberg
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Consider P1n=0 
os(2n+1)(2n+1) sin((2n+ 1)x� (2n+ 1)t):

1 Term:
-5 0 5 10-10

-1

0

1

2 Terms:
-5 0 5 10-10

-1

0

1

25 Terms:
-5 0 5 10-10

-1

0

1
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1.15: Wave speedWhat about the speed of this 
omposite wave?

y(x; t) = 
os(1) sin(x� t) + 
os(3)3 sin(3x� 3t)+ 
os(5)5 sin(5x� 5t) + � � �
v = !k = 11 = 33 = 55 = 1m/sAll 
onstituent waves travel at the same speed.

R-D Herzberg
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1.16: Con
lusions1) We 
an de
ompose any periodi
 or nonperiodi
 waveor pulse into an (in�nite) number of sinusoidal waves.2) We 
an observe Interferen
e.Take two waves travelling along a string:y1(x; t) = y0 sin(kx� !t)y2(x; t) = y0 sin(kx� !t��)We 
all � the phase di�eren
e between the two waves:"They are out of phase by �".de�ne � = kx� !t, � = kx� !t� �.(�+ �)=2 = kx� !t� �=2(�� �)=2 = +�=2Use sin(�) + sin(�) = 2 sin((�+ �)=2) 
os((�� �)=2)

y(x; t) = y1(x; t) + y2(x; t)= y0 sin(kx� !t) + y0 sin(kx� !t� �)= 2y0 
os(�=2) sin(kx� !t� �=2)New amplitude ym = 2y0 
os(�=2) ! The new wave has adi�erent amplitude and a di�erent phase.
R-D Herzberg
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1.17: Interferen
eWe 
an now distinguish several 
ases:1) � = 0: The waves are "in phase", we haveym = 2y0 
os(0) = 2y0.

2) � = �: The waves are "out of phase", we haveym = 2y0 
os(�=2) = 0.

R-D Herzberg
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Generally we will have 
ases in between these extremes:

φ

R-D Herzberg
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1.18: Appli
ations of interferen
eA
tive earprote
tion

Microphone
Loudspeaker

Inverter

If the mi
rophone is 5 
m away from the ear and theloudspeaker is 2 
m away from the ear then we have0.1ms to invert the wave - plenty of time!

R-D Herzberg
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1.19: Standing waves ISo far these waves moved in the same dire
tion. What isthey move in opposite dire
tions?y1(x; t) = y0 sin(kx� !t)y2(x; t) = y0 sin(kx+ !t� �)

de�ne � = kx� !t, � = kx+ !t� � and usesin(�) + sin(�) = 2 sin((�+ �)=2) 
os((�� �)=2)
y(x; t) = y1(x; t) + y2(x; t) =2y0 sin(kx� �=2) 
os(!t+�=2)
This is not a travelling wave anymore, it is a Standingwave.

R-D Herzberg
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1.20: Standing waves II

x

t

R-D Herzberg
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1.21: SummaryPrin
iple of Superposition: If two (or more) wavestravel through the same region of spa
e, the netdispla
ement at ea
h point is the sum of thedispla
ements due to the individual waves.We 
an build up any periodi
 or nonperiodi
 wave fromsinusoidal wavesInterferen
e:If two sinusoidal waves with the same wavelength travelin the same dire
tion the resulting wave is again asinusoidal wave with the same wavelength but with adi�erent amplitude and phase:

y(x; t) = y0 sin(kx� !t) + y0 sin(kx� !t� �)= 2y0 
os(�=2) sin(kx� !t� �=2)Standing waves:If two sinusoidal waves with the same wavelength travelin opposite dire
tions the result is a standing wave:
y(x; t) = y0 sin(kx� !t) + y0 sin(kx+ !t� �)= 2y0 sin(kx��=2) 
os(!t+�=2)

R-D Herzberg
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1.22: Re
e
tionsWhat happens if a wave en
ounters an obsta
le?

?

The puls returns inverted!

Why?

R-D Herzberg
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The string exerts a for
e on the wall. A

ording toNewtons prin
iple a
tio = rea
tio the wall exerts anequal, but opposite for
e on the string: The pulse isinverted and sent ba
k.We 
all this type of re
e
tion a \hard"re
e
tion.The other type of re
e
tion is a \soft"re
e
tion:Consider this string whi
h is atta
hed to a fri
tionlessbearing that slides along a rod:

There is no for
e on the rod, therefore the rod does notexert any for
e ba
k on the string.The end of the string moves, stret
hing the string. Thisthen generates a restoring for
e proportional to theelongation of the string. The pulse is sent ba
k, but notinverted.

R-D Herzberg
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1.23: Momentum transferWhat is the amount of momentum transferred to therod/wall in both 
ases:

1) Hard re
e
tion: The string element �x 
losest to thewall has a momentum �p. As the pulse is re
e
ted fromthe wall, that momentum is reversed: �p! ��p. Thetotal 
hange of momentum in the string element is��p��p = �2�p. As momentum is 
onserved, thewall must have experien
ed a 
hange in momentum ofequal magnitude but opposite dire
tion: +2�p.
2) Soft re
e
tion: Sin
e the bearing moves fri
tionlessalong the rod, the rod never feels any kind of for
e.Therefore no momentum is transferred to the rod.This is the di�eren
e between \hard" and \soft"re
e
tion: \hard" re
e
tion transfers momentum to the\mirror", \soft" re
e
tion does not.

R-D Herzberg
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1.24: Standing waves IIIIf we want to set up a standing wave, we have to use twowaves with the same wavelengths travelling in oppositedire
tions on the same string. The easiest way to 
reatesu
h a thing is to use a wave and trap it between twowalls.Take a string with a length L and a mass density� = m=L at a tension � . If we want to have a standingsinusoidal wave on this string, we must have a node atboth ends.

τ

µ

LThis means, the length of the string only allows 
ertainwavelengths to form standing waves:L1 = �=2But we 
an squeeze more nodes onto the string:
R-D Herzberg
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λ   =3 2L/3

λ   =n 2L/n

Third harmonic:

λ   =2 2L/2

Second harmonic:

λ   =1 2L/1

Fundamental mode  (First harmonic):

R-D Herzberg
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The length of the string determines the wavelength, thetension and mass density determine the wave speed,therefore the frequen
y is �xed for any mode. Obvious:A guitar string will sound at a given frequen
y. To
hange the pit
h you must shorten the string (normalplay) or 
hange the tension in the string (tuning).Example: A bass string has a length of 1m with a massdensity of 2.8 g/m. What tension is required to tune thestring to a frequen
y of 55Hz?Solution: � = 2L = 2mf� = v =r ��� = �(f�)2� = 2:8� 10�3kg/m(55s�12m)2 = 33:9NIf you have the tension too high by 1N, how will thepit
h 
hange?Solution: f = v=� = p�=��f = p34:9N=2:8� 10�3kg/m2m = 55:8HzBasses are easy to tune.

R-D Herzberg
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1.25: Resonan
eTake the string and ex
ite it with a frequen
y of your
hoosing: You still will have a wave travelling ba
k andforth, but the ba
kward and forward moving waves willnot be in phase, you do not get a ni
e standing wave.Only if the frequen
y approa
hes the allowed(fundamental and harmoni
) frequen
ies does a standingwave emerge. We say the string is in resonan
e.Take the bass string of the previous example: Thefundamental mode had a frequen
y of f1 = 55Hz. Whatother resonan
e frequen
ies are there?The wave speed is 
onstant for all waves on that string.The wavelengths are given by �n = 2L=n.fn = v=�n = nv2L = nf1
f2 = 2 � 55Hz = 110Hzf3 = 3 � 55Hz = 165Hz

R-D Herzberg
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1.26: Summary

λ   =2 2L/2

Second harmonic:

λ   =3 2L/3

λ   =n 2L/n

Third harmonic:

λ   =1 2L/1

Fundamental mode  (First harmonic):

� = 2L=n where n is the number of antinodes in thestanding wave.The speed of the wave is determined by the tension andthe mass density of the string. This together with thelength of the string determines the fundamental andharmoni
 frequen
ies.A wave undergoing \hard"re
e
tion returns inverted.A wave undergoing \soft" re
e
tion returns upright.
R-D Herzberg
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1.27: Exer
isesHalliday Resni
k & Walker:Reading: HRW p. 382{391 (Chapter 17: Waves I)Exer
ises: p. 392 �.: Q5, Q9, 29P, 33E, 37E, 46P

R-D Herzberg
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2: SoundAll waves on the string were transversal waves and werepossible be
ause the vibrating string 
an store elasti
energy by stret
hing.Sound travels through air whi
h is not elasti
, so weneed a di�erent me
hanism for the propagation of soundwaves.Sound waves are longitudinal pressure waves!Take a tube �lled with air at a pressure p:

p

and push on the piston. This will displa
e the airmole
ules next to it and in
rease the pressure. Then airwill 
ow out from this high pressure region pushing onthe adja
ent mole
ules - a pressure wave forms.

R-D Herzberg
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2.1: Speed of soundWe shall use Newton's 2nd law F = ma to �nd the speedof sound.A step in pressure travels through the tube.

F1 F2

V =    x A∆

p
ρ

Aup+    p∆

x = u    t∆ ∆

The net for
e on the shaded volume of air isF = F2 � F1 = pA� (p+�p)A = ��pAThe mass of that volume of air ism = ��VThe a

eleration isa = �u�t = u� 0�t = u�tThis gives F = ma() ��pA = ��V u�t
R-D Herzberg



PHYS126 Waves and Opti
s
To relate the 
hange in pressure to a 
hange in volumewe use the Bulk Modulus B. It is a material 
onstantand has the dimension of a pressure: Pa (Pas
al).�p = �B�VVWe then have ��pA = B�VV A = ��V u�tBAV = � u�tThe Volume we are looking at is V = A�x = Au�tBu�t = � u�tu =qB�This looks familiar:

speed =s elasti
 parameterinertial parameterThe elasti
 parameter stores potential energy,The inertial parameter stores kineti
 energy.
R-D Herzberg
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2.2: Speed of sound IIIn a medium with bulk modulus B and mass density �,the speed of sound is u =sB�Examples:Material Bulk Modulus Density Speed of soundAir 142 kPa 1.2 kg/m3 344m/sHelium 179 kPa 0.18 kg/m3 1000m/sWater 2.05GPa 1 g/
m3 1430m/sSteel 165GPa 7.8 g/
m3 4600m/s

R-D Herzberg
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2.3: Sound as longitudinal wavesLet us look 
loser at the a
tual motion of the air:

D
is

p
la

ce
m

en
t

x

s

1 32

What about the pressure? Intuitively we would say thatthe pressure is high in regions 1 and 3 sin
e all the air is
owing toward these regions and lowest for region 2.Assume for the displa
ements(x; t) = s0 
os(kx� !t)with s0 << �.
R-D Herzberg
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The pressure at ea
h point 
an be obtained by looking atthe 
hange of volume brought on by the wave:

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
V  = A    xo

x+    xx ∆

A

∆

This volume is deformed by the wave:
x+    x + s(x+   x,t)

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

x+s(x,t) ∆ ∆

x+    xx ∆

A

�V = (�x+s0 
os(k(x+�x)�!t)�s0 
os(kx�!t))A�V0Use 
os(�+ �) = 
os(�) 
os(�)� sin(�) sin(�)�V = A�x+As0 
os(kx� !t) 
os(k�x)�As0 sin(kx� !t) sin(k�x)�As0 
os(kx� !t)�A�x
We had a very thin sli
e, therefore k�x << 1 and we
an approximate 
os(k�x) ' 1 and sin(k�x) ' k�x.
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This leaves us with

�V = �ks0A�x sin(kx� !t)= �ks0V0 sin(kx� !t)
Again use the bulk modulus to relate �V and �p and
olle
t it all (�p = �B�V=V ):�p = s0Bk sin(kx� !t) = p0 sin(kx� !t)p0 = s0Bk = s0�!uThe last step uses u = !=k =pB=�.

Displacement

Pressure

R-D Herzberg
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2.4: Sound intensityWhat is the power transmitted by a sound wave?Sound is not restri
ted to a one dimensional string, itwill radiate in 3 dimensions. We de�ne the soundintensity I observed at a distan
e R from the sour
e asthe power re
eived per unit area:I = P4�R2

R
A

P

I = P

4   Rπ 2

The displa
ement at a distan
e r from the sour
e is thens(r; t) = s0 sin(kr � !t� �0)r =px2 + y2 + z2
R-D Herzberg
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The kineti
 energy in a thin spheri
al shell around thesour
e is �Ekin = �m2 �d s(r; t)d t �2
dd ts(r; t) = s0 sin(kr�!t��0) = �!s0 
os(kr�!t��0)

�Ekin = �m!2s202 
os2(kr � !t��0)The next steps are 
ompletely analogue to the dis
ussionwe had for waves on strings:1) Cal
ulate the average kineti
 energy over one period.
h�Ekini = �m!2s2042) The average potential energy is the same as theaverage kineti
 energy, therefore the average total energyis twi
e the average kineti
 energy:
h�Etoti = �ms20!22
ompare wave on a string:h�Etoti = ��xy2m!22
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For a spheri
al shell with radius R and thi
kness �r wehave �m = 4�R2�r�

h�Etoti = 4�R2�r�s20!223) Compute the power (energy transmitted per time)
P = h�Etoti�t= 4�R2�s20!22 �r�t= 4�R2�s20!2u2This gives the intensity as
I = P4�R2 = �s20!2u2Sound intensity is measured in W/m2.
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2.5: ExampleWe generate sound with a radio. The power of the radiois Ps = 0:25W, and we listen to it at a distan
e ofR = 1m. What is the sound intensity at the ear?I = Ps4�R2 = 0:25W12:56(1m)2 = 19:9mW/m2If the average human ear has a size of A = 50 
m2, howmu
h power rea
hes the ear?P = Ps4�R2A = 0:25W12:56(100
m)2 50
m2 = 0:1mWIs that a lot?We 
annot really answer that question be
ause we donot yet have a s
ale against whi
h to measure soundintensities. So we must 
reate one.The softest sounds that the human ear 
an hear has apressure amplitude of 2:8� 10�5 Pa at a frequen
y of1000Hz (very low whisper).The loudest sounds we 
an tolerate (at the painthreshold) has a pressure amplitude of 28Pa - that is astarting jumbo jet from a few meters beside the runway!
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What are the displa
ement amplitudes for these sounds?We use p0 = s0�!u.f = 1000Hzu = 340m/s� = 1:2 kg/m3p0 = 2:8� 10�5 PaThis gives for the whisper

s0 = p0=(�!u) = 1:1� 10�11Pam3s2kgs0 = 1:1� 10�11mand for the jumbo jets0 = 1:1� 10�5m = 11�mThe ear is sensitive over 6 orders of magnitude ofpressure!
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2.6: Summary

� Soundwaves are longitudinal pressure waves.� The speed of sound u is related to the bulk modulusB and the mass density � via u =pB=�.� The bulk modulus relaes the 
hange in volume dueto a 
hange in pressure: �p = �B�V=V� The displa
ement amplitude s0 and the pressureamplitude p0 are related via p0 = s0�!u.� The sound intensity is the power radiated by thesour
e per unit area: I = P=(4�R2).� The sound intensity is related to the displa
ementamplitude s0 via I = �S20!2u=2.
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2.7: Exer
isesHalliday Resni
k & Walker:Reading: HRW p. 398-404Exer
ises: p. 420 �.: Q3, Q10, Q12, 4E, 9E, 17E, 27P
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2.7: The de
ibel s
aleThe human ear 
overs an enormous range of soundintensities: The lowest whispers have an intensityI = 10�12W/m2, while the sound of a starting jet has anintensity of 1W/m2. That is 12 orders of magnitude.It is therefore useful to introdu
e a logarithmi
 s
ale: thede
ibel s
ale.It is not possible to take logarithms of physi
alquantities whi
h have units:1 kg = 1000 glog10(1 kg) = log10(1000 g)0 = 3 ????It is possible to take the logarithm of a ratio of physi
alquantities.We 
an de�ne the lowest audible sound intensityI0 = 10�12W/m2. Then the de�nition� = (10 dB) log10(I=I0)makes sense.1 dB = 1 de
ibel = 0.1 belThe unit bel was named after Alexander Graham Bell.

R-D Herzberg
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Wavesan

dOpti
s The de
ibel s
ale

Sound Sound Intensity Pressure Displa
ementIntensity Level amplitude amplitude[dB℄ [W/m2℄ [Pa℄ [m℄Jet takeo� 130 10 90 3.6�10�5Constru
tion site 120 1 28 1.1�10�5Ro
k 
on
ert 110 0.1 9 3.6�10�6Shout (1.5m) 100 0.01 2.8 1.1�10�6Heavy Tru
k (15m) 90 0.001 0.9 3.6�10�7Urban Street 80 10�4 0.28 1.1�10�7Automobile interior 70 10�5 0.09 3.6�10�8Normal Conversation 60 10�6 0.028 1.1�10�8Large OÆ
e 50 10�7 0.009 3.6�10�9Living Room 40 10�8 0.0028 1.1�10�9Bedroom at night 30 10�9 0.0009 3.6�10�10Broad
ast studio 20 10�10 0.00028 1.1�10�10Rustling leaves 10 10�11 9.0�10�5 3.6�10�11Lowest audible whisper 0 10�12 2.8�10�5 1.1�10�11 R-DHerz
berg
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How do we work with the de
ibel s
ale?Remember basi
 logarithms:
log(ab) = log(a) + log(b) log(a=b) = log(a)� log(b)log(ab) = b log(a)One loundspeaker plays musi
 at an intensityI = 10�4W/m2. The sound intensity level is� = (10dB) log10 � 10�4W/m210�12W/m2�= (10dB) log10(108) = 80dB
The loudspeaker doubles its intensity:� = (10dB) log10 �2� 10�4W/m210�12W/m2 �

= (10dB) log10(2� 108)= (10 dB) log10(2) + (10 dB) log10(108)= 3dB + 80dB = 83dB
Doubling the intensity only adds 3 dB.
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Two sounds have sound intensity levels �1 = 50dB and�2 = 30dB. What is the ratio of the two soundintensities?

�1 � �2 = (10 dB) log10�I1I0�� (10 dB) log10 �I2I0�50 dB� 30 dB = (10 dB) �log10 �I1I0��� log10 �I2I0�20 dB = (10 dB) log10�I1I0 I0I2�20 dB = (10 dB) log10�I1I2�2 = log10�I1I2�100 = I1I2The ratio of the two sound intensities is I1 : I2 = 100 : 1.

R-D Herzberg



PHYS126 Waves and Opti
s
What are the sound intensities for these two sounds inW/m2? 50 dB = (10 dB) log10 �I1I0�5 = log10 � I110�12W/m2�105 = I110�12W/m210�7W/m2 = I1

I1I2 = 1001 ) I2 = 10�9W/m2
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2.8: The human ear

Outer ear: Con
entrate the sound onto the eardrum.Middle ear: Amplify the sound even more, a
t as safetyagainst too loud noiseInner ear: De
ode the di�erent frequen
ies, transmitinformation to the brain.
R-D Herzberg
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The pressure on the eardrum is transferred to the ovalwindow on the 
o
hlea by a system of levers (Hammer,Anvil, Stirrup)

R-D Herzberg
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2.9: Physi
s of musi
al instrumentsStrings - Pipes - MembranesStanding waves on a string:

1 2 43 5 n

I

1 2 43 5 n

I

pluck here
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Open String

Fingered String
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2.10: PipesTake a pipe with a 
losed and an open end and ex
ite astanding soundwave in it.At the 
losed end the displa
ement has to vanish.At the open end, the pressure has to stay the same as inthe outside world.The pressure nodes 
oin
ided with the disla
ementantinodes:

=4Lλ

closed

L

λ

λ =2L

=2L

Displacement Pressure

closed open

openopen

closed
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Of 
ourse, all the higher modes are also possible in pipes:

=4Lλ

L

Fundamental mode:

λ =4L/5

Third Harmonic

λ =4L/3

Second Harmonic

closed open

Displacement Pressure
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2.11: membranesWe are not restri
ted to one-dimensional patterns.Take a re
tangular membrane �xed around the rim:

Fundamental mode:   n(1,1)

n(1,2)

n(3,2)

n(2,1)

n(6,3)
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2.12: Summary

� The de
ibel s
ale is a logarithmi
 s
ale for the soundintensity level: � = (10 dB) log10(I=I0)� Adding 10 dB to a sound intensity level means thesound intensity has in
reased by a fa
tor of 10.� The referen
e sound intensity is I0 = 10�12W/m2.� In a pipe re
e
tion of a soundwave at an open endmeans the pressure must have a node at the openend.� Re
e
tion at a 
losed end means the displa
ementmust have a node there.� Standing waves on strings, pipes, membranes, areused to build musi
al instruments.� The distribution of power into the harmoni
 modesdetermines the sound quality.
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Exer
isesHalliday Resni
k & Walker:Reading: HRW p. 406-412Exer
ises: p. 420 �.: 17E, 20E, 23E, 26P, 28P, 31E, 33E,36P
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2.13: The Doppler e�e
tSo far we have always assumed that the emitter, thedete
tor and the medium are at rest. That is notgenerally true. From experien
e we know that thefrequen
y emitted by a 
ar 
oming toward us is higherthan that of a 
ar moving away from us. That is theDoppler e�e
t.Consider the folluwing setup:

u
t=0

t=T

n = f  TοThe sour
e emits waves with a frequen
y f0 = 1=T0 anda wavelength � = u=f0 with u being the speed of sound.We assume that the medium (air) is at rest and measureall velo
ities (of sour
e and dete
tor) relative to the air.
R-D Herzberg
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Dete
tor moving, sour
e stationary

n
v

n∆t=T

u

The dete
tor moves toward the sour
e at a speed v. Afterthe time T we have en
ountered n+�n wavelengths!n = TT0 = f0T�n = vT� = vTf0uSo the per
eived frequen
y is
f = n+�nT = f0T + vf0T=uT = f0 �1 + vu�higher than the emitted frequen
y, in a

ordan
e withour experien
e.
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If the dete
tor moves away from the sour
e we have asimilar pi
ture:

v

n∆

u

t=T

nWe now 
ount n��n wavelengths. That gives afrequen
y
f = n��nT = f0T � vf0T=uT = f0 �1� vu�lower than the emitted frequen
y.In total we have for a moving dete
tor and a stationarysour
e: f = f0 �1� vu�"+": dete
tor moves toward the sour
e."-": dete
tor moves away from the sour
e.
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ExampleA siren wails with a frequen
y f = 2000Hz. Whatfrequen
y 
an you hear if you drive toward the siren at100 km/h? The speed of sound is u=344m/s.v = 100km/h = 100 0003600 m/s = 27:8m/sWe travel toward the sour
e so we will per
eive a greaterfrequen
y:

f = f0 �1 + vu� = 2500�1 + 27:8344 � Hz= 2702Hz
We hear the siren at a frequen
y f = 2702Hz.
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When driving away from that siren we hear a frequen
yf = 2450Hz. What is our speed?We travel away from the sour
e so we will per
eive alower frequen
y: f = f0 �1� vu�2450Hz = 2500�1� v344� Hz24502500 � 1 = � v344v = 344�1� 24502500�m/s = 6:88m/sv = 24:77km/hWe drive at a speed of v = 24:77km/h away from thesour
e.
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Sour
e moving, dete
tor stationary

u

t=0

t=nTο

t=Tο

n

v

vThe sour
e moves toward the dete
tor at speed v. On
ethe sound is emitted, it moves with the speed of sound.At the time t = 0 sour
e and dete
tor are a distan
e d1apart.The 
rest emitted at t = 0 rea
hes the dete
tor after thetime t1 = d1=u. The next 
rest is emitted at the timet = T0 and only has to travel a distan
ed2 = d1 � vT0 = d1 � v=f0It arrives at a time t2 = T0 + d2=u = T0 + (d1 � vT0)=u
R-D Herzberg
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We therefore see one wavelength arrive in the time
�t = t2�t1 = T0+d1 � vT0u �d1u = T0�T0v=u = T0 �1� vu�The frequen
y isf = 1�t = 1T0 �1� vu� = f01� vuAs the sour
e moves toward the dete
tor we hear ahigher frequen
y!

R-D Herzberg



PHYS126 Waves and Opti
s
If the sour
e moves away from the dete
tor the samearguments hold:The 
rest emitted at t = 0 rea
hes the dete
tor after thetime t1 = d1=u. The next 
rest is emitted at the timet = T0 and has to travel a distan
ed2 = d1 + vT0 = d1 + v=f0It arrives at a time t2 = T0 + d2=u = T0 + (d1 + vT0)=uWe therefore see one wavelength arrive in the time
�t = t2�t1 = T0+d1 + vT0u �d1u = T0+T0v=u = T0 �1 + vu�The frequen
y isf = 1�t = 1T0 �1 + vu� = f01 + vuThe frequen
y is lower!In total we have for a moving sour
e and a stationarydete
tor:

f = f01� vu"-": sour
e moves toward the dete
tor."+": sour
e moves away from the dete
tor.
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ExampleA train drives past a stationary listener along the tra
k.The train whistles at a frequen
y of f = 3500Hz anddrives at a speed of v = 50m/s.What frequen
y do we hear before and after the trainpassed us? f = f01� vuFirst the train 
omes toward us, and we will hear agreater frequen
y: f = f01� vuf = 3500Hz1� 50344 = 4095HzWhen the train moves away from us we hear a smallerfrequen
y: f = f01 + vuf = 3500Hz1 + 50344 = 3056Hz
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2.14: General Doppler E�e
tIn general both the sour
e and the dete
tor 
an bemoving:Let vs be the speed of the sour
e and vd be the speed ofthe dete
tor. The speed of sound is u and the frequen
yof the emitted sound is f0. All speeds are measuredrelative to the air whi
h is assumed to be at rest.Then we had:(1): moving dete
tor f1 = f0 �1� vdu �(2): moving sour
e f2 = f01� vsuThese 
an be 
ombined if we repla
e f0 in (1) with thefrequen
y asso
iated with the moving sour
e:f = f2 �1� vdu � = f0 11� vsu �1� vdu �f = f0�u� vdu� vs�The signs 
an be 
onfusing: If sour
e and dete
tor movetoward ea
h other, the frequen
y will be greater!Choose your signs a

ordingly.
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2.15: ExamplesSpeed of sound in air u = 344m/s. Frequen
yf0 = 5000Hz. Cal
ulate the per
eived frequen
y in ea
hof these 
ases:a) vs = 30m/s toward the dete
tor

f = f01� vsu = 5000Hz1� 30=344 = 5000=0:9128 = 5478Hzb) vd = 30m/s away from the sour
e
f = f0(1� vdu ) = 5000Hz(1� 30=344) = 4564Hz
) vs = 60m/s toward the dete
tor, vd = 30m/s awayfrom the sour
e.
f = f0 �u� vdu� vs� = 5000Hz�344m/s� 30m/s344m/s� 60m/s�f = 5000Hz314284 = 5528Hz
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2.16: Supersoni
 speeds

v<u v=uAt v = u ea
h wave
rest is emitted at the position of theprevious 
rest. We have maximum 
onstru
tiveinterferen
e: The "sound barrier". It is this 
onstru
tivesuperposition of all soundwaves that 
auses enormousstress on the plane.
R-D Herzberg
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2.17: Ma
h ConeAn air
raft 
ying at supersoni
 speeds 
reates a Ma
hCone:

θ

The opening angle of the 
one is�Ma
h = 2� = 2 sin�1(u=vs) with vs the speed of theair
raft and u the speed of sound.
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2.18: Summary

� The sour
e emits waves with a frequen
y f0. Weassume that the medium (air) is at rest and measureall velo
ities (of sour
e and dete
tor) relative to theair. u is the speed of sound.� moving dete
tor and a stationary sour
e:f = f0 �1� vdu �"+": dete
tor moves toward the sour
e."-": dete
tor moves away from the sour
e.� moving sour
e and a stationary dete
tor:f = f01� vsu"-": sour
e moves toward the dete
tor."+": sour
e moves away from the dete
tor.� general Doppler e�e
t:f = f0�u� vdu� vs�If sour
e and dete
tor move toward ea
h other, thefrequen
y will be greater.
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Exer
isesHalliday Resni
k & Walker:Reading: HRW p. 414-420Exer
ises: p. 420 �.: 46E, 48E, 51P, 52P, 55P, 59P
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2.19: BeatsWe have looked at the superposition of waves before.What hapens if the two waves do not have the samefrequen
ies?Take two sinusoidal sound wavess1(x; t) = s0 
os(k1x� !1t)s2(x; t) = s0 
os(k2x� !2t)and 
hoose the origin so that for x = 0, t = 0 both wavesare in phase.What is the resulting wave?

s(x; t) = s1(x; t) + s2(x; t)= s0 
os(k1x� !1t) + s0 
os(k2x� !2t)
Another useful trigonometri
 identity is
os(�) + 
os(�) = 2 
os 12 (�+ �) 
os 12 (�� �)
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With � = k1x� !1t and � = k2x� !2t we get:

s(x; t) = 2s0 
os(12 ((k1 � k2)x� (!1 � !2)t))� 
os(12 ((k1 + k2)x� (!1 + !2)t))
If !1 = !2 this redu
es to the expression for two wavesinterfering 
onstru
tively we had before.In sound waves we are most interested in the frequen
ies.Sin
e the speed of sound is u = !=k we 
an always �nd kfrom !. To make matters 
onvenient, we look at thedispla
ement as a fun
tion of time at the origin (x = 0).That gives
s(x; t) = s(0; t) = 2s0 
os 12 (!1 � !2)t 
os 12 (!1 + !2)tOr, de�ning !a = 12 (!1 + !2), and !d = 12 (!1 � !2) wehave s(0; t) = 2s0 
os(!dt) 
os(!at)
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If we observe the displa
ement amplitude at x = 0 thenwe get this pi
ture:

-3

-2

-1

0

1

2

3

0 20 40 60 80 100

cos(w1*t)+cos(w2*t)
2*cos(0.5(w1-w2)t)

cos(0.5(w1+w2)t)

cos(w1*t)
cos(w2*t)
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These big os
illations are 
alled "beats". Sin
e there aretwo maxima during ea
h period, their angular frequen
yis the di�eren
e between the two angular frequen
ies:!beat = j(!1 � !2)jIn the pi
ture before I usedf1 = 0:5Hz f2 = 0:45Hzwith a beat frequen
y of fbeat = j(f1 � f2)j = 0:05Hz.
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Usually the amplitudes are not the same. We still willget beats:

s(0; t) = s1 
os(!1t) + s2 
os(!2t)= 12s1 
os(!1t) + 12s1 
os(!1t)+ 12s2 
os(!2t) + 12s2 
os(!2t) ++ 12s1 
os(!2t)� 12s1 
os(!2t)+ 12s2 
os(!1t)� 12s2 
os(!1t)= 12 (s1 + s2)(
os(!1t) + 
os(!2t))+ 12 (s1 � s2)(
os(!1t)� 
os(!2t))
Again use
os(�) + 
os(�) = 2 
os 12 (�+ �) 
os 12 (�� �)and 
os(�)� 
os(�) = �2 sin 12 (�+ �) sin 12 (�� �)
s(0; t) = (s1+s2) 
os(!at) 
os(!dt)�(s1�s2) sin(!at) sin(!dt)
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Top: s(0; t) = s1 
os(!1t) + s2 
os(!2t)Middle: s(0; t) = (s1 + s2) 
os(!at) 
os(!dt)Bottom: s(0; t) = (s1 � s2) sin(!at) sin(!dt)
R-D Herzberg



PHYS126 Waves and Opti
s

Top: s(0; t) = s1 
os(!1t) + s2 
os(!2t)Middle: s(0; t) = (s1 + s2) 
os(!at) 
os(!dt)Bottom: s(0; t) = (s1 � s2) sin(!at) sin(!dt)
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2.20: The Wave EquationGo ba
k to the wave on a string.

ϑ

ϑ

F

F

τ

1

2

2

1
x∆

y∆

x

y

We have some disturban
e in the string y(x; t), but wemake no assumptions about the nature of thisdisturban
e ex
ept that it is small and "well behaved"(
ontinuous and di�erentiable).The total verti
al for
e on that linesegment is F1 + F2.F1 = �� sin#1 ' �� tan#1 = �� �y(x; t)�x ����x=x1F2 = � sin#2 ' � tan#2 = � �y(x; t)�x ����x=x2Fy = F1 + F2 = �  �y(x; t)�x ����x=x2 � �y(x; t)�x ����x=x1!
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De�ne

u(x; t) = �y(x; t)�xFy = �(u(x2; t)� u(x1; t))For a small di�eren
e between x1 and x2 we 
an use theTaylor expansion:
u(x2; t) = u(x1; t) + (x2 � x1) �u(x; t)�x ����x=x1 + � � �The verti
al for
e is therefore

Fy = ��x�u(x; t)�xor, putting u(x; t) = �y(x;t)�x :
Fy = ��x�2y(x; t)�x2Newton's law F = ma then be
omes

��x�2y(x; t)�x2 = ��x�2y(x; t)�t2
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Or:

� �2y(x; t)�x2 = ��2y(x; t)�t2We already know that v =p�=�, so we 
an write
v2 �2y�x2 = �2y�t2This is the Wave Equation. It appears whenever wavesare present:In me
hani
s, a
ousti
s, opti
s, ele
trodynami
s,quantum me
hani
s, et
.It says that at ea
h point in spa
e and time thea

eleration of a pie
e of string is proportional to the
urvature at this point.How do we deal with this di�erential equation?

R-D Herzberg
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First let us see if the sinusoidal waves we've 
onsideredso far are a
tually solutions of the wave equation.To do so we must verify thaty(x; t) = y0 sin(kx� !t� �0) ful�lls the wave equation.We need the se
ond derivatives �2y�x2 and �2y�t2 :�y(x; t)�x = k 
os(kx� !t��0)�2y(x; t)�x2 = �k2 sin(kx� !t��0)�y(x; t)�t = �! 
os(kx� !t� �0)�2y(x; t)�t2 = �!2 sin(kx� !t��0)

v2 �2y�x2 = �2y�t2�k2v2 sin(kx� !t� �0) = �!2 sin(kx� !t��0)If we set v2 = !2=k2, the wave equation is ful�lled!

R-D Herzberg



PHYS126 Waves and Opti
s
Is this the only solution?No, y(x; t) = y0 sin(kx+ !t� �0) also ful�lls te waveequation. That is good, be
ause in the derivation of thewave equation we made no assumptions about thedire
tion in whi
h the wave is moving.Are there more solutions?Take f(x; t) = f(kx� !t) = f(�) with � = kx� !t.f 
an be any fun
tion, as long as it is di�erentiable atleast twi
e. �f(�)�x = �f(�)�� ���x = k�f(�)���2f(�)�x2 = k ��� �f(�)�� ���x = k2 �2f(�)��2And the time derivatives:�f(�)�t = �f(�)�� ���t = �!�f(�)���2f(�)�t2 = �! ��� �f(�)�� ���t = !2 �2f(�)��2Put this into the wave equation:v2 �2y�x2 = �2y�t2 $ v2k2 �2f(�)��2 = !2 �2f(�)��2
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Again, with v2 = !2=k2 the wave equation is ful�lled!In just the same way we �nd that any fun
tionf(x; t) = f(kx+ !t) ful�lls the wave equation.Any fun
tion of (kx� !t) is a wave. That is exa
tlywhat the prin
iple of superposition implied.Example: Take a pulse given byf(x; t) = 11 + (kx� !t)2

t=2

t=1

t=0

x

x

x��x � 11 + (kx� !t)2� = �2k(kx� !t)(1 + (kx� !t)2)2�2�x2 � 11 + (kx� !t)2� = �2k2 1� 3(kx� !t)2(1 + (kx� !t)2)3
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The time derivatives are:��t � 11 + (kx� !t)2� = 2!(kx� !t)(1 + (kx� !t)2)2�2�t2 � 11 + (kx� !t)2� = �2!2 1� 3(kx� !t)2(1 + (kx� !t)2)3The wave equation was:

v2 �2y�x2 = �2y�t2
�2k2v2 1� 3(kx� !t)2(1 + (kx� !t)2)3 = �2!2 1� 3(kx� !t)2(1 + (kx� !t)2)3Again the wave equation is ful�lled. This time we didnot have any periodi
 wave, but just a pulse.
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2.21: Summary

� Two travelling waves with di�erent frequen
iesprodu
e beats. The beat frequen
y is given byfbeat = jf1 � f2j
� The wave equation isv2 �2y�x2 = �2y�t2with the wave speed v.
� Any fun
tion of (kx� !t) ful�lls the wave equation.(kx� !t) des
ribes a wave travelling in the positivex{dire
tion,(kx+ !t) des
ribes a wave travelling in the negativex{dire
tion.
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2.22: Useful Equations


os�+ 
os� = 2 
os(12 (�� �)) 
os(12 (�+ �))
os�� 
os� = �2 sin(12 (�� �)) sin(12 (�+ �))sin�+ sin� = 2 
os(12 (�� �)) sin(12 (�+ �))sin�� sin� = 2 sin(12 (�� �)) 
os(12 (�+ �))

os(�� �) = 
os� 
os� � sin� sin�sin(�� �) = sin� 
os� � 
os� sin�


os 2� = 
os2 �� sin2 �sin 2� = 2 sin� 
os�
os2 � = 12 (1 + 
os 2�)sin2 � = 12 (1� 
os 2�)sin� = �� �3=6 + � � �
os� = 1� 12�2 + � � �

os�+
os(�+ �) + 
os(�+2�) + � � �+
os(�+ (n� 1)�)= 
os(�+ 12 (n� 1)�) sin 12n�sin 12�
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Exer
isesHalliday Resni
k & Walker:Reading: HRW p. 412-414Exer
ises: p. 420 �.: 42E, 45PShow expli
itely that the following fun
tions ful�ll thewave equation: y(x; t) = A 
os(kx+ !t)

y(x; t) = 11 + (kx+ !t)2
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3: Geometri
al Opti
sWhat is light? Light is ele
tromagneti
 radiation. Thespe
trum ranges from very long radio waves (100m andlonger) to very short 
-rays (10�12m) and shorter.The visible spe
trum 
overs a range of wavelengths from400nm (blue) to 700 nm (red).

λlog /m

4-2 0 2-4-6-8-10-12

-rayγ UV
Radio

MicrowavesIR UHFX-ray LW

This wavelength is small 
ompared to the typi
aldimensions of opti
al instruments. We 
an thereforelearn a lot about opti
s without treating light as waves.Treating light as rays travelling in straight lines we 
annow study opti
al instruments, lenses, mirrors,teles
opes, et
. ) Geometri
al Opti
sLater we will go ba
k and justify our 
on
lusions bytaking the wave nature of light into a

ount.
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3.1: Re
e
tionThe �rst phenomenon is Re
e
tion."A ray in
ident on a plane mirror is re
e
ted so that there
e
ted ray lies in the plane of in
iden
e and the angleof re
e
tion is the same as the angle of in
iden
e."

’ϑ ϑi

normal

mirror

#0 = #iThis law holds regardless of the wavelength of thein
ident light.
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3.2: Refra
tionThe se
ond phenomenon is Refra
tion. A ray of lightin
ident on a transparent surfa
e (say, a lake) will split.Part of the beam is re
e
ted (you 
an see re
e
tions on alake) and part of it will enter the water.But the ray entering the water does not travel straight,it is refra
ted.

ϑ r

ϑϑ i

normal

’

n

n

1

2

The di�ra
tion depends on the material and is given bythe index of refra
tion n.The law of refra
tion is (Snell's law):The refra
ted ray lies in the plane of in
iden
e and theangle of refra
tion #r is 
onne
ted to the angle ofin
iden
e #i by n1 sin#i = n2 sin#r
R-D Herzberg
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The index of refra
tion is 
onne
ted to the speed of lightin the medium by n = 
=vIn water we have n = 1:33 and thus the speed of light inwater is v = 
=1:33 = 225500 km/s. We shall dis
uss thereasons for this later.One 
onsequen
e is, that the refra
tive index of va
uumis nva
 = 1 and that no material 
an have a refra
tiveindex less than 1.Medium nVa
uum 1Air 1.00029Water 1.33Quartz 1.46Crown glass 1.52Flint glass 1.65Sapphire 1.77Diamond 2.42
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3.3: ExamplesA ray of light is in
ident on a glass 
ube with refra
tiveindex n = 1:5. The angle of in
iden
e is #i = 20Æ.What is the angle of re
e
tion? #0 = 20Æ.What is the angle of refra
tion? nair = 1nair sin 20Æ = nglass sin#rsin#r = 11:50:342#r = 13:2ÆThe glass 
ube is now under water nW = 1:33. What isthe angle of refra
tion?nW sin 20Æ = nglass sin#rsin#r = 1:331:5 0:342#r = 17:7Æ
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3.4: Total internal re
e
tionIf we shine a ray of light from under the water into theair, what is the largest angle the in
ident ray 
an have?
n

1n  >  n2

2

1ϑ

The law of refra
tion givesn1 sin#1 = n2 sin#2The refra
ted ray must have an angle smaller than#2 = 90Æ sin#1 = n2n1 sin 90Æ < 1For water and air we get#
rit = sin�1 11:33 = sin�1 0:75 = 48:6Æ
R-D Herzberg



PHYS126 Waves and Opti
s
What happens if we try a larger in
ident angle? The lawof refra
tion 
annot be ful�lled, we 
an not get arefra
ted beam. We are now left only with a re
e
tedbeam, the ray never leaves the water.

n

1n  >  n2

2

This phenomenon is 
alled total internal re
e
tion.Total internal re
e
tion is very useful in opti
al �bres: Itwill transmit light with a minimum of loss. A re
e
tive
oating (Silver et
.) will have mu
h larger losses!
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3.5: DispersionWhen you shine a beam of white light into refra
tingbodies it is sometimes refra
ted into its 
olors. The indexof refra
tion depends on the wavelength of the light!

300 400 500 600 700 800

n

λ /nm

1.51

1.52

1.53

1.54 Crown Glass

This means the speed of light in the medium depends onthe wavelength. In glass, red light is faster than bluelight!This is the �rst time that we �nd the wave speed todepend on the wavelength | in 
ontrast to waves onstrings or sound.
R-D Herzberg



PHYS126 Waves and Opti
s
3.6: PrismsWe 
an use this e�e
t in a prism to break white lightinto its 
omponent 
olors:

α

These 
olors 
an not be further refra
ted using anotherprism.
α
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3.7: RainbowsA rainbow is formed when you look at a 
loud 
onsistingof billions of little spheri
al droplets of water with thesun behind you.

Rene Des
artes was the �rsts
ientist to explain therainbow in 1637 by analysingseveral paths of light througha spheri
al droplet with tworefra
tions at the surfa
e andone total re
e
tion.
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2. Refraction

1. Refraction

Internal
Reflectionn=1.33

n=1

Of all s
attering angles, those around 42Æ for red and 40Æfor blue light are most intense. They 
orrespond to theshortest opti
al paths through the droplet.

Note that the sun is always behind you when you see arainbow.
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Sometimes we 
an see a se
ond, inverted rainbow overthe �rst one:

This is formed if the sunlight undergoes two internalre
e
tions:
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3.8: PolarizationLight is a purely transversal wave. As light waves movein one dire
tion, the ele
tri
 �eld ve
tor 
an os
illatefreely in a plane perpendi
ular to that dire
tion.Normal sunlight 
ontains many rays with randompolarizations - sunlight is unpolarized.

Polarizer

unpolarized light
polarized light

By applying �lters that transmit light with onepolarization only, we 
an generate polarized light.
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3.9: The Brewster angleWe �nd experimentally that light re
e
ted o� arefra
ting surfa
e (A normal mirror won't work!) ispolarized when viewed under a spe
i�
 angle, theBrewster angle.

The Brewster angle is the angle where the refra
ted rayand the re
e
ted ray are perpendi
ular to ea
h other:#0 + #r = 90.
n1 sin#B = n2 sin#r = sin(90� #B) = n2 
os#Btan#B = n2n1If medium 1 is air we have n1 = 1 and we obtain for theBrewster angle: tan#B = n2
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3.10: Summary

� Re
e
tion: "A ray in
ident on a plane mirror isre
e
ted so that the re
e
ted ray lies in the plane ofin
iden
e and the angle of re
e
tion is the same asthe angle of in
iden
e."� Refra
tion (Snell's law): The refra
ted ray lies in theplane of in
iden
e and the angle of refra
tion �r is
onne
ted to the angle of in
iden
e �i byn1 sin �i = n2 sin �r� The index of refra
tion n is the ratio of the speed oflight in va
uum to the speed of light in the mediumn = 
=v.� A ray of light trying to 
ross a boundary from alarge refra
tive index n1 to a small ref. index n2 
anundergo total internal re
e
tion. The 
riti
al angle isgiven by sin#
rit = n2n1� The refra
tive index also depends weakly on thewavelength. This allows prisms to disperse whitelight into its 
olors.� Light 
an be polarized by re
e
tion o� a refra
tiveboundary. The angle at whi
h the re
e
ted ray ismaximally polarized is 
alled the Brewster angletan#B = n2n1 .
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Exer
isesHalliday Resni
k & Walker:Reading: HRW pp. 814-825Exer
ises: p. 826 �.: Q6, Q8, Q9, Q12, 45E, 46P, 51P,61E
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3.11: MirrorsThe most important quality of a mirror is the ability toform an image. If you look at your re
e
tion in themirror your eyes inter
ept rays of light that have beenre
e
ted o� the mirrors surfa
e and the image theyoriginate from seems to be behind the mirror.

Mirror

p i

The distan
e of the image from the mirror jij is equal tothe distan
e of the obje
t from the mirror jpj and its sizeis equal to the size of the obje
t.This solves an old puzzle: It is not left and right that areswapped in the mirror, but front and ba
k!Sin
e the image is behind the mirror we 
an put a solidblo
k of 
on
rete there without 
hanging the image. Theimage is virtual.
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3.12: Spheri
al MirrorsThe rays from the sun approa
h us from far away and
an be taken as parallel. A 
urved 
on
ave mirror with aradius of 
urvature R will fo
us these parallel rays into asingle spot if they are 
lose enough to the opti
al axis.Taking a spheri
al mirror is not ideal, a parabola willindeed fo
us all in
oming rays into a point. A spheri
almirror is a good approximation to the parabola - forsmall distan
es from the opti
al axis.

R

f

The fo
us is positioned halfway between the 
enter of thesphere and the mirror itself.jf j = R=2All the rays a
tually pass through the fo
us, it is a realimage of the sun.
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What happens if the obje
t is not in�nitely far away?We 
an distinguish 3 
ases:1. The obje
t is at the fo
us2. The obje
t is between fo
us and mirror3. The obje
t is beyond the fo
us

fR

3 1 2

To �nd out where the image will be in all these 
ases wemust 
ome up with a qui
k way to 
onstru
t the image.
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3.13: Constru
ting ImagesWe 
an easily 
onstru
t the image using only a ruler ifwe re
all the properties of the fo
al point:1) Constru
t a ray fromthe obje
t parallel to theopti
al axis. Its re
e
tionwill go through the fo
us.

fR

Object
1

1

R
p

f

2) Constru
t a ray fromthe obje
t through thefo
us to the mirror. Itwill be re
e
ted parallelto the opti
al axis and itwill interse
t the �rst rayat the position of theimage.
fR

Object

Image

1

1
2

2

i
R

p
f

Here we get a real but inverted image!
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If ne
essary, 
ontinue to draw the re
e
ted rays on theother side of the mirror.

fR

R

p i

Object

1

2

f

Image

This 
onstru
tion gave us a virtual but upright image.This method to generate images is universal and 
an beused for spheri
al mirrors as well as for lenses. We willuse it a lot!
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3.14: Magni�
ationWhen we look at a plane mirror, the image has the samesize as the obje
t. Clearly, with a 
urved mirror that isnot the 
ase. What is the magni�
ation of a 
on
avemirror with a radius R?Let the height of the arrow be L. The height of theimage is L0 and the magni�
ation is jmj = L0=L.

L’LL’ αα

L’
L αα

ip

i

i

Object Image

p

From the similar triangles we �ndL0 = jij tan� L = jpj tan� jmj = L0L = � jijjpjThe magni�
ation has a sign: It is positive if the imageis upright, it is negative if the image is inverted.
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We 
an also easily relate the image distan
e i the obje
tdistan
e p and the fo
al length f :

i

L
L’

α

f

Object

p

L0 = jf j tan� L = (jf j � jpj) tan�LL0 = jm�1j = jf j � jpjjf j = jpjjijjf j � jpj = jf jjpjjijjf j�1� jpjjij� = jpjjf j = jpjjijjij � jpj1jf j = 1jpj � 1jij
R-D Herzberg



PHYS126 Waves and Opti
s
Now we have to take into a

ount the signs.We de�ne the radius R and the fo
al length f = R=2 tobe positive for 
on
ave mirrors. We also take the obje
tdistan
e p to be positive.How do we deal with virtual images? Easy: We de�nethe image distan
e for a virtual image to be negative!Spe
i�
ally, when we wrote earlier for a plane mirrorjpj = jij what we meant was that for a plane mirror wehave p = �iIf we put this sign 
onvention into e�e
t we get1f = 1p + 1iAnd the magni�
ation be
omesm = � ipThis way we automati
ally have m > 0 for virtual imageswhi
h means they are upright. The real image in ourearlier example was inverted. Sin
e it is real, i and p areboth positive, and m = �i=p is negative - everything is
onsistent!
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3.15: Examples

fR

fR

fR
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3.16: Convex mirrorsConvex mirrors 
an be dealt with in exa
tly the sameway as before. The fo
al point is now behind the mirror,it is a virtual fo
us. All our rules for 
onstru
tingimages are still true, though.This means that for a 
onvex mirror both the fo
allength f and the radius R are negative. f = R=2 is stilltrue.
1

f-f-R

p
R

Object

1

R

2

f
i

Image

upright virtual

1

2

f-f-R
f

R

ImageObject

1

R

p

i

R-D Herzberg



PHYS126
Wavesan

dOpti
s

Mirror Che
klist

Mirror Obje
t Image Sign of Magnif.Type lo
ation lo
ation type f i p |m|plane anywhere behind m. upr. virtual +1 - + 1
on
ave beyond R betw. R and f inv. real + + + < 1betw. R and f beyond R inv. real + + + > 1inside f behind m. upr. virtual + - + > 1
onvex anywhere inside f upr. virtual - - + < 1 R-DHerz
berg
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3.17: Thin lensesAnother very 
ommon opti
al imaging devi
e is the lens.At �rst we restri
t ourselves to the simplest 
ase:symmetri
al thin lenses.The radius of 
urvature is the same for both sides of thelens, and the distan
e between the two surfa
es is sosmall, that we 
an assume both refra
tions to take pla
eat the same position.Sin
e the index of refra
tion 
an vary from lens to lens,we no longer have a simple relationship between thefo
al length f and the radius R.We also now have two fo
al points on either side of thelens.To alleviate all fears of boredom, the sign 
onventions forlenses are not the same as for mirrors.We 
an have 
onverging and diverging lenses.
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3.18: Converging LensesThe 
onstru
tion of the image is very similar:First draw a ray from the obje
t parallel to the opti
alaxis. It will be refra
ted into the fo
us on the oppositeside of the lens.Se
ond draw a ray 
onne
ting the obje
t and the fo
uson the same side of the lens. It will be refra
ted parallelto the opti
al axis.Third draw a ray from the obje
t through the 
enter ofthe lens. It will pass through unrefra
ted.All three rays meet in the image.If ne
essary, the rays have to be 
ontinued onto the otherside of the lens to form a virtual image.

f f

Object
Image
real inverted
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f fObject

Image

upright
virtual

The relationship between the image distan
e, the obje
tdistan
e and the fo
al length is still1f = 1p + 1iFor a 
onverging lens f and p are positive. i is positivefor a real image and negative for a virtual image.The magni�
ation is m = �i=p.A 
onverging lens 
reates inverted real images on the farside of the obje
t and upright virtual images on the sameside as the obje
t.
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3.19: Summary� Plane mirrors produ
e upright virtual images behindthe mirror.� The fo
al length f is related to the obje
t and imagedistan
es p and i via f�1 = p�1 + i�1 The signs off ,p, and i are important!� The magni�
ation of an image is m = �i=p. Again,the signs are important. A negative value of mmeans an inverted image.� A 
on
ave mirror 
an produ
e real and virtualimages. Its radius of 
urvature is R = 2f > 0.� A 
onvex mirror 
an only produ
e virtual images.Its radius of 
urvature is R = 2f < 0.� The images from mirrors 
an be 
onstru
ted with aruler.� Thin lenses obey the same rules as mirrors:f�1 = p�1 + i�1 but the signs are di�erent:
onverging lenses (with 
onvex surfa
es) havenegative radii and lo
al lengths, diverging lenses(with 
on
ave surfa
es) have positive radii and fo
allengths. The relations m = �i=p andf�1 = p�1 + i�1 still hold.
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Exer
isesHalliday Resni
k & Walker:Reading: HRW pp. 834-848Exer
ises: p. 856 �.: Q4, Q5, Q6, Q8, 10P, 13P, 14P,24P, 30P
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3.20: Diverging LensFirst draw a ray from the obje
t parallel to the opti
alaxis. It will be refra
ted so that the ba
kward
ontinuation of the refra
ted ray goes through the fo
uson the same side of the lens.Se
ond draw a ray from the obje
t through the lens intothe fo
us on the opposite side of the lens. It will berefra
ted parallel to the opti
al axis.Third draw a ray from the obje
t through the 
enter ofthe lens. It will pass through unrefra
ted.All three rays meet in the image.

Image

upright
virtual

f f

Object

For a diverging lens f is negative and p is positive. Onlyvirtual images 
an be formed with a diverging lens and iis always negative. The magni�
ation is m = �i=p > 0.
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3.21: The Lensmakers EquationThe fo
al length f and radius of 
urvature R of a mirrorwere 
onne
ted by f = R=2. In lenses we 
an have tworadii of 
urvature, but only one fo
al length. The fo
allength must also depend on the index of refra
tion n. Sohow 
an we 
al
ulate the fo
al length from the radii of alens? 1f = (n� 1)� 1R1 � 1R2�R1 is the radius of the �rst surfa
e.

R 2

f f

R 1

n

For a symmetri
al (R2 = �R1) thin lens made of 
intglass (n = 1:5) we get as a 
rude approximation:f = 11:5� 1 R12 = R1
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3.22: ExamplesGlasses have lenses with one 
on
ave and one 
onvexsurfa
e: R1 = +60 
m, R2 = +90 
m. n = 1:60. What isthe fo
al length? Is this lens 
onverging or diverging?

R 2

f f

R 1

n

If an obje
tis pla
ed 150 
m in frontof the lens, what kind ofimage will be formed where?What is the magni�
ation?1f = (n� 1)� 1R1 � 1R2�f = 1(1:60� 1) � 160 
m � 190 
m� = 300 
mThe fo
al length is positive: it is a 
onverging lens.The image distan
e is 
al
ulated as1f = 1p + 1i , i = 11300
m � 1150
m = �300
mMagni�
ation: m = �i=p = �(�300)=150 = +2:0. It is avirtual, upright image twi
e the size of the obje
t.
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3.23: The human eye

The lens 
reates an inverted real image on the retinawhere sensors pro
ess the image into a nerve patternwhi
h is passed to the brain.The image on the retina is a real, inverted image, thebrain automati
ally 
ompensates.The lens 
an 
hange its fo
al length to produ
e sharpimages on the retina. The 
losest distan
e for a sharpimage is typi
ally 25 
m.The size of the obje
t is determined by the viewingangle #.
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3.24: Opti
al InstrumentsThe angular magni�
ation (do not 
onfuse that withthe lateral magni�
ation!) is the ratio of the viewingangle with an opti
al instrument #0 to the maximumviewing angle obtainable with the naked eye #:m# = #0=#The referen
e angle # depends on a 
onvention for theviewing distan
e. In HR&W dnear is 
hosen as thereferen
e distan
e. Usually the distan
e of most distin
tvision (dd = 25 
m) is 
hosen as the referen
e distan
e.In earlier editions of HRW dd = 15 
m is sometimes used.
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The easiest opti
al instrument is the magnifying glass. It
onsists of a single 
onverging lens. The obje
t is pla
edat or just inside the fo
al length of the lens.

ϑ’

ϑ

ff

d      = 25 cmnear

h

h
image is infinitely
far away

The maximum viewing angle without the lens istan# ' # ' h=dnearThe image at an in�nite distan
e appears under theviewing angle tan#0 ' #0 ' h=f . The total angularmagni�
ation is therefore:m# = dnearf = 25
mfWe 
an obtain magni�
ations of 10-20 with goodmagni�ers.
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3.25: The Mi
ros
opeThe mi
ros
ope probably was invented by the Dut
hlensmakers Hans and Za
harias Janssens between 1590and 1610 in Middleburg, The Netherlands. The modern,two lens 
ompound mi
ros
opes, however, have not beenwidely used until the end of the 18th 
entury, again byDut
h lensmakers Jan and Harmanus van Deyl.

It 
onsists of two 
onverging lenses, the Obje
tive andthe Eyepie
e.
R-D Herzberg
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The obje
t is pla
ed just outside the fo
us of theobje
tive, 
reating a huge, inverted real image. This realimage is then viewed with the eyepie
e a
ting as amagni�er.

ObjectiveEyepiece

f fo o

fe
s

h

The magni�
ation of the real image ismo = � ip = �fo + sfo ' � sfoThe angular magni�
ation of the eyepie
e a
ting as amagni�er is m# = 25
mfeThe total magni�
ation is the produ
t of themagni�
ations of obje
tive and eyepie
e:Mtot = m#mo = �25
mfe sfo
R-D Herzberg
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3.26: The Refra
ting Teles
ope

ObjectiveEyepiece

ϑ
ϑ

fe

f
’

o

h’

The obje
t is at a distan
e D very far away, so the imagewill be produ
ed very 
lose to the fo
us of the obje
tive.The fo
us of the eyepie
e is 
hosen to 
oin
ide with thefo
us of the obje
tive and again a
ts as a magni�er toview the enlarged, real, inverted image of the obje
tive.What is the magni�
ation obtainable with this setup?tan# ' # = h=DThe real image inside the teles
ope has a sizeh0 = �fo tan# ' �fo#It is viewed under a viewing angle oftan#0 ' #0 = h0=feWe have for the angular magni�
ationm# = #0# = h0fe 1# ' �fo#fe# = �fofe
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3.27: The Astronomi
 Teles
opeAstronomi
al teles
opes 
onsist of a system of paraboli
mirrors rather than lenses. The main advantage is thatthey do not su�er from 
hromati
 aberration.The most popular design goes ba
k to Sir Isaa
 Newton:

How do astronomi
al teles
ope help us seeing faintobje
ts in the sky?Point sour
es: A point sour
e will remain a point sour
eeven with very high magni�
ation. But all the light fromthat sour
e will stay in one point while all theba
kground light will be distributed over a larger area.Thus the 
ontrast between the point sour
e and theba
kground is improved and you 
an see it.Extended obje
ts: Extended obje
ts are magni�ed and
an therefore be seen more easily.
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3.28: Summary

� Diverging lenses 
an only produ
e virtual images.� The magni�er lens has an angular magni�
ation ofm# ' 25
mf.� The mi
ros
ope has a magni�
ation that is theprodu
t of the individual magni�
ations of obje
tiveand eyepie
e. m# =' �25
m � sfofe� The refra
ting teles
ope has a magni�
ationm# ' �fofe
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Exer
isesHalliday Resni
k & Walker:Reading: HRW Ch35, pp843-855.Exer
ises: pp 858�: 17E, 18E, 19E, 20E, 23P, 24P, 26P,32E, 33E, 37P
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4: Wave Opti
sIn 1818, Augustin Fresnel submitted a paper on thetheory of di�ra
tion for a 
ompetition sponsored by theFren
h A
ademy. His theory represented light as a wave,as opposed to a bombardment of hard little parti
les,whi
h was the subje
t of a debate that lasted sin
eNewton's day. Simeon Poisson, a member of the judging
ommittee for the 
ompetition, was very 
riti
al of thewave theory of light. Using Fresnel's theory, Poissondedu
ed the seemingly absurd predi
tion that a brightspot should appear behind a 
ir
ular obstru
tion, apredi
tion he felt was the last nail in the 
oÆn forFresnel's theory. However, Dominique Arago,another member of the judging
ommittee, almost immediatelyveri�ed the spot experimentally.Fresnel won the 
ompetition,and, although it may be moreappropriate to 
all it "the Spot ofArago," the spot goes down in history with the name"Poisson's bright spot" like a 
urse.
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4.1: Plane and spheri
al wavesWe 
an no longer use a one dimensional des
ription forwaves. We distinguish two main 
ases:1. Plane waves or wavefronts2. Spheri
al waves

x

y

Plane waves are des
ibed bys(~r; t) = s0 sin(~k~r � !t� �0)with the position ~r = (x; y; z) and the wave ve
tor~k = (kx; ky; kz). If you 
hoose the dire
tion of motion asone of your 
oordinate axes, say the x-axis, then thewave ve
tor ~k only has 
omponents in that dire
tion~k = (kx; 0; 0) and you get ba
k the simple des
riptions(~r; t) = s0 sin(kxx� !t��0)
R-D Herzberg
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x

y

A spheri
al wave is des
ribed bys(~r; t) = s0 sin(kr � !t� �0)Note: no ve
tors. The phase of the wave depends on thedistan
e to the origin, all points ~r on a sphere withradius r =px2 + y2 + z2 have the same displa
ement asa fun
tion of time.

R-D Herzberg



PHYS126 Waves and Opti
s
4.2: Huygens' Prin
ipleThe me
hanism by whi
h any wave propagates 
an bedes
ribed by Huygen's Prin
iple:Ea
h point on a wavefront a
ts as asour
e of a new spheri
al wavelet withthe same phase. The envelope aroundthese se
ondary wavelets after a time tis the new wavefront.

t=0 ot=t ot=2 t

R-D Herzberg
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If the wavefront en
ounters an obsta
le, this prin
ipledetermines the motion of the wavefront:

In general waves will di�ra
t around obsta
les. Wedistinguish two 
ases:1. Fraunhofer di�ra
tion: Here the waves are planewaves. The sour
e and dete
tor are in�nitely faraway from the obsta
le.2. Fresnel di�ra
tion: The sour
e and dete
tor are at a�nite distan
e from the obsta
le. Here we have to
onsider spheri
al waves and the dis
ussion be
omesa bit more involved.
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4.3: Snell's Law with wavesTake a wavefront in
ident on a refra
ting surfa
e at anangle #1 as before. The speed of the wave in medium 1 isv1, the speed in the se
ond medium is v2. The wavefrontat the time t = 0 has just rea
hed the surfa
e, anda

ording to Huygen's prin
iple we must 
onstru
t newwavelets from ea
h point and �nd the envelope:

ϑ

ϑ r

1

n2

n1

1v t

2v t

d

After a time t the left part of the wavefront will haveprogressed a distan
e d = v2t while the right side of thewavefront has not quite rea
hed the boundary yet.
R-D Herzberg
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We �nd that the wavefront in the se
ond medium movesat an angle to the in
ident wave: it is refra
ted.We 
an also determine the angle of refra
tion: From the
onstru
tion we read thatd = v1tsin#1 = v2tsin#r1v1 sin#1 = 1v2 sin#rThis is valid for any wave 
rossing a boundary betweentwo media with a di�erent wave speeds!For light we use n = 
=v and get:n1 sin#1 = n2 sin#rSnell's law!
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4.4: Interferen
eFor light just like for any other waves the prin
iple ofsuperposition holds and we 
an observe 
onstru
tive anddestru
tive interferen
e.In general light from a lamp 
onsists of many smallwavetrains with random phases between them. We seeonly an average intensity where all 
onstru
tive anddestru
tive interferen
es 
an
el out.

If we want to observe an interferen
e pattern, we have toprovide lightwaves with a �xed phase between them -we need 
oherent light.
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One easy way to 
reate two 
oherent sour
es of light isgiven through Fresnel's double mirrors:

Here the two virtual images of the sour
e a
t as two
oherent sour
es of light and we 
an observe aninterferen
e pattern.
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4.5: Young's Double SlitsAnother way to 
reate 
oherent light is used in Young'sdouble slit experiment.

A plane wavefront hits a narrow slit and is di�ra
ted. Ifthe slit is small enough, only one Huygens waveletbe
omes the sour
e for the entire wave beyond the slit.This (now spheri
al) wavefront hits another set of twoslits. These two slits now a
t as two 
oherent sour
es oflight sin
e they were 
reated from the same wavelet andthe only phase di�eren
e at the slits is 
reated throughthe 
onstant di�erent in pathlengths.
R-D Herzberg
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We 
an now 
al
ulate the positions of the bright spotson a s
reen far behind the double slits.

α

α
d

λ

∆ s

The two wavefronts travelling at an angle � will be inphase at their respe
tive origins, the slits. The phasedi�eren
e on the s
reen will be determined by thedi�erent pathlengths they have to travel to get there.To observe a bright spot, we must have 
onstru
tiveinterferen
e, i.e. the path di�eren
e must be an integermultiple of the wavelength �:�s� = n , d sin�max� = n , sin�max = n�dSimilar arguments lead to the observation of minimawhen the path di�eren
e is just half a wavelength:�s = n�+ 12� , sin�min = 2n+ 12 �d
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4.6: Summary� Waves will di�ra
t around obsta
les. The e�e
t isstrongest when the dimensions of the obje
t and thewavelength are 
omparable.� Huygens prin
iple states that ea
h point on awavefront a
ts as a sour
e of a new spheri
alwavelet with the same phase. The envelopearound these se
ondary wavelets after a timet is the new wavefront.� Fresnel di�ra
tion has to be 
al
ulated withspheri
al waves going in and out.� Fraunhofer di�ra
tion assumes the wave sour
e anddete
tor to be in�nitely far away from the obsta
le.� Snell's law is a dir
et 
onsequen
e of the ��erentwave speeds in two media.� Light obeys the prin
iple of superposition. In orderto see stable interferen
e patterns we must use
oherent light sour
es.� Young's Double Slit Experiment shows a stableinterferen
e pattern. The bright spots are found atan angle sin�max = n�=d, the interferen
e minimaare found at angles sin�min = (2n+ 1)�=(2d).

R-D Herzberg



PHYS126 Waves and Opti
s
Exer
isesHalliday Resni
k & Walker:Reading: HRW CH36, pp. 862-870Exer
ises: p. 882 �.: Q3, Q4, 5P, 11E, 13E, 16E, 21P
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4.7: Interferometry

M

M
Lens G G1 2

1

2

In the previous examples(Young's slits, Fresnel'sMirrors) the 
oherentlight was providedthrough the division ofthe wave front. Anotherway to get 
oherentlight is by division ofthe amplitude. The mostprominent representativeof this 
lass of interferometers is the Mi
helsonInterferometer:The glass plate G1 is sometimes silvered so that thetransmitted and re
e
ted beams have equal intensities.The glass plate G2 is inserted so that the opti
al pathlengths in glass are equal in both arms.In order to observe interferen
e fringes threerequirements must be ful�lled:1) The light sour
e must be extended2) The mirrors must be absolutely perpendi
ular.3) The light used must be mono
hromati
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4.8: Fringe formationIn the Mi
helson interferometer 
ir
ular fringes are seen:

M 1 2M’

L 1 L 2

P
P’ P’’

2d d

virtual images of P

L

ϑ

The re
e
tion of the same spot of the extended sour
e inboth mirrors a
t as two 
oherent light sour
es. If thedi�eren
e of the armslengths of the interferometer is d,then the two sour
es will be at a distan
e 2d. The pathdi�eren
e for two rays at an angle # to the opti
al axis is2d 
os# and we get bright fringes when thatpathdi�eren
e is a multiple of the wavelength:2d 
os# = n�
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4.9: Fringe IntensityWhat is the intensity of the fringes?An ele
tromagneti
 wave is given by~E = ~E0 sin(~k~r � !t)The intensity is the average power delivered by the waveand is given through the Poynting ve
tor:~S = 1�0 ~E � ~BIts magnitude is

S = EB�0 = E2
�0 = E20 sin2(~k~r � !t)
�0We get the intensity as the time average of S:
I = 1T
�0 Z T0 E20 sin2(~k~r � !t)d t

I = 12�0
E20The intensity is proportional to the square of theamplitude!
R-D Herzberg
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To 
al
ulate the intensity of the fringes in the Mi
helsoninterferometer, we 
al
ulate the superposition of wavesat ea
h point on the s
reen. Then we square the waveand take the time average.We know the path di�eren
e on ea
h point on the s
reenis Æ = 2�2d 
os#=� so the total wave on a 
ir
le seen atan angle # is:y(R; t) = E0 sin(kR� !t) +E0 sin(kR� !t� Æ)= 2E0 
os(Æ) sin(kR� !t� Æ=2)
And the intensity isI = 12�0
 (2E0 
os(Æ))2 = I0 
os2(2�2d 
os#=�)

ϑ
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4.10: White Light FringesIf white light is used the fringes disappear, ex
ept whenthe di�eren
e in opti
al path lengths vanishes: d = 0.

white

The spa
ing between fringes of di�erent 
olours isdi�erent. In the 
enter the path di�eren
e for all 
oloursvanishes and we get a bright white spot surrounded by
oloured fringes. Eventually enough 
oloured fringesmeet again to form a white fringe.
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4.11: LimitsHow long 
an the path di�eren
e be? For white light it
an not be more than a few wavelengths. For moremono
hromati
 light the path di�eren
e 
an be found tobe a few 
entimeters.

M 1

M
Lens G G1 2

2

We 
an not get truly mono
hromati
 light, even thenarrowest spe
tral lines 
ontain a range of wavelengths.They will eventually get out of step, just like white lightfringes.A di�erent way of looking at the problem is that thelight emitted by the sour
e is emitted over a �nite timeprodu
ing a wavetrain of �nite length. If the pathdi�eren
e for the wavetrain going through either arm ofthe interferometer ex
eeds the length of the wave, it 
anno longer produ
e an interferen
e pattern.The two pi
tures are a
tually equivalent and are at theheart of the un
ertainty prin
iple.
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Consider this �nite wavetrain:y(x; t) = sin(kx� 1000t) 0 � t � TWhat is its frequen
y? It seems like !0 = 1000rad=s, butthat is only true for an in�nite wave. We have to do aFourier analysis and �nd that the range of frequen
iesrequired to form a �nite wave in
reases as the wavegrows shorter:

F (!) =r 2� Z T0 sin(!0t) sin(!t)d t
F (!) =r 2� !0 
os(!0T ) sin(!T )� ! sin(!0T ) 
os(!T )!20 � !2
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4.12: Wavelength MeasurementsThe Mi
helson Interferometer was used by Mi
helsonand Benoit to measure the wavelengths of three intensegreen, red and blue lines of Cadmium against thestandard meter in Paris.

1

2

d

M

M

They measuredin steps usingnine etalons, ea
htwi
e the length ofthe other. The longestwas 10 
m long.

M

M

M
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d

M’ M’1 2

1 2

d
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1. Make M1 and M 01 
oplanar using white light fringes2. Using Cd light, 
ount the number of fringes as M ismoved to position B and white light fringes reappearin M2. This gives the length of the short etalon inwavelengths.3. Now move the shorter etalon until the white lightfringes reappear in M1.4. Move M to position C until white light fringesreappear in M25. Using Cd light, 
ount the number of fringes passingto make M2 and M 02 
oplanar. This gives the lengthof the longer etalon in terms of wavelengths.6. Repeat until the longest etalon was moved throughits length 10 times. The di�eren
e between the markon the meter and the etalon was measured 
ountingfringes.This pro
ess gives the wavelengths of the Cd lines asColour Wavelength [nm℄Red 643.84722Green 508.58240Blue 479.99107
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4.13: Jamin InterferometerAnother useful appli
ation of an interferometer is themeasurement of the refra
tive index of gases.Two eva
uated tubes of length d are inserted into thearms of the interferometer. One tube is slowly �lled witha gas with refra
tive index n and the passing fringes are
ounted. If the Number of fringes is m, then the opti
alpath length has 
hanged by m� and we have(n� 1)d = m�

d
n=1

n=n

R-D Herzberg
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Exer
isesHalliday Resni
k & Walker:Reading: Ch36 HRW pp. 880-882Exer
ises: p. 887 �.: 54E, 55E, 57P, 58P, 60
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4.14: Interferen
e by multiple re
e
tionA thin �lm of soap or oil produ
es 
oloured stripes. Theme
hanism responsible is interferen
e.We have to take a 
loser look at re
e
tions at aboundary between two media before we 
an understandthe 
oloured thin �lm interferen
e patterns:

atr’

a

at

at

arr

att’

art

ar ar

Let a be the amplitude of the in
ident wave. Thefra
tion of the amplitude transmitted is t and thefra
tion of the amplitude re
e
ted is r.Conservation of energy requires t2 + r2 = 1.Now 
onsider the time-reversed pro
ess where two wavesof amplitude ar and at meet to 
ombine. The �rst ray
oming from above splits into a re
e
ted ray ofamplitude arr and a refra
ted ray art. The se
ond one
oming from below splits into a refra
ted ray att0 and are
e
ted ray atr0 where r0 and t0 denote the re
e
tionand transmission 
oeÆ
ients from below.
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Sin
e the time-reversed pro
ess must be the same as theoriginal we must havearr + att0 = a art+ atr0 = 0, r = �r0Either a phase 
hange o

urs on re
e
tion from above orfrom below. Experimentally we �nd that the phase
hange o

urs for the ray travelling in the medium withthe faster wave speed.This is like the hard and soft re
e
tion of a me
hani
alwave.A re
e
tion at a boundary to a medium with higherindex of refra
tion (ray in air re
e
ted o� glass) is a hardre
e
tion and a phase 
hange of � o

urs.A re
e
tion at a boundary to a medium with lower indexof refra
tion (ray in glass re
e
ted o� air) is a softre
e
tion and no phase 
hange o

urs.Re
e
tions of silvered surfa
es are soft re
e
tions.
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4.15: Thin FilmsWe take a �lm of material with refra
tive index n2between two materials with refra
tive indi
es n1 and n3.

n1 n2 n3

dA ray in
ident on the boundary is partially re
e
ted andpartially transmitted into the �lm. Another re
e
tionhappens at the ba
k of the �lm and the two rays 
aninterfere with ea
h other.The Phase di�eren
e due to the extra distan
e travelledin the �lm is 2� 2d�2 = 2� 2n2d�with the wavelengths in the �lm �2 and in va
uum �.
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An additional phase di�eren
e of � 
an 
ome from eitherre
e
tion.If both re
e
tions are hard (n1 < n2 < n3) or soft(n1 > n2 > n3) there is no additional phase 
hange to
onsider and the 
ondition for 
onstru
tive interferen
ebe
omes 2n2d = m�If one of the two re
e
tions is hard(n1 < n2 and n1 < n3) or (n1 > n2 and n1 > n3) thenwe have an additional phase of � and the 
ondition for
onstru
tive interferen
e be
omes2n2d = (m+ 12 )�The transmitted light must also show interferen
e e�e
ts.Energy is 
onserved, so if a lot of light is re
e
ted, verylittle 
an be transmitted and vi
e versa. If the 
onditionfor an interferen
e minimum in the re
e
ted light isful�lled we get an interferen
e maximum in thetransmitted light.Similarly if the 
ondition for an interferen
e maximum inthe re
e
ted light is ful�lled we get an interferen
eminimum in the transmitted light.
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dOpti
s Thin Films Che
klistTransmitted Light Re
e
ted LightMaximum Minimum Maximum Minimum2n2d = 2n2d = 2n2d = 2n2d =n1; n3 < n2n1; n3 > n2 m� (m+ 12 )� (m+ 12 )� m�(n1 < n2 < n3)(n1 > n2 > n3) (m+ 12 )� m� m� (m+ 12 )�In all 
ases � is the wavelength of light in va
uum R-DHerz
berg
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4.16: Nonre
e
tive 
oatingsAn important appli
ation of thin �lm interferen
e is anonre
e
tive 
oating.Consider a ray in
ident on a thin �lm with refra
tiveindex n2 deposited on a pie
e of glass with refra
tiveindex n3 > n2. We assume that the ray strikes thesurfa
e almost perpendi
ular. Sin
e now both rays haveone hard re
e
tion in them, the 
ondition for aninterferen
e minimum in the re
e
ted light is2n2d = (m+ 12 )�For m = 0 that gives a 
onditiond = �4n2For orange light (� = 600nm) and n2 = 1:5 we get athi
kness d = 100nmA 
oated lens has a purple hue. The 
ondition d = �4n2
an only be ful�lled exa
tly for one wavelength, usually
hosen near the middle of the spe
trum. The outer ends(red and blue) then are re
e
ted more strongly and the
oating looks purple.
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4.17: Soap �lmsNow we 
an understand the 
olours of an oil �lm: Thethi
kness of the �lm is of the order of the wavelength oflight and the maximum re
e
tion (or transmission)
ondition is ful�lled for ea
h wavelength in turn:

white light

The �lm 
hanges thi
kness between two green fringes by:�d = 12n550 nm = 225/1.33nm = 170nm.The fringes of the same 
olour are repeating withdi�erent rates. This gives rise not only to pure rainbow
olours, but to mixed 
olours like pink or brown as well.When the thi
kness of the �lm is less than 150 nm nobright fringe 
an be formed anymore.
R-D Herzberg
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4.18: Newton's RingsIf the thi
kness of the �lm 
hanges 
ontinually, the
ondition for a bright re
e
ted fringe will be metperiodi
ally. This 
an be used to measure the radius of
urvature R for lenses.Here the �lm is made of air (n = 1) 
ontained betweentwo glass surfa
es. The 
ondition for a bright fringe inthe re
e
ted light is 2d = (m+ 12 )�. The thi
kness of the�lm 
hanges by �=2 between bright fringes.

ρ

Φ

The thi
kness of the �lm is d = R(1� 
os�) ' 12R�2 andwe see a 
ir
ular bright fringe of radius � = R tan� ' R�if R�2 = (m+ 12 )�Plotting the square of the radius of the mth fringeagainst m gives a rather pre
ise measurement of �.�2 = (m+ 12 )� �R
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4.19: Thin �lm - againTake a 
loser look at a thin plane parallel �lmilluminated from above:

a ar

ϑ ’

ϑ
ϑ

ϑ ’
ϑL

d

s s

s=d tan
L=2s sin

Along the length L = 2d tan#0 sin# ray one 
hangesphase by��1 = �+2�L� = �+2� 2d tan#0 sin#� = �+2� 2nd sin2 #0� 
os#0Ray 2 
hanges phase by��2 = 2� 2d
os#0�0 = 2� 2nd
os#0�The total Phase di�eren
e is�� = � + 2� 2nd� �sin2 #0 � 1
os#0 � = � + 2� 2nd� 
os#0For a nearly verti
al angle of in
iden
e (
os#0 = 1) this
R-D Herzberg
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redu
es to �� = � + 2� 2nd�

1 2 3 4 5

d

L

Only ray 1 
ontains a phase inverting hard re
e
tion,rays 2,3,... have only internal (soft) re
e
tions.The phase di�eren
e between any two neighboring raysex
ept the �rst one is therefore�� = 2� 2nd� 
os#0Look at an angle where rays 1 and 2 interferedestru
tively. Then rays 2,3,4... must interfere
onstru
tively.To �nally de
ide if we see a bright or dark re
e
tion wemust look at the amplitudes.
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If a is the amplitude of the in
ident ray then ray 1 hasan amplitude ar, ray 2 has an amplitude atrt0, ray 3 hasan amplitude atr3t0 et
.

att’
atr  t’

2
atr  t’

6

at
r  

t’3

at
rt’

at
r  

t’5

at
r  

t’7

atr  t’
4

a

1 2 3 4 5

ar

d

L

Summing all amplitudes from ray 2 on givesA = atrt0 + atr3t0 + atr5t0 + atr7t0 + � � �= atrt0(1 + r2 + r4 + r6 + � � �)= atrt0 11� r2= arThe last step uses tt0 = 1� r2.So the �rst ray has an amplitude of ar and ALL otherrays have a 
ombined amplitude ar and they interferedestru
tively: We get an interferen
e minimum in there
e
ted light if 2nd 
os#0 = m� like we had before.
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4.20: Summary

� Re
e
tions of light at a refra
ting boundary arehard if the \mirror" has a larger index ofrefra
tion. These re
e
tions 
hange the phase of there
e
ted light by �.� All other re
e
tions in
luding those o� silveredsurfa
es are soft re
e
tions without a phase 
hange.� Interferen
e of light from a thin �lm will produ
ebright fringes in the re
e
ted and transmitted light.� A nonre
e
tive 
oating is made of a �lm with athi
kness d = �=4n to give a maximum in thetransmitted light (=minimum in re
e
ted light).
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Exer
isesHalliday Resni
k & Walker:Reading: Ch36 HRW pp. 874-880Exer
ises: p. 885 �: 30E, 31E, 32E, 34E, 36E, 38P, 40P,43P, 49P, 51P.
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4.21: Fabry-Perot InterferometerThe sharpness of fringes in transmitted light through athin �lm of air 
an be used to build highly sensitivespe
trometer and narrow 
olour �lters.

n>1 n>1n=1

r r

a
at

atr

att’

atr   t’2

The inner surfa
es are silvered, therefore we have onlysoft re
e
tions and the 
ondition to get a bright fringe inthe re
e
ted light be
omes2d 
os# = (m+ 12 )�If the interferometer is illuminated with an extendedlight sour
e we 
an observe similar 
ir
ular fringes as inthe Mi
helson interferometer. If the re
e
tivity of thesurfa
es is high enough, the fringes will be very sharp.
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4.22: Resolving powerIf we want to analyse the spe
trum of light emitted froma sour
e (e.g. an ex
ited atom) we must be able tode
ompose the light into its wavelength 
omponents. Aprism will do that, but it is a mu
h too 
oarseinstrument for the �ne analysis of a spe
trum.Let an atom emit light of two wavelengths �1 and�2 = �1 +��.

10 12 14 16 18 200

20

40

60

80

100

120

Michelson Fabry-Perot

These are for wavelengths 500 nm and 501 nmrespe
tively.A Fabry-Perot interferometer with a re
e
tivity ofr = 0:8 has a tenfold higher resolving power than aMi
helson interferometer under the same 
onditions.
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4.23: Single Slit Di�ra
tionWe 
an now 
ompute the di�ra
tion pattern from asingle slit. We will pro
eed in two stages: First we willobtain the angles at whi
h we observe interferen
emaxima and minima in a purely geometri
al way.Se
ondly we will 
ompute the 
omplete intensity patternas a fun
tion of the angle of di�ra
tion.

λ

∆ s

b
ϑ

ϑ

We position the s
reen suÆ
iently far away from the slitso we 
an deem all rays to be parallel (Fraunhoferdi�ra
tion).Let #1 be the angle for whi
h the top and bottom raysfrom the edges of the slit have a path di�eren
e ofexa
tly �. Then the top ray and the ray in the 
enter ofthe slit will have a path di�eren
e of 12� and will 
an
el.
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Ea
h ray in the top half of the slit will �nd exa
tly oneray in the bottom half to 
an
el. The total e�e
t at #1 isa minimum. We �nd b sin#1 = �The se
ond minimum is found when the path di�eren
eis 2�: Here you divide the slit into 4 equal parts andea
h pair of rays in the �rst and se
ond as well as in thethird and fourth part will 
an
el.Generally a minimum is found if the path di�eren
ebetween the top and bottom part of the slit is a fullwavelength: b sin# = m� MinimumStraight behind the slit the 
entral (prin
ipal) maximumwill be lo
ated.To obtain a se
ondary maximum you 
an divide the slitinto 3 parts su
h that the path di�eren
e between thetop and bottom rays is 3/2�. Then ea
h pair of raysfrom the �rst and se
ond partition 
an
el, leaving thosefrom the third.Generally a maximum is found if the path di�eren
ebetween the top and bottom part of the slit is a fullwavelength and a half:b sin# = 12 (2m+ 1)� Maximum
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4.24: IntensityThe intensity 
an be 
omputed easily if one divides theslit into narrow parts of width �s. All rays then have anamplitude y0�s=b.The ray emerging from the 
enter of the slit is 
hosen asthe referen
e ray. The phase di�eren
e between a rayemitted at position s = s and a ray emitted at positions = 0 is Æ = 2� s sin#� = ks sin#
b

s=-b/2

s=0

s=+b/2

ϑ

The sum of two rays emitted from positions +s and �s isdy = dy+s+dy�s = y0�sb (sin(kx�!t�Æ)+sin(kx�!t+Æ))We use sin�+ sin� = 2 sin(12 (�+ �)) 
os(12 (�� �)) and�nd dy = 2y0�sb sin(kx� !t) 
os(Æ)
R-D Herzberg
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dy = 2y0�sb sin(kx� !t) 
os(ks sin#)We now must sum up all the 
ontributions from ea
hpair: y = 2y0 sin(kx� !t)b Z b=20 
os(ks sin#)d s= 2y0b �sin(ks sin#)k sin# �b=20 sin(kx� !t)= y0 �sin(12kb sin#)12kb sin# � sin(kx� !t)

The amplitude 
an be rewritten as A0 sin�� with� = 12kb sin#.The intensity pattern then isI = I0 sin2 ��2
bk/2=3

bk/2=15
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4.25: ExamplesA slit of width b = 40�m is illuminated with blue light� = 400nm. What is the distan
e between the 
entralmaximum and the se
ond minimum (the fourthinterferen
e maxima on either side) in the interferen
epattern on a s
reen 2m away?Interferen
e minimum: b sin# = m� The �rst minimumis obtained for m = 1, the se
ond minimum is obtainedfor m = 2. sin# = 2�=b = 2400nm40�m = 0:02The distan
e on the s
reen isd = 200
mtan(sin�1 0:02) = 4 
mThe 
ondition for a maximum is b sin� = 12 (2m+ 1)�.The �rst se
ondary maximum is obtained for m = 1 andthe fourth se
ondary maximum is at m = 4.sin# = 4:5�=b = 4:5400nm40�m = 0:045The distan
e between the fourth maxima isd = 2 � 200
mtan(sin�1 0:045) = 18 
m.
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What is the intensity ratio between the third andseventh maximum?I = I0 sin2 ��2 � = 12kb sin#The 
ondition for a maximum is then�m = 12kb sin# = 12k 12 (2m+ 1)� = 12 (2m+ 1)�The third maximum is found at �3 = 3:5�, the seventhmaxiumum at �7 = 7:5�I3I7 = I0 sin2 3:5�(3:5�)2I0 sin2 7:5�(7:5�)2 = 7:523:52 = 4:6
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4.26: Resolving powerBy the resolving power of an opti
al instrument we meanits ability to produ
e two separate images of two obje
tsvery 
lose together.A slit of width b produ
es a 
entral maximum with awidth inversely proportional to b. If the two images aremu
h 
loser than the width of either 
entral image, they
an 
learly not be seen as separate images.If the prin
ipal maximum of the se
ond image falls intothe �rst minimum of the di�ra
tion pattern of the �rstimage, we 
an just barely see them as two separatemaxima.The resolving power is therefore de�ned as as theminimum angle of resolution #0. For a slit it is given by#0 = �bNote: As #0 in
reases, the resolving power de
reases!
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4.27: Di�ra
tion from Extended AperturesIn general the di�ra
tion pattern will involve rays fromevery point on the aperture. Two spe
ial 
ases are worthmentioning: A re
tangular aperture and a 
ir
ularaperture.The re
tangular aperture 
an be seen as a 
ombinationof a verti
al slit and a horizontal slit.

c

b

The 
ir
ular aperture is important be
ause almost alllenses are 
ir
ular, and the rims of the lenses or the tubeof a teles
ope or a mi
ros
ope is a 
ir
ular opening thatultimately limits the resolving power of theseinstruments.
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4.28: Rayleigh's 
riterionUnfortunately the exa
t treatment of a 
ir
ular apertureis rather involved and does not tea
h us anything new.One �nds that the �rst minimum is found at a slightlydi�erent angle: #0 = 1:22�bCompared with a slit the only di�eren
e is the fa
tor1.22.We 
an now formulate Rayleigh's 
riterion for theresolution of two images:Two images 
an be resolved if the di�ra
tionmaximum of one image 
oin
ides with the �rstdi�ra
tion minimum of the se
ond image. Fora 
ir
ular aperture of diameter d this meansthat the angular separation must be#0 = 1:22�d
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4.29: Summary

� Rayleigh's Criterion: Two images 
an be resolved ifthe di�ra
tion maximum of one image 
oin
ides withthe �rst di�ra
tion minimum of the se
ond image.For a 
ir
ular aperture of diameter d this means thatthe angular separation of the two images must be atleast #0 = 1:22�=d.� A single slit of width b will produ
e an interferen
epattern of the formI(#) = I0 sin2 ��2 with � = 12kb sin#� The se
ondary minima are found at angles # su
hthat b sin# = m�.� The se
ondary maxima are found at angles # su
hthat b sin# = (m+ 12 )�.� The resolving power of a Fabry-Perot interferometeris highest for high re
e
tivities.
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Exer
isesHalliday Resni
k & Walker:Reading: Ch37 HRW pp. 891-900Exer
ises: p. 912 �.: Q1, Q4, Q6, 1E, 2E, 3E, 6P,10E,15E, 17E, 25P
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4.30: Double Slit Di�ra
tionWe have already dis
ussed Young's double slitexperiment and found the 
onditions for interferen
emaxima and minima. Now we 
an look at the 
ompleteintensity pattern produ
ed on a s
reen behind the slits

α

α
d

λ

∆ s

At an angle # the path di�eren
e is �s = d sin# and thephase di�eren
e is�� = 2�d sin#� = kd sin#On the s
reen the two waves will therefore haveamplitudesy1(x; t) = a sin(kx� !t)y2(x; t) = a sin(kx� !t� kd sin#)
R-D Herzberg
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We know how to deal with this sum:y(x; t) = y1(x; t) + y2(x; t)= 2a 
os(12kd sin#) sin(kx� !t� 12kd sin#)
The intensity is the square of the amplitude:I = 4a2 
os2(12kd sin#) = 4I0 
os2(12kd sin#)Or, if we substitute � = 12kd sin#, we haveI = 4I0 
os2(�)The 
onditions for a maxima/minima of order m are:Maximum: d sin# = m�Minimum: d sin# = (m+ 12 )�

ϑ

I
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4.31: ExamplesTwo narrow slits are a distan
e d = 40�m apart. Theyare illuminated with light of two di�erent wavelengths:�1 = 600nm and �2 = 550nm. A s
reen is 300 
mbehind the slits.What is the distan
e of the third maximum from the
enter on the s
reen in ea
h 
ase?Condition for a maximum with narrow slits:d sin# = m�

sin#1 = 3600nm40�m = 3 � 0:6�m40�m = 0:045s1 = L tan#1 = 300
m � 0:045 = 13:5
m
sin#2 = 3550nm40�m = 3 � 0:55�m40�m = 0:041s2 = L tan#2 = 300
m � 0:041 = 12:4
mWe use sin# ' tan# ' # valid for angles less than0.1 rad. (' 6Æ)
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Red light with a wavelength � = 638nm illuminates adouble slit. On a s
reen 200 
m behind the slits thedistan
e between the 
entral and the se
ond ordermaximum is found to be 7.8 
m. What is the distan
ebetween the two slits?d sin# = m�

tan# = 7:8
m200
m = 0:039
# = 2:23Æ

d = 2 � 638nmsin 2:23Æ = 32700 nm = 32:7�m

R-D Herzberg
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4.32: Di�ra
tion GratingWhat happens if we take more than two very narrowslits with equal spa
ings d between ea
h slit?

λ

4δ

3δ

2δ

δ

d

d

d

d ϑ

If we take the ray from the topmost slit as the referen
eray then the ray from the N th slit down will have aphase di�eren
e ofNÆ = 2�Nd sin#=� = kNd sin#
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The total wave at that angle then is obtained bysumming the waves from all slits:A(x; t) = a[
os(kx� !t) + 
os(kx� !t� Æ)+ 
os(kx� !t� 2Æ) + � � �+
os(kx� !t� (N � 1)Æ)℄= a 
os(kx� !t� 12 (N � 1)Æ) sin 12NÆsin 12ÆAnd its intensity isI = I0 sin2 12NÆsin2 12Æ Æ = kd sin#The maximum intensity in ea
h order is Imax = I0N2!
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4.33: Resolving PowerIn order to use the grating as a spe
trometer we must beable to distinguish two wavelengths � and �+��.A

ording to Rayleigh's 
riterion we 
an distinguish twolines, if the main maximum of one line falls into the �rstminimum of the se
ond line. Clearly, if the maximum ishigh and narrow, we will be able to resolve lines di�eringby only a small wavelength di�eren
e and the resolvingpower is large.We de�ne the resolving powerR = ���We 
an �nd the position of the minima 
losest to themain peaks easily by looking at the intensity equation:

I = I0 sin2 12NÆsin2 12Æ Æ = kd sin#We denote the angle for the main maximum in mth orderwith #m and the angle for the immediately adja
entminimum with �m.
R-D Herzberg
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The main maxima are found at those angles where thedenominator vanishes:12kd sin#m = m� , d sin#m = m�In the numerator this be
omesNd sin#m = Nm�Next we need to �nd the angles at whi
h the nextminimum is lo
ated, that is, where the numeratorvanishes next. Nd sin�m = (Nm+ 1)�We 
an now write the 
riterion for resolution of thewavelengths � and �+��: The maximum for (�+��)must 
oin
ide with the minimum for �.Nm(�+��) = (Nm+ 1)�Nm�+Nm�� = Nm�+ �R = ��� = NmA grating with many lines has a higher resolving powerthan one with few lines independent of the spa
ing ofthe lines!The resolving power is higher in the higher orders.
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4.34: DispersionWe also want to be able to measure the anglesreasonably 
omfortably. This means that they must befairly large. The grating must have a large dispersion.D = d#d�Again we 
an easily derive an expression for D. Theprin
ipal maximum for the mth order is found at anangle: d sin#m = m�d�d# = d 
os#mOr D = d#d� = md 
os#The dispersion is proportional to the order and inverselyproportional to the spa
ing but is independent of thenumber of lines in the grating or the wavelength of thelight!The dispersion is inversely proportional to the spa
ing.Resolving power R and dispersion D are independent ofea
h other, and a grating is 
hara
terized through both.
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Two red lasers with wavelengths �1 =? and �2 =? shinethrough a grating with 300 lines/mm onto a s
reenL = 
m behind the grating. d = 3333nm.The distan
e between the prin
ipal and the �rst ordermaximum on the s
reen iss1= 
ms2= 
mWhat are the wavelengths of the lasers?tan# = sL#1 = sin#1 =#2 = sin#1 =
�1 = d sin#1 = 3333nm� = nm
�2 = d sin#2 = 3333nm� = nm
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4.35: ExamplesA grating is 1mm wide and has 80 lines. What is thedispersion and resolving power for red light (� = 700nm)in 3nd order? d = 1mm=80 = 12500nmD = md 
os#d sin# = 3� ) # = sin�1�3 700nm12500nm� = 0:169rad = 9:7ÆD = 312500nm
os(9:7Æ) = 0:00024radnm = 0:014degreesnmR = ��� = Nm = 3 � 80 = 240This means we 
an resolve wavelength di�eren
es assmall as �� = �=240.The grating is illuminated with yellow sodium light�1 = 589:00, �2 = 589:59. How many lines must thegrating have to allow the two lines to be resolved inse
ond order?N = �m�� = 589nm2 � 0:59nm = 499A grating with 500 lines will resolve the two sodium linesin se
ond order.
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4.36: Summary� The intensity distribution far behind two narrowslits is I(#) = I0 
os2 � � = 12kd sin#� The maxima are found at angles d sin# = m�.� The minima are found at angles d sin# = (m+ 12 )�.� A di�ra
tion grating 
onsisting of N very narrowslits with a uniform spa
ing d between slits produ
esan intensity patternI(#) = I0 sin2 12NÆsin2 12Æ Æ = kd sin#� The maximum intensity in the peaks is N2I0.� The resolving power of a grating in mth order isR = ��� = Nm� The dispersion of a grating with spa
ing d isD = d#d� = md 
os#� Dispersion and resolving power are independentquantities!
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Exer
isesHalliday Resni
k & Walker:Reading: Ch37 HRW pp. 901-912Exer
ises: p. 914 �.: 27E, 31P, 32P, 33E, 35E, 37P, 41P,43P, 45P, 47E, 51P
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4.37: Double Slit Di�ra
tionWe have already dis
ussed Young's double slitexperiment and found the 
onditions for interferen
emaxima and minima. Then we used very narrow slits.In general the slits have a �nite width, and the intensitypattern on a s
reen behind the double slits will be a
ombination of two single slit di�ra
tion patterns andthe double slit interferen
e pattern.

b

b

d

The single slit had an intensity patternIss = I0 sin2 ��2 � = 12kb sin#Young's double slits with in�nitesimal width at adistan
e d 
reated an interferen
e patternIY ds = 4I0 
os2 � � = 12kd sin#We 
an 
ombine the two if we de�ne d to be the distan
e
R-D Herzberg
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between the 
enters of the two slits of width b and lookat a s
reen suÆ
iently far away so that we 
an treat allrays as parallel:I = Iss � IY ds = 4I0 sin2 ��2 
os2 �
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d=7b

If b tends towards 0, the 
entral single slit maximumtends towards an in�nite width, and the intensitypattern of Young's double slits is obtained. If b >> d thepattern be
omes that of a single slit.
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4.38: Realisti
 GratingThe same is true for a realisti
 di�ra
tion grating with�nite slitwidth.The total intensity pattern will be a produ
t of thedi�ra
tion pattern 
reated by one �nite slit and theinterferen
e between the 
ontribution from the Ndi�erent slits.

I = I0 sin(12NÆ)sin(12Æ) sin2 ��2with Æ = kd sin# and � = 12kb sin#.One must be 
areful here. A di�ra
tion pattern is reallynothing but a 
ompli
ated interferen
e pattern 
reatedby all the Huygens wavelets originating at the slit. It istherefore a matter of semanti
s to 
all one a di�ra
tionpattern and the other an interferen
e pattern.
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4.39: Missing ordersTake a grating with slits 2�m wide and spa
ed 6�mapart illuminated with light at a wavelength � = 600nm.What is the intensity distribution?
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-1 -0.5 0 0.5 1We seem to lose every other line from the gratingpattern be
ause the di�ra
tion pattern 
reated by ea
hslit does not produ
e any light at those angles!
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4.40: Group velo
ityIf a pulse of light moves through a dispersive medium, allthe di�erent wavelengths making up the pulse move atdi�erent speeds. What then is the speed of the signalprogressing through the medium?Go ba
k to our dis
ussion of beats. If two waves ofslightly di�erent wavelengths � and �0 and slightlydi�erent velo
ities v and v0 travel together, we 
an �ndthe resulting wave easily:y1(x; t) = y0 sin(kx� !t) = y0 sin(k(x� vt))y2(x; t) = y0 sin(k0x� !0t) = y0 sin(k0(x� v0t))with !0 = ! + d! and k0 = k + d k.The resultant wave will bey(x; t) = y1(x; t) + y2(x; t)= y0 sin(kx� !t) + y0 sin(k0x� !0t)= 2 sin(12 (k + k0)x+ 12 (! + !0)t)� 
os(12 (k � k0)x+ 12 (! � !0)t)
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λ v

u

’λ v’The �rst part has a velo
ityv = 12 (! + !0)12 (k + k0) ' !kand represents the small os
illations.The se
ond part is the speed of the envelope of the beats:u = 12 (! � !0)12 (k � k0) ' d!d kIt is this speed that we need to look at if we try totransmit a signal!
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We 
all v the phase velo
ity and u the group velo
ity. Toget a relationship between u and v we take
u = d!d k = d v(k)kd k = v(k)d kd k + kd v(k)d k = v + kd v(k)d kWe 
an rewrite this in terms of the wavelength � = 2�=k:d v(k)d k = d v(k)d� d�d k = d v(k)d� �2�k2
u = v + kd v(k)d k = v + kd v(k)d� �2�k2 = v � �d v(k)d�This form is useful be
ause it shows that the groupvelo
ity is always smaller than the phase velo
ity,provided the wave speed is low for small wavelengths andin
reases monotonously.This is the normal 
ase in all dispersive media.
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4.41: Summary

� The intensity pattern produ
ed by realisti
 gratingsand double slits is the produ
t of the intensitypattern for a single slit and the intensity pattern foran appropriate number of very narrow slits:Double slit:I = Iss � IY ds = 4I0 sin2 ��2 
os2 �Grating: I = I0 sin(12NÆ)sin(12Æ) sin2 ��2with � = 12kb sin#, � = 12kd sin# and Æ = kd sin#.� The interplay of minima from both patterns 
an leadto missing orders.� A signal 
an only be transmitted with a pulse. In adispersive medium this pulse travels with the groupvelo
ity u = d!d k� The group velo
ity u and the phase velo
ity v are
onne
ted via u = v � �d v(k)d�
R-D Herzberg
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Exer
isesHalliday Resni
k & Walker:Reading: Ch37 HRW pp. 901-906Exer
ises: p. 914 �.: 27E, 31P, 32P, 33E, 35E, 37P, 41P,43P, 45P, 47E, 51P
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