1: PHYS254: Electromagnetism 2006/07|

R-D Herzberg



1.1: Textbooks|

e D.J Griffiths Introduction to Electrodynamics 3¢ ed. Prentice Hall
e W.J. Duffin Electricity and Magnetism 4/ ed. McGraw-Hill

e L.S. Grant and W.R. Phillips Electromagnetism 2"¢ ed. Wiley

Supplements
e Schaum’s Outlines: Vector Analysis Murray R Spiegel
e Schaum’s Outlines: Electromagnetics 2" ed. Joseph A Edminster

And many others.



1.2: Course Organisation |

e 15 Credits
e 4 Tutorials
e 1 Class Test (Week 9)

e Marks: 80% for 3 hour exam
20% for 1 Class test

Recommended private study time: 114 hours
That’s 9.5 hours per week or 2 hours per day Mo-Fr!



1.3: Introduction

Special Relativity

Electromagnetism

27N

Quantum
Mechanics

Quantum
Field Theory

Electromagnetism is at the heart of modern
physics. It has grown historically from the first
ancient sailors using a floating piece of wood
with a magnetic piece of ore on it via Faraday,
Coulomb, Ampere and Ohm to James Clark
Maxwell who unified all electric and magnetic
effects into a system of 4 equations. We will
follow his route to these equations.
Electromagnetism is also tightly intercon-
nected with Relativity, Quantum Mechanics,
and modern field theory.



1.4: Reminder: Vectors|

EM is formulated in vector form using differental equations. Thus we need to recapitu-
late vector calculus. None of this is new!

In 3-dimensional euclidian space we use a
) 2 righthanded coordinate system x, y, z:
Each point in space is represented by a set of
coordinates ¥ = (x, vy, z).

Xy

We also use vectors to describe distances, e.g
2 F12 from ??2 o ??1:
T2 = 71 — T2 = (T1,Y1,21) — (T2,%2,22) =

?1 (331 — L2, Y1 — Y2, %1 — 22)




Each vector has a magnitude and a direction:

r=|r]-a,

7] = \/be + y° + 27 Magnitude
a,. Unit vector in the direction of 7
a =" al=1

7]

Useful unit vectors point along the coordinate axes:
a, =(1,0,0) a,=(0,1,0) a,=(0,0,1)

Thus we can write ¥ = (z,y,2) =« -8, +y-4,+ 2z -8,
There are many different notations in the literature, e.g. a3, =7

=k

1]
IND

y=Jj a

Schaumusesa, =X=1 4,

These are too easily confused with current, imaginary unit and current density.



1.5: Example'

The force of gravity a mass m; at r; exerts on another mass m., at 7%:

— mamo_
F12 =G > I
12
Alternatively:
— mqimo _,
Fi, =G 3 T12
12

You can use dimensional analysis if in doubit:
[F] =N; [m] =kg; [r]=m; [G] =N m?/kg?

thus in the top example the units only match if r,, is a unit vector.



1.6: Vector Multiplication'

Given two vectors 71 = (x1,y1,21) and 7 = (x2, y», 22) We can form two types of
products:

Scalar product:

T1 - To = X1T2 + Y1y + 2122 = |7?1||7?2|‘C0519

Vector Product:

1 X To = (xl,yl, 21) X (332,292, 2’2) — (y122 — Y221, 212 — 22T1, L1Y2 — C’3291) —

(Y122 — ¥221)8, + (2122 — 2021)8, + (T1y2 — 22y1)A,

The magnitude of the result is given by |71 x 7| = |71||72| - sin? and its direction is
perpendicular to both #; and >, such that 7, > and 7; x 7, form a right-handed system.



2: Electrostatics |

Revision: Coulomb’s law

We start with a curious property of matter: charge. It comes in two flavors, positive
and negative, and we know of their presence by detecting the force between them.

Charges are quantised in units of the elementary charge e = 1.602 x 107'°C.

A lot of the course will deal with point charges denoted by g or Q. A point charge is
assumed to be concentrated in a volume much smaller than the other dimensions of
the problem, e.g. the distances between the point charges.

An electron is a point charge with a radius of less than 10-° m!



We consider two charges ¢g; and ¢. at points v; and 7, in
space. The force between them is experimentally determined
to be proportional to the product of the two charges:

|ﬁ12| ~ (1 g2

It is also inversely proportional to the square of the distance
between them:

- 1 1
| Fia| ~ =

7 =7 [l

This inverse square relationship has been verified to great pre-
cision in Cavendish’s experiment. The force between charges
q: and g, lies in the direction of the line through 7, and 5, i.e.
parallel to 5 — 71 = 715!

E — Zl:le

Thus we can write for the Force Charge 1 excerts on charge
2.

“q> = qi1 - q - -
& 2|2[12 or Fi,= K- |f, - ;lS(TQ—?“l
> —T1

ﬁlgzK‘ q

7> — 7




Clearly we have symmetry:
ﬁlQ — _ﬁQI

The proportionality constant K is found through experiment.
In Sl units we have: [¢]=C, [F]=N, [#]=m. Thus the dimension
of K must be [K]=Nm?/C=.
We find it convenient to write K in terms of the permittivity of
free space ¢
1
d7eg

Today the Ampere is the Sl base unit and ¢, is defined to be
exact in the Sl system.

C’ C°s?

pum— 3

N m? kgm

K =

€0 = 8.854 x 107"




2.1: Principle of Superposition |

The Coulomb law obeys the principle of superposition: The force on a charge @Q ex-
erted by several other charges ¢; ... g, is the vector sum of all forces exerted by each
pair of charges Qq; individually:

—

Fq

Z ﬁQQi
1=1

- 1 Qg
= )

i=1 4meg |FQ — 7::]2|2

EQ%‘

—~ 1 i o o
= Y (- )

i— 4meg |FQ — 7721¢|3



Sometimes we need to consider extended charge distributions, such as homoge-
neously charged plates. Then we define charge densities:

p(¥) =  (Volume) charge density Q. = / p(7¥) dV
Volume

o(r) = Surface charge density Qi = / o(r)dsS
Area

A7) = Line charge density tot = / A7) dl

Line

The force on a charge @ exerted by a charge distribution p7in a volume V' is given by
integration:

Q p(7)

| —
@ J 4rreg |7 — 7|3

(Ffp—7)dV




Z A

2.2: Example'

We will calculate the force on a charge @ exerted by
a finite, straight, homogeneously charged line seg-
ment. The total charge q is distributed along the line.
Thus the line charge density is A = q/(b — a).

Q A)

| —
9 4rreg |7 — 7|3

Line
The line runs from 7, = (0,a,0) to #, = (0,5,0)
along the y-axis. The charge Q is on the x-axis at
ro = (x0,0,0). This is the most general case. In

(7 — ) dl

» Cartesian coordinates the integral becomes:

/ (330, —Y, 0)

47‘('60



We can evaluate each component seperately: x first:

O\ [ x
Fa: — /< ° 3dy

47T€0 a /xg_l_y2>
Arre substitute
o (330\/1+ ) ubstitu
, Y = tan¢
/B x
= e - ;d¢ dy _ dg
e Ja cos2¢<xo\/1—|—tan2¢> 2o COS2¢
1
_ QA /5 x5 d ¢ tano+1 = Cos2 ¢
47'('60 a CE‘SCOSQ¢( CO;2¢)3
A1 P
= @ —/ coso d o
47'('60370 Q

QA [sin gb]i

47'('60 Io



The limits are also straightforward:

a
tana = —
Lo

1
Sinae = \/1—C08204= 1 — .
1+ tan“«
. \/ tan® «
o 1+ tan‘«
a
\/re + a®
b

\/ xs + b
Thus we get for the x-component of the integral:

sing =

F, =
41eg

QA o )
/a(

. b B a
N R Ve



The y-component is easier:

F, = QA —Y d
Y Aney Ja 2 2\° J
o (et +v?)
A (—1 B
_ DD g,
TE A
’ substitute
_ A EDED .y
drey 2 1 A u=1x,+y
- b
o)) 1 du =2ydy

A7eg 22 + 9

QA 1 1




The z-component is the easiest: F. = 0. So the full result becomes:

- A(T)
Py = / — 7 dl
QX ; Areo |7y — 7:,]3(""62 )
S —y,0
FQ)\ — / (-7707 Y, )
4d71eg
P QX [ 1 b a 1 1 0
QN — T ’ - ’
dmeo \Zo |\ /22 + b (/224 a?| |\Jz2+ > (/22 + a?
As a special case we can look at the most symetrical case with a = —b: The result
then becomes:
B = QN (1 b —b 1 1 0
QAN — — ) - 9
dmeo \To | \/x2 4+ b2 (J224+ 0P| |\J2EH 0\ [22 4 b
- QN (1 2b
Fon = ,0,0
o dmen | o ‘ /33% -+ b2




2.3: SummaryI

The Coulomb force on charge g, exerted by charge q;:

It obeys the principle of superposition: The force on a charge ) exerted by several
other charges q; ... g, is the vector sum of all forces exerted by each pair of charges
(g, individually:

n
Fo=)> F,q
=1



2.4: Mutual potential energy of point chargesl

Assume an empty universe except a single point charge ¢, at the origin of a freely
defined coordinate system (and you, of course).

We bring another point charge ¢» from infinitely far away to its final position . At all
times does charge ¢, feel a force due to ¢; and we have to use energy to move q¢»

against this force.

Assume ¢, to move along the positive x-axis from infinity to xq with ¢ fixed at (0,0,0).

q14g> 3

The Force is Fi, = a,
Areqx?



The energy needed to bring ¢, closer by dx is

dW = F(z) -de = F(z)(—dza) = —— 22 qza

4eqax?

T

Total work

W=/dW=/xo— LI

o  Admegx?

W:[‘l‘CIl(b] _ N4

Ameox] o dmeqxo

All work has been converted to potential energy, thus we gained AU = W = i~

in the process.

a

T

_q1G2
TTEQIL



One last thing we have to show is that AU is
independent of the path chosen.

Because of the principle of superposition it is
enough to show the path is independent for 2
point charges

Qq

F =
47ren|To,3

TOq This is a central force.

All points at a distance d experience the same
magnitude of force. Thus we need to show that it
does not matter how we move from one spherical
shell to the next one and we are done.



—» d+Ad

AU = F.dz = |F|dz cos180°
AU = F.dz' = |F|dz' cos(180° — a)
|d x|
— =cosa and c¢cos(180 —«a) = —cCoS«
[<Ed
= AU = —|F|dx
AU = |F|dz' cos (180 — a)
- COS
= _|F|dz—22
COS «
= AU

We say that the force is conservative.



What we calculated was a change in potential energy. Is there an absolute potential?

No, we are free to have additive constants, only changes in potential energy are impor-
tant.

Here we found it convenienttouse U(r) - 0 as r — oo.

If we want to know the potential energy in a system of point charges we build up
the final system by bringing the charges in from infinity one by one. This is possible
because of the principle of superposition for the forces.

We get for 3 charges:
Q1Q- @1Q3 Q2Q3

= — + — + -
47T60|’l"12| 47T€0|’l°13| 47T€o|7°23|
or in general
U=N_1 i QiQ; 21 zN: QiQ;
i=1 j=i+1 47T€O|'F;‘j| 2 ij=1 47T€O|'F;‘j|
i#]

(  to avoid double counting Q:Q> = Q»Q1)



The latter form makes it easy to generalise to con-
tinuous charge distributions

The potential energy of the two infinitesimal charged
volumes is

o(AAV - p(r)d V'

47T60|73 — 7

dU =

And the total potential is given by

= / p(P)p(r")

v 4eo|r’ — 7

dvdVv’

The factor - again avoids double counting.



2.5: Electric Field |

The force between charges appears as a force at a distance with no medium carrying
the force. We say that a charge @ fills space around it with an electric field, whose
existence we measure by placing a positive test charge ¢ at any point where we want
to measure field. The field is defined as the force per unit charge.

E parallel and proportional to F

F
q

Substituting Coulomb’s law gives

quQq .l_ Q —~

E — 2 _ — 2 ~Qq
Ameo|Toq? q Ameo| Tl

We can drop the indices to find the electric field due to a point charge @ at the origin
of a coordinate system:

Q

E=—"*__
4eq|T)?

r

E is measured in %



2.6: Electric Potential|

We were able to work out potential energy from forces. Remember from mechanics
F=-VU o U= /| Fds
If the electric field is given via E = F'/q we can define an electric potential
r=Y
q

for 2 point charges @ and q we had
Qeq

4rreg| Ty — T

U =

Now place @ at origin and find V/

(7
v = U@ _ @
q Amreo|T]
From our definition we should now find
E=_-VV

This can easily be verified.



o 0 0

Remember V = grad = (—, —,
Ire (837 oy 87;)
¢ IS constant.

d7eg
— 1 1 1

yv=_—2 21 9191,
4meq Ox |7| Oy |T] Oz |7

0 1 o0 1 0

— —_ (2 2 2\—5 —
o ax\/xQ—I—yQ—I—zQ_aa:(x Ty +2)

Oz |7

—T

VT

1 3
= —5(332 +y°+2°)77 20

G



analog

01 —y 0 1 —z

oy |7 |73 0z |F |73

_Q (_337 —Y, _Z) — Q T
41eq |73 4rreq |73

— —VV = =E

A word of caution: Although it is convenient to define E and V in terms of their mechan-
Ics counterparts, it turns out that E and V and have an independent life of their own. If
Eand V are given, then the forces and potential energy changes on real charges can
be calculated from F = ¢ E and AU = qAV. Here E and V can be time dependent
general fields not just produced by stationary point charges.



2.7: Revision: Gauss’ Law / Electric Flux &

Assume a constant uniform electric field E passing
through a surface S.
We can represent the surface as a vector of mag-
nitude S and direction perpendicular to the surface
- S.
The electric flux through S'is

® =|E||S|-cos¥ or d=ES

If E varies or S is not plane we have to divide the
surface into elements d S sufficiently small so that
over each surface element d S E can be considered
constant.

Thus & =/E’@
S

We can choose the normal on either face of the sur-
face, but if the surface is closed we always choose
d S to point out of the enclosed volume.



2.8: Gauss’ Law for a point charge'

Take a special case: A spherical surface of radius R around a point charge @ at its
center.

The electric field is radial and has a constant magnitude on the sphere’s surface. It is
also perpendicular to the surface at all points. We can evaluate the flux

@ -47TR2=Q

41en R €0

® = |E(R)|-A =

We can get the same result without handwaving: Take a surface element d S with an
area dS and a direction radially outward: d S = d Sr







We say “a charge @ gives rise to a flux g Indeed
this is independent of the shape of the closed sur-
face.

Consider element d S on the general surface S we
compare with the surface element d S’ on a spheri-
cal surface through this point which covers the same
solid angle d <2.

Then szdS =dScosﬁl
r2 r
Thus EdS = Er3dQ
EdS = EdScosd=EmrdQ=EdS

Thus we can rewrite the total flux out of a closed
surface as

b = E@’:/Eﬁdﬂ:/ ¢ 40
41eg
- @ /olQ:9
47eg €0



The principle of superposition translates directly to the fluxes. Thus the total flux
through a closed surface is given by the sum of the individual fluxes due to all point
charges in the enclosed volume.

=Y o =%
i €o
or
f EdS=Y" Q ]{ denotes an integral over a closed surface
€o

This is the integral form of Gauss’ law. It follows from Coulomb’s law and the principle
of superposition.

It allows us to calculate E for special symmetric situations

It allows to deduce the net charge in a bounded region of space given either the flux
through the surface or the electric field given everywhere on the surface.



2.9: Applications: Charge distribution on a conductor'

Conductor: charges are free to travel. We put a net charge Q onto an irregular con-
duction solid.

First we will show that no E field exists inside such a conductor. Then we show that no
net charges exist inside either.

As long as an electric field exists charges will move. Eventually they reach an equi-
librium state where no charge moves anymore. The E field must be zero everywhere
inside the conductor. Moreover: E = —VV = 0 means V = const everywhere in
the conductor, including the surface.

Now we start placing gaussian surfaces inside the conductor that do not enclose the
surface of the conductor. The electric field on each gaussian surface is zero, thus the
flux through it is also zero. That in turn shows that the gaussian surface does not
enclose any net charge. All charge must accumulate on the surface.



2.10: Summaryl

The potential energy of a configuration of charges is given by

=3y Q@ _lg QO
1=1 j=1 147T€O|?:;j| 22] 147T€O|?:;j|
17
Or for continuous distributions as
2 47T€0|’I° — ’I?|

(  to avoid double counting Q:Q> = Q»Q1)



The electric field due to a point charge @ at the origin of a coordinate system is:

=% 3
Arenr?
And the electric potential:
(7
vin=2"_ @
q 4req|T)

Potential and field are related via:

E=_-VV

0o 0 O

Remember V = grad = (

)

ox Oy Oz



The total flux through a closed surface is given by the sum of the individual fluxes due
to all point charges in the enclosed volume.

¢=Z¢i=z%

or

f EdS = Z Q ]{ denotes an integral over a closed surface

€o

No fields and charges exist inside a conductor



2.11: Revision: Circulation Law|

Can an electrostatic field contain closed loops?
Then we could evaluate the path integral § Edl
around such a loop an get a numerical value differ-

@ ent from zero, i.e. we could put a charge onto the
loop and it would continually “ride round”. This is in
contradiction to the assumption of electrostatics. We
shall prove this more formally:



Consider the closed loop from A along path | to B
and back along path Il. We have shown in our deriva-
tion of the electric potential that the path integral

E — — —
/ﬁ Edl=V(B) - V(A)
A
is independent of the path. More over
B _ A
/ Bdl=— / Fdl
A B
IS also independent of the path.
The integral around the entire loop is then

fﬁ_z — /jﬁd_le/BAEu
= V(B)-V(A) + V() -V(B)=0




IV

|||/

Z

This argument only required an electrostatic situa-
tion, no assumptions were made about the shape of
the path, it is therefore generally valid.

The circuital law for E in integral from is

%Ed_zzo

We can use this to learn something about the E field
outside a charged conductor.

If we evaluate § E d [ in sections we get no contribu-
tion from part | because E is zero inside a conductor.
We can make the contributions from part Il and Il as
small as we want to by shortening the sections. That
leaves part IV

fﬁd_mjﬁuﬁ Eu+/ Ed_z+/ Edi=o0
I II III IV



—>/ Ed_lzo
1A%

This means that E is perpendicular to dl every-
where on the path IV. Since we chose the path to
follow the surface we get a nice result:

The electric field outside a conducting solid enters
(or leaves) the surface perpendicular to it !

Important: ¢ Edl=0 only applies in electrostatics.
Else we never have a working electric circuit.




2.12: Differential form of Gauss’ Law|

The V operator is usually called 'del’, in some texts you find it is called “nabla”.

0 0 0
Oz’ Oy’ Oz

V =grad = ( ) in cartesian coordinates.

We already know how to use it to form a gradient:

E = —gradV
E = —-VV e V—l— 1
- S TR Vet
= oV 0V 0V —x — —z
vV = ( ? ? ):( 2 2 23’ 2 yz 23’ 2 2 2)
Oz Oy 0z Vot +y? + 2% Vet g 4 22 Y+ 23
—r 1 -

pt —=__,;a\

ERGE



The gradient of a scalar field is a vector field. lts magnitude is the slope of the scalar
field at any given point, and its direction points into the direction of steepest ascent.

We can also use V to form two other differential operators on vector fields:
divergence and curl.

Take a vector field A (7). You can form the divergence as

dvA() = ¥ <>—<aa,§,§><A<>A<>A<>>

OA,(T) aA() 3A())
ox oy 0z

= (




The divergence shows you the sources and drains of field lines at any point. E.g.:

A = (2%,yz,7)

.o > 0x®  Oyz
dvA=V A=—+ "4+ —=2
or ' ay +az T+ 2

Second example:

A
I
Q
=3

Calculate div A = V - A yourself.



AZ

Now we rewrite Gauss’ Law in differential form.

Assume a small gaussian surface in a region of
charge density p(7). We make the surface a small
box with sides parallel to a cartesian coordinate

E = (E(+AE,, E,+ AE, , E, +AE,) SyStem of our chosing with sides Az, Ay, Az:

E-= (Ex, Ey, Ez)

=4 |l

The flux through the shaded faces is Ed A. The nor-
mal vector on the face at A is

—a.AyAz = (—AyAz,0,0)
andatBitis
a,AyAz = (AyAz,0,0)
Thus the flux through these two faces is

(B, By, E.) - (—AyAz,0,0)

(E, + AE,, B, + AE,, E. + AE.) - (AyAz,0,0)
—E.AyAz+ E,AyAz + AE,AyAz
AEAyAz



Az

AZ

E = (Ex+AE,, Ey+ AE, E, +AE;,)

E-= (Ex, Ey, Ez)

AX X

AE, can be written to first order as 2 A:c

— Pgpeg =

xr
Similar arguments go for the other two faces to give

the total flux

OF OF OF
b = - ! I Az AyA
8m+8y+8z TEYes

The right hand side of Gauss’ Law is Q/ €0

> — Q _ p(MAzAyA=z

€o €o
As we now shrink Az, Ay, Az to zero we are left

“with

OFE, OFE, OF, P
ox Oy 0z €o

or

divE = p(7)




This is a general result and one of the fundamental equations of nature.
= _ p(7) =

divE = o ©.5="P"

€o €o

We will later recognize this as one of Maxwell’s equations.

It no longer depends on a choice of surface, but gives us the local behaviour of the
electric field.

Gauss’ law in differential form can be stated as

“The sources and drains of the electric field are the charges.”




Another example: Consider the electric field of a point charge F = - L

4reo |73

dvE = V-E
. Qro x n o Y n 13 z
- ey LOx (Va? + y* + 2°)3 oy (v + y* + 2°)° 0z (Va? + y* + 2°)3

This has a pole at ¥ = 0. So calculate V - E for (z,y,2) % (0,0,0):

First take the derivative with respect to x:

o x VRt 2R -/t + 27 2
Oz (Vo +y? +22)° (Va2 + o + 2°)8
Yyt + 27— 3x°
(VR4 2)e
_2332 _I_ y2 _I_ ZQ

(Va? + 3> + 2°)°



The derivatives w.r.t. y and z are completely analogous:

o 7 =2yt 427
Oy (Va®+ 2 +22)° (Vo + 32+ 22)s
0 z oyt — 227

0z (Ve + P+ 22)8 (Va2 + o> + 27)5

Bring them all together

Q (—2332—|—y2—|—22—|—:c2—2y2—|—22—|—a72—I—y2—222) .
4meo (Va? + 7+ 2%)° B

—~V-E = 0

At 7 = O we have the point charge and the electric field has a pole. We can use Gauss’
law to find V - E at the origin.



The charge density is zero everywhere except at the origin, where it is concentrated in
a point:

The charge density is

p(7) = Q4(7)
and we can write
p(7)
€o

—

V- -E=

Remember: the § function is defined as
() =0 for7# 0
() = o0 for7=20
and

/Va(f’) 4V =1



2.13: Summaryl

The circuital law in integral form is:

fﬁd_zzo

The electric field inside any conductor is zero.

The electric field outside a conducting solid enters (or leaves) the
surface perpendicular to it !

Gauss’ law in differential form is:

divE = p(7)

or ﬁ-E"zp(T)

€o €o

“The sources and drains of the electric field are the charges.”




We now look at the circuital law

2.14: The circuital law in differential form|

The electric field of the corners of this loop is:

(E., By, E.)
E,
(B, + 2
(B, + 8E
ox
E,
(B, + 2
0z

L\
D AX C
7y
AZ A
! Az
A AX B
OF OF,
8E 8Ey A:c n OF
0z
8E

0z

OF,

OF,




We take an average field at the centre of the side for our calculation.

A— B dli
B—sC dl
C—-D dl
DA dli

— ¢ EdI

= o 10F,

= dl=ExA:U—I—§ (Ax)?
x
L OE. 19E,
= Edl=F.Az+ AxAz + — (Az)?
] Y
- E, 10E,
= Edl=-FE,Ax — AzAx — — (Ax)?
%z 2 Ox
S o 10F,
= Edl=-FE.Az— — (Az)?
2 0z
OF,
AzAx
0z
YJAzAx =
OFE, OF,




Analog for paths in the x-y plane

and the y-z plane

_OE, OE,
ox oy
OFE. OF,




We can rewrite these three results with the curl operator

culE=0 o VxE=0
o 0 O

2 9Ny (E,.E, E)=(00,0
(ax 99 az) ( wE.) = ( )

a, 3, a,
OE., OFE, OFE, OFE. OFE, OF
0 0 0 z Y T z y x
— |2 o2 2| __ _ , — , — = (0,0,0
or Oy 0= ( Oy 0z 0z or ~Ox Oy )= ( )

An electric field created solely from static charges has no closed loops. Its curl is zero
everywhere.



Q 7

E =
4reg |73
Q (8 z B 0 Y
Are, ay(\/x2+y2—|—22)3 8z(\/w2_|_y2_|_2,2)3’
. . o0 x B o0 z
VX FE 82(\/$2+y2+22)3 833(\/332_I_y2_|_2,2)37
0 J 0 x >
8:{;(\/332_|_y2_|_22)3 8y(\/w2_|_y2_|_22)3
0 (x) _ o EETET
oy\r3) (VPP +22)°
£<E> Yty + 27 22 S
0z \r3) (Vzx? + y? + 22)6

s



2.15: Examplesl

Take a vector field F = Fy(—vy, z, 1).

= o 0 0
curl FF = = Fo(—y,x,1
(0513 y 8z)>< o(—y,z,1)

0. o) o | __ (aFO _8FoCU _(9Foy_8F0 8F0:U

O(Foy)
Ox 0 0z ’ ) _I_
Y oy 0z 0z Ooxr Oz oy

) =(0,0,2F0)




Take any continuous differentiable scalar field & (7).

Calculate curl grad @ (7)

o 0 0 oP 0P 9P

curl grad®(r) = ) , ;
J () (8:6 oy 82) 8 (833 oy Oz

)

I _(3243 0°d  O°PD 0°d 9°P 92D
 ‘9ydz 020y’ 920 Oxdz’ dxdy Oydx

) =(0,0,0)

ob 0P 0P
ox oy 0z

Thus: curl grad ® = 0.



Other identities:

Show that for any continuous differentiable vector field F(7) we have

div curlF = 0

A general rule for vectors is the bac-cab rule:

Ax(BxC)=B(A-C)-C(A-B)
Try this with V:



2.16: Poisson and Laplace Equationsl

We had Gauss’ Law in differential form

E=-VV
This gives
V(v =L o v.vin=-£
€o €o
div gradV = P
€o
(D 9 0y Vavav,
ox Oy Oz or’ oy’ 9z~ e



0’V 9°V 0%V
+° -+ =7
Ox2 0y? 022 €o

We can define the Laplace Operator V2 = (ﬁ : ﬁ) In cartesian coordinates:

0 0? 0?
v2 —
o> + 0y? + 022

Thus we arrive at Poisson’s equation

vy =-F

€o

At points where no charges exist, this reduces to Laplace’s equation

V'V =0

Let’s see how we can work with them.



First find the charge distribution from a given potential:

r 2
Take V = V,exp <— (—))
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Similarly you get
2 2 2
8\/:(4:1/ B 2)exp<—<z>>

0y? a*  a?

oV (4z2 2) exp [ — <5>2
822 gt a? a

- Thus the result is

and

VIV = WG ) - ) ex (— <5>2>

a? a

S (-]

_p(7)




The Laplace operator can act on a scalar field ¢ as well as a vector field F:

0?°d  9°d  0°P
2 —I_ 2 —I_ 2
0x 0y 0 z

Ve =

(V2F,, V?F,, V°F.)

0°F,

0°F,  O°F,

0°F,
+o o + -

O°F, | ®F.  &F  &F,  O°F
Ox2  0vy2 022" 0z 0y> 022’

0 x°

_|_

0 y?

_|_

0 z°

|



It is easy to find the charge distribution given the potential. It is more tricky to find the
potential given the charge distribution.

Can we do it? Not yet. The problem is not yet completely defined. The potential can be
found by integrating the charge density twice. But in each integration you get a degree
of freedom that needs to be pinned down.

Imagine that you want to work out the electric potential in a room. Poisson’s equation
is valid everywhere in the room.

Now assume the room had a conducting wallpaper. That would be an equipotential
surface and the electric field would have to be normal to the wallpaper. If the same
wallpaper were an insulator, the field configuration could look very different.

We need to define the boundary conditions!



Once they are specified we will find that the Poisson and Laplace equations have only
one unique solution:

Consider an enclosed region of space. Let the potential be fixed everywhere on the
boundary. We allow charges inside the volume so Poisson’s equation is valid.

We will now show that Poisson’s equation has a unique solution by assuming it has
two distinct solutions V; and V5 and then showing that V; = V5 everywhere.



Both V; and V, obey Poisson’s equation

v2vi=-2 and w2 =-£

€o €o

On the boundary we have V; = V5, to fulfill the boundary conditions. Now take a
potential V3 = V; — 14

V2V = V2V, -V, =L _(—Py=0
€o €o

V3 fulfills Laplace’s equation inside the volume.

V2V =0

V3 thus acts in the enclosed volume as if no charges were present. Furthermore, on
the boundary V3 = V; — V, = 0. The volume is bounded by an equipotential surface .



Earlier we showed that a region of space containing no charges bound by an equipo-
tential surface contains no electric field, thus the electric potential was constant every-
where within that volume.

V3 is a potential in such a region. It must be constant inside and we know it is zero at
the boundary. Therefore it must be zero everywhere.

We get V; — Vo, = V3 = 0 or V; = V5 in contradiction to our assumption that two
distinct potentials exist as solutions of Poisson’s equation.

Possion’s equation has a unique solution if the boundary conditions are sufficiently well
specified.



2.17: Application: The electric Dipolel

Consider two equal and opposite charges ¢; = @,
q> = —() separated by a distance d. They form an
electric dipole. What are the electric field and the
electric potential of this configuration?

We chose a coordinate system such that the z-
axis passes through both charges and the origin is
halfway between them. Thus #; = (0,0,d/2) and
= (0,0, —d/2).

The electric potential at point  is found through su-
perposition:

V(F:Q<1 - 1)

47'('60 |’I7—’I?1| |’I7—’I72|

V() = Q 1 1)\ _ Q (r-—ry
" _47T€0 ry  T_ _47T€o r-r4




From the figure we can deduce

ri =1’ 4+ d*—2r_dcos?y

ri—r> = (ry+r)(ry —r-) =d(d—2r_cos)

We get an exact solution for the potential:

1 Qd(2r_cosd —d)
e r_ro(r_ +ry)
If the dipole is small compared to the distance at
which we want to evaluate the potential we have
d << r and we can approximate r;, = r_ = r
and ¢ = 9.

V =

1 Qdcosv

d1eg r2

V =



We can rewrite this using the scalar product between the vector # and the vector d
pointing from the negative charge to the positive charge:

1 Qd-7 1 p-7

Areg 713 dmey 13

V =

The quantity p = Qd is the electric dipole moment.

The electric field is easy: E(7) = —VV (7). We chose d = (0,0, d) and thus we
have p= (0,0,Qd) = (0,0, p):
— — — 1 DT — 1 .
E=-vVVv=-v_—_P"T_ g - P72
Amey 13 dmey 713

We get

E

Y Y

( p 3xz p 3yz P 322—’r2>

Adeg 1 Amwey T° 41eg ro



This is cumbersome in cartesian coordinates. We shall
zf L o .
rewrite in cylindrical coordinates (p, ¢, z):
y
)
; xr = pCOSo
/ y = pSing
1P Xz = 2
r = \/x2+y2—|—22 = \/p2C052q5—|—p25in2¢—|—z2

by _ it

N If we also retain the angle 9 between the z-axis and r we
¢ can write z = rcos? and p = rsin?




and

Finally
V=const

p 3z
E — E2 E2 e —_— aj2 2
’ \/ -t Y Aeq o Ty
_ P 3zp
o Adeg 13
__p 3sindcosv
o d1eg r3
352 _ 42
B p 3z r
d71eg r>
p (3cos?d—1)
Ad1eg r3
E¢ pm— O

The electric dipole field falls off as 1 /r>



2.18: Summaryl

The circuital law in differential form is

curlE(7) =0 or V X E(F) =0

We found curlgrad ® =0 and divcurl F = 0.
The Poisson and Laplace equations give the electric potential from the charge distri-

bution p and appropriate boundary conditions:

Poisson: vy = £ Laplace: V'V =0

€o

The electric potential is unique



An electric dipole has a potential

1 J’.—) 1 —).—)
v — Qd-r p-T

Areg 13 Adeg 13

The quantity 5 = Qd is the electric dipole moment.

The electric field of a dipole along the z-axis is given in cylinder coordinates:

p
A1eq 13

E(7) = (3sin¥cosd, 3cos?¥ — 1, 0)



2.19: Method of Images|

We shall use the uniqueness theorem to calculate the electric field and potential in
certain highly symmetric situations.

Consider an infinite conducting plane held at potential V' = 0 in the z-y plane.

A charge @ is located a distance a above the plane at v, = (0,0, a). Calculate the
electric field in the top half of space (z > 0)

Gaussian surfaces won't help, because the symmetry of a point charge is broken. We
could solve V2V = —pq /e With boundary condition V' (z = 0) = 0 but that would be
tedious.



y 4 Consider now the electric dipole:

face. Lets choose V = 0 there.

o Q The dashed line represents an equipotential sur-
a(

V=const The problem now looks exactly like the first one for
z > 0 and from last chapter we know the solutions:
The electric dipole field.

V2V = —po/eo is solved for z > 0O with the same
— boundary conditions, thus the uniqueness theorem
says it must be the only solution.

Furthermore an image charge must be induced in
the conductor. Can we calculate that?

V=const



Remember we found earlier that the electric field is normal to any equipotential surface
and that the magnitude is equal to the surface charge density o /¢o:

In our case that means E(z = 0) = (0,0, E.(z = 0)).

We cannot just use the solution for the field far away from the dipole because it has a
pole at the origin.

—

S .
47T€0|’I°—’I°Z'|3

— _Q (ZB,’y,CL) _I_ Q (x,y,—a,)
Areo (Vx? +y? + a?)®  dmeo (V2?2 + y? + a?)3
—Q a —Q a

E, =

2meo (V2 + y? + a?)3 B 2meo (v p* + a”)3

Which in turn gives us the charge density

g = —Qa
-~ 2n(V/p? + a?)3




Second Example:

A long thin wire is uniformly charged with a charge density . Its electric field can be
found from Gauss’s law with a cylindrical surface around the wire as

A
2rrz E(r) = el
€o
or
A
(1) = 2TeQT
and
—A
Vr) = Inr
TTED

if we choose V' = 0 at infinity.



V=const

V=const

We now take two wires parallel to the =z-axis
crossing the z-y plane at ¥ = (4p,0,0) and
7> = (—p, 0,0) with charge densities +\ and —A\
respectively.

The potentials add to give V (7) = Vi(7) + Va(7)

—AIn(|7 = 7)) n AIn(]7 — 7))

2Teo 2meq

A |7 — 75|
In —> —_
27'('60 |’I°—’I“1|

V(r) =




'y First the trivial solution:
V=const

2Te€q \/(33+p)2+92
V =const = In
X A \/(CE—p)Q—FyQ
E
e _ 1 @ttty
5 2 (z—-p)+y
Ay
V=const
- (@+p)?+y = (—p)P+v°
4zp = O
—A .’Ib : 4 .
—x =0

An equipotential plane in the y-z plane.



We will now show that the equipotential surfaces are circular cylinders with radius a
centered on a point at distance D = /p? 4+ a? from the origin:

2 1 2 2
" v — const = = In (z+p)*+y

2 (z—p)?+9°

A cylinder of radius a around D = (y/aZ+ p?,0,0) is given by a? = (z — D)2 + 32
or y> =a*— (x — D)=

The argument of the Inis:

(z+p)P+a*—(x—D)> 24 2zxp+p°+a®>—2>+4 22D — D?
(r—p)2+a2—(x—D)2 22—2ap+p>+a2— 22+ 22D — D?

But D? = p? + a?



This leaves

2c(D+p) D+p
2¢(D —p) D —p

— const

and

A D A D :
TP = n TP = const on these cylinders.
2Te€g D—p Areg D —p

The electric field follows.

This can be used to solve electrostatic problems involving planes and cylinders, e.qg.:
What is the capacitence per unit length between two long circular wires of radius a with
equal and opposite charges +\?



We can choose image charges as before through = +p
with p? 4+ a? = D? and have exactly the previous situation.

The potential on the surface of each wire is

Ly
Vi = =2 InD+p
) A "7 4me, D-—p
v[) DQJ X
A D
LAV =V, -V = n(2te
2Teq D—p
y 2Te€g D? — p?
V=const
_ A Dty
] 27meg a?
Y ,'[/:; | — Lln (D + p)
P Xr TTE€Q a

Finally we get for the capacitance per unit length:

A TE TEo

AV T () T ()

a




2.20: Gauss’ and Stokes’ Theorems|

We remember without proof two general theorems:
Gauss’ theorem (also called divergence theorem):

For any closed surface S bounding a volume V' and a vector field F’ defined everywhere
in V' and on S which is continuous and differentiable we have

fﬁ@:/divﬁdv
S 174

Stoke’s theorem:

For any oriented surface S bounded by a closed curve C' and a vector field F' as above
we have

Compare with 1 dimension / P dz = f(b) — f(a)



2.21: Summaryl

In certain cases we can use the method of images to find the solutions to the Laplace
equation. The uniqueness theorem ensures that any solution found is unique if the
boundary conditions are sufficiently well defined.

The equipotential surfaces around straight wires are cylinders, the equipotential sur-
faces around point charges are spheres.

Gauss’ theorem (also called divergence theorem):

fﬁ@z/divﬁdv
S Vv

Stoke’s theorem:



2.22: Steady electric currents: The concept of electromotancel

A steady current consists of charges moving at uniform velocity. We describe it through
the current density j = ngt = —ned

n: density of charge carriers (conductive electrons)
—e: charge of an electron (charge carrier in most materials)
. velocity

The current I through any surface S is the net charge that passes through the surface

per second:
1=[jds
S
Units:
Current: charge/time = Coulomb /s =Ampere

Current density: current/area= A m=2
Note: 7 is a vector, I is not!



Take any conductor maintaining a steady current

/3’@=/3”d_5'
S S’

In most materials the charges move in the direction of the
local electric field:

—

j=0FE o is the conductivity (in 1/(Qm))

This is the differential from of Ohm’s Law.

1=/fﬁ=0/f7d_
S S



Materials may be oriented, and the conductivity may be a function of the crystal struc-
ture. In general o will be a tensor (i.e. a 3x3 matrix) that takes any such material
properties into account:

j=oFE

IIQ

In this course we will not concern ourselves with such media.

If the electric field is generated by a constant potential difference (e.g. a battery) in a
uniform conductor then |E| = V/I and we get

I—o—/dS—a—

The resistance is then

The resistivity p and conductivity o are directly related: p = 1 /0.



As the current density deals with moving charges and charge is conserved we can
derive a conservation law:

Consider a volume V bounded by a closed surface S containing charges p(#,t) mov-
ing at velocities v (7, t)

The total charge inside V' at time ¢ allows us to calculate the net current out of the
volume:

QW) = [ p(Fyav

d d .
QM) = / —p(F AV

The current density is 7 = p(7,t) - (7, t)

and the net flow out of the volumeis I = §.5d S



We use Gauss’ theorem to rewrite

r={jas=[dvjav =T o
S v dt

. d
—>/divjdV=—/—pdV
1% vdt

or

. = dp
div) = ——
7T Ty

For steady currents any charge lost gets replentished
d

> —p=0 — divj=0 or %}dSzO
dt S

How do we maintain a steady current?

We need a source of eletromotance (EMF).



In this course we will not concern ourselves with the
internal working of generators or batteries but will
adopt a general source of electromotance. It has two
terminals A and B and maintains both at constant
potentials V, and V3.

Then E=Vs -V,

Consider now a closed circuit.

We have E=IR
Or in general: > & = X I; R; round a closed
loop.

This is Kirchhoff’'s second law.



Kirchhoff’s first law is:
At any junction we have > 1, =0.

Consider the shaded volume. The net flow of
charges out of this volume is I, + I, + Is. How-
ever, the situation was steady, so the total charge in
the shaded volume has to be constant.









3: Magnetostatics in vacuum'

Experimentally we know of magnetic effects and fields mainly through the forces on
other objects. However, we already saw in our discussion of electrostatics that the
definition of a field via a force can be problematic. Although this approach is still some-
times used today to maintain the historic perspective, we shall not burden ourselves
with it and choose the magnetic field itself as the starting point of our discussion.

What is the electrostatic analogue of a charge? There are no magnetic monopoles,
and to start from the dipole makes the whole discussion unneccessarily complex. We
choose the Biot-Savart law as a starting point which establishes the current element
as a “source” of magnetic field. It is well rooted in experimental data and we shall see
later that it indeed derives from Coulomb’s law and special relativity.



dB

3.1: The Biot-Savart Iaw|

The Biot Savart law allows us to calculate the con-
tribution dB to the magnetic field B from a current
element Idl:

dB =" Jix 7
473
The current element dl is located at 7., the magnetic
field is evaluated at 7, and the vector ¥ = 7y — 7.
points from the current element to the place where
we evaluate dB.

The proportionality constant u, depends on the
choice of units. In Sl units we have:

o = 47 x 107" H/m[= Ns?/C? =kg m/C? =Am/(Vs)
=Vs2/(Cm) = m/€2s =...]



dB

In practice we will always integrate over macroscopic
currents, I.e. entire circuits. Thus we get

pol
c4n(|ro — 7.|)3
If the current is extended over a volume we can
rewrite the Biot-Savart law in the following way:

B(#) = dl x (7o — 7.)

-

B =/ X —7.)dV

To —T¢

Note the cross product. If the current element stems
from a wire then dl, 7 and d B will form a righthanded
system.



3.2: Example: straight wireI

We calculate the magnetic field at a point 7o = («x,y,0)
caused by a straight wire running from a to b along the z-
axis carrying a steady current 1.

The current element Idl = Idz3, at 7. = (0,0, z) corre-
sponds to a current flowing in positive z-direction.

Bry=[dB = [h 4. x (o —7c) .

a 47'(' (|7?0 —'Fc|)3

_ b/*LOI (—y,a:,O) d
e z Az

a 4 <\/:I:2—I—y2—|-22)




We have done such integrals before and found:

b dx x ’
/a (mf - [kQ\/mL

Thus we get for the components of B:

B b ol —ydz . —ypol b B a

0 Ja 4x (\/x2_|_y2_|_22>3_47r(332—|—y2) V2 F 2+ 02 V22 Fy? F a?
B = b ol xdz . x ol b B a

Y A P <\/x2-|—y2—|—z2>3 CAn(2 ) \ VP F R+ 2 V22 F v +F a?
B. = 0O

SN /,Loj b _ a _ . _
B(TO)_47T(332+y2) <\/$2+y2+b2 \/x2+y2+a2>( y,x,O)—Bo( y,CC,O)



For an infinite wire we take a = —b and let b tend to infinity:

S0 pol b ) —b B
B(r) = bII—E?O47r(:132—I—y2) (\/xQ_I_yQ_I_bQ \/xQ_I_yQ_I_bQ)( y,x,0)
_ pol
- 27_‘_(332 + yz)( Y, T, O)
Bl = =t

2w/ 2% + y? - 27p
The last form again makes use of cylinder coordinates.

The field lines do form right handed circles around the wire.



3.3: Example 2: Field on the axis of a circular coil

Here we shall consider a circular loop of radius a in the
y-z plane. The loop carries a current | moving clockwise
looking in positive x-direction and we want to evaluate the
magnetic field on a point 7o = (x, 0, 0) on the x-axis.

We can parametrize the loop with the angle ¢. Then the

2 line element dl at 7, = (0,acos¢,asin @) is
A d dl = adg (0, —sin ¢, Cos ¢)
T'c |
) and
VAl x 7 = adg (0, —sin¢,cos¢) X (x,—aCoS @, —asin @)
= (a®,xa CoS ¢, zasin ¢) do




The magnetic field then becomes

B(r) — ,u_oI/27T (a2, ax COS ¢, ax Sin @) do
° 47 Jo (mf
I 2
— e —Y
2 ( x’ + a2>

An application are Helmholtz coils. In experiments one often wants a homogeneous
magnetic field in a certain region of space while retaining easy access to any ex-
perimental apparatus placed in this region. Here Helmholtz coils are important: Two
identical current loops with radius a are placed a distance a apart. The magnetic field
on the axis is very homogeneous over a large region of space.



L : Using the results we just obtained we
a Bla X get for the magnetic field
a
2 2
B(7 = (2,0,00) = 2 ¢ -+ - ;| a,
_<\/(az—a/2)2—|—a2> <\/(ac—|—a/2)2—|—a2> |

In the center between the coils we get the field:

2 2
B(r=0) = & 4+

2 l(eata) (Jeata) ]

|Q))

/,l,o_[CL2 ~ 8/1:0-[ —

aa: - gx
a3, /5/43_ av 125




3.4: SummaryI

The current I through any surface S is the net charge that passes through the surface

per second:
I:/]’d
S

The differential from of Ohm’s Law:

j=cE o is the conductivity (in 1/(Q2m))

Conservation of charge:

. = P
divi = ———
T Tt



Kirchhoffs laws in circuits are:
15t law:

At any junction we have > I, =0.

2nd |aw:

> & = > I; R; around any closed loop.

The Biot Savart law allows us to calculate the contribution dB to the magnetic field B
from a current element Idl:

— I —
diB =M1 g« 7
43

o = 4w x 107" H/m [= Ns2/C? =kgm/C? =Am/(Vs) =Vs?/(Cm) = m/S2s =...]



In practice we will always integrate over macroscopic currents, i.e. entire circuits. Thus
we get

- I,LOI - - -
B =/ dl X (rog — .
(7) o an(|7 — )3 (7o )

If the current is extended over a volume we can rewrite the Biot-Savart law in the
following way:

B(7) 7 x (7 —7)dV

— [
|% 47T(|??0 — ’FC|)3



3.5: Forces between Magnetic Field and Current'

The force on a charge Q, in an electricfield E was F=Q-E

What is the force on a charge from a magnetic field B?

F= QU X B
This form is supported by experiment and has been shown to be correct to great accu-
racy. We can derive it formally from the Coulomb force using special relativity.

In the presence of both electric and magnetic fields the total force is the Lorentz force:

F=Q(E+7x B)

@ @ This allows us to investigate the forces on currents in mag-
f netic fields:

|
F——/pfﬁ’deV——/ijdV
Vv Vv

V
@ B @ or, if we take a current throughawire F = [, IdL x B



3.6: Force between Currents|

The Biot-Savart law gave us a magnetic field as a consequence of currents. The
Lorentz force gives a force as a consequence of the presence of a current in a magnetic
field. So can we derive the force between two current elements?

First, call the magnetic field at 7> due to I dl,

|1 dI1 o dB = Mo IlCﬁl_'X (7?—?71)
dF +|2 4 |75 — ’r1|3_)
The Lorentz force between I, and dB is
i . 1> d°F, = Ldl.x dB
dB
4P — poliLdly x (dly x (7 — 7))

47T |’l?2—’l?1|3



This is a second order differential — to get the force between two finite circuits we have
to integrate over both dl, and dl,

~ LI dlo x (dly x (7 — 7
—>F12:]{ Holiln Al (_}1 E"‘z 7“1))
L, J L, 47T |T2—7“1|3

If we denote the force element on Idl, caused by I.dl; by d 2F,» then we can see
that

d2F, # —d2F5

However, if integrated over the whole circuits we get Newton’s law back:

— —
F12 — —F21



— . MOI]_IQ ]{ f dlg X (Cﬁl X (7?2 — 7?1))
Fi, = = =
L /L, |75 — 713
_ Mollfz ]{ f{ dll(Cﬁz'(’FQ—ﬂ)) —(7?2—771)(@1'6712)
L J L 7 — 713

The first part of the integrand gives no contribution:

dlldl2 (7"2—?"1) _ —Zlyi CﬁQ-(’FQ—’Fl)

Lo |7 — 713 |72 — T1[3

This looks like a closed loop in the field of a static electric charge. But we have shown
that the integral around any closed loop in an electrostatic field vanishes. We are left
with

—* ,Uollby{]{ —(772—7?1)(6?21'(222)
LiJL> |’I?2—’I71|3

This is symmetric.



We can now calculate the force per unit length between two infinite straight wires sep-
arated by a distance d carrying currents I; and I,. We choose one wire to lie in the
z-axis and the other to pass through the point (0, —d, 0). We already calculated the
field B caused by an infinite straight wire lying on the z-axis to be

=, Iipo
B(7r) = —y,x,0
N s R
This gives the magnetic field at the position of the other wire as
- I o Iipo
z B(r= Oa_da — d,0,0 — ax
(= = 5@y P00 = oy

The Lorentz force on a piece of wire dl> = dl,a, becomes

B} L. LI Lo .
dF, = Ldl, x B = 122“°dz(az xa)=—2My.3

md 2nd 7
Or integrated over a length I:

- . 111> ol
P o= / dF, = 1420
0 2md

towards the first wire! Two parallel currents attract each other.

a,




If we choose I, = I, =1A,d=1m, [l = 1m we get

L 1A-1A-1m-4x x 10-"N/A?

=2x 10""N

|

2m-1m

This is the Sl definition of the Ampere:

“One Ampere is that current which, if maintained in two straight parallel conductors of
infinite length, neglegible cross section, placed 1 m apart in vacuum, would produce
between these conductors a force equal to 2 x 10~ N per metre of length.”

Sl units so far:
Current
Charge
Force
electrostatic Potential
electric Field
magnetic Field
resistivity
permittivity of free space
permeability of free space

S v << o~

=
o

A

C = As

N = kgm/s?

Vv = J/IC = kgm?/(As3

Vim = N/C = kgm/(As3

T = Wb/m? = N/(Am) = Kkg/(As?
2m = Vm/A

8.854x107?2 As/(Vm) = A2s*/(kgm?3)

47 x 107" Vs/(Am) = kgm/(A%s?) = Tm/A



3.7: Examplesl

Consider a charge ¢ moving with a velocity v in a homogeneous magnetic field: B:

—

B = Boaz 77 — (Uxa Vy, UZ)
The Lorentz force is
F = qU X B = qBo(vy, —v,, 0)
F = m(%&,4,%) = qBo(v,, —v,, 0)

No force acts parallel to B, we have uniform steady motion in z-direction. In the x-y
plane we get

mx = qBoy

my = —qBox
It is easy to show that x(¢t) = Asin(wt+¢o)+xoand y(t) = A cos(wt—+ ¢o)+yo are
solutions of this system of equations. The initial conditions determine the constants:
w = qBo/m, A =m,/v;+ v;/(gBo) = mv./(qBo)

These are circles in the x-y plane. Together with the uniform motion in z-direction the
most general motion of a charge ¢ in a uniform magnetic field B is a helix around the
magnetic field direction.



3.8: Velocity Filter|

| :+ : The Lorentz force is F, = Q(E + @ x B).
| Es? i i If we choose FE = Fa,, @ = wva, and
—> . .’ > ~
F¢ B = Ba, we get
E

@B@r

'F, = Q(E,0,0) + Q(—vB,0,0) = Q(E — vB)a,

The Lorentz force vanishes for v = E/B. This configuration is called a Wien filter. It
Is extremely useful in experiments with charged particles.

A heavy ion with a velocity v enters a Wien filter with a magnetic field B = 0.2 T and
an electric field with 200 000 V/m.

Vv



3.9: SummaryI

In the presence of both electric and magnetic fields the total force on a moving charge
is the Lorentz force:

= Q(E + @ x B)

The force between two currents is

—* ,Uollby{]{ _(FQ_Fl)(Cﬁl'CZZQ)
L, J Lo

|7 — 713

The general motion of a charged particle in a homogeneous magnetic field is a helix:
Uniform motion parallel to the magnetic field and circular motion perpendicular to it.



4: The magnetic dipole fieldl

We know thet the far field of the magnetic and electric dipole look identical. We could
calculate the magnetic dipole field from the Biot-Savart law, but that is tedious and
iInvolves several approximations for the far field. Instead we found that we could write
the electric potential for the dipole as

Va = L ﬁ r

ey 13

If we define a magnetic dipole moment m can we use a similar potential to calculate
the magnetic dipole field?

The magnetic dipole moment of a closed circuit with area A carrying a current I is
m=1IA

Here we follow Duffin’s notation and the “Sommerfeld convention”. In other texts the
“Kenelly convention” is used where m = uol A.

The torque on a magnetic dipole m in a homogeneous magnetic field Bis

—

T=m x B



The magnetic scalar potential would then become

. Mo T - T
Vmag_—
A 13

From this we instantly get the far-field of the magnetic dipole in cylinder coordinates:

om (3cos? Y — 1)

41 r3
tom (3 cos g sin )
B, =
41 r3
B¢ = 0

in complete analogy to the electric dipole.

Is V..., @ “good” potential? If so, the integral around any closed loop must vanish, and
V' must have a single value at each point.



For the electric dipole we know that is true. But look closely:

E
fﬁ-ix:o }[B’-J‘l;&ou
L L

A general scalar potential does not exist for the magnetic dipole!



We have seen that any path that goes through the current loop has a non-zero contri-
bution. What is it?

Take a special case: a long straight wire along the z-axis carrying a current I. We have
earlier calculated the field to be

— lj,o_[
B(x,y,z) = —vy,x,0
(z,y,2) 27T(xz_l_yQ)( y,x,0)
or, in cylinder coordinates
b d I . .
B(p,¢,z) = ;LL% a,a,, a, form a right handed coordinate system
Tp

) Take a circular path at constant distance p around the wire:

— — I 2 I
$Bli=4¢ 2%, pdsa, = [ L2 do = pol
L

L 2mp o 27




Il Take a general path around this wire:

X
[

p(®) d¢é¢ + dpép +dza,

2w ,LLOI
o 27mp(¢)

8,(p(¢) dp8, + dpd,+ dz8,)

2w ,LLOI
o 27mp(¢)

p(¢) dqb 3¢ ) §¢,

I 2
= B [ dp=1Iu,  independent of the path

21 Jo

This is Ampere’s law in integral form

ECZZ — ,Ll,oI
L



By choosing §dl — [ d¢ we explicitly allow only
one complete loop around the wire.

If we take many wires each carrying a current I their
magnetic fields superimpose and the contribution to
the line integral comes from all wires enclosed by
the path

= 3pol

Duffin calls such closed paths enclosing a bit of cur-
rent an Amperian path (in analogy to the Gaussian
surface).



4.1: Ampere’s law in differential formI

We can easily transform this into a differential form:
%B)Cﬁ = /Curléd—g = ,U/oI: /Lo/;d—s
L S S

— curl B = poj

Compare this to the equivalent electric law:

curlE = 0

The latter allowed us to define a scalar potential for electrostatic situations. The former
makes it impossible to do the same for magnetostatics.



4.2: Examplesl

Wire of radius R containing constant current density ;7 = j a.

For p > Rwe know B = (uoI)/(27p) &,

For p < R we choose an Amperian path of radius p around the axis of the wire.

HoJTp* _ pojp _ polp
21p 2 21 R?

]{chl = o | jdS = pojmp® — |B| =
S

Ap .
polp

é — (=)
21 R?




We now calculate the magnetic field of an toroidal
solenoid with N coils, radius a carrying a current I
Path C, inside the solenoid:

fgoﬁ:m/;d:‘q
C1 S

—

B|-27R = N1 po

NI,LLO

N T Mo
27T R

—|B

x  Explicitly

N IIJ’O (+y7 — L, O)
27 (22 + y?)

B =

QOutside (Paths C, and C5):



4.3: Magnetic flux through a closed surface|

In Electrostatics we had
]( Bds = [ Lav
S

V €p

What is the equivalent magnetic form?

If we take any number of electric dipoles fully enclosed by the surface S we know
EdS =0
because the net charge is zero. We also know that the far field for magnetic and electric
dipoles is identical if we substitute
. . 1
m<+<>p and — < uo
€o
Thus for any surface enclosing complete magnetic dipoles

féd?;:o



But we ran into trouble close to the dipoles earlier. Therefore we shall try a different
approach.

We had earlier seen

By =t [1XT 4y

Arn v |73
We will write that as
Iﬂ
Proof: We calculate
V X (—) — curl =
|7 7]
o 0 0 a, a a.
= (7= 7 =) x( - )

Ox Oy 0z Vi P+ 22 VP F P+ 27 Py 2

0 a —Ta —Ta .
— — from tutorials

ox /x> + y? + 2° <\/a:2—|—y2—|—22>3 r3




a @y 2 Gz QT GT | Y
—ocurl— = (- T >
r ( r3+7“3 r3+r3 7“3+7“3)
1
= E(ayz—azy, a,xx — A, <, a'ivy_a’ym)
1
3
. X 7T ﬁx_f
— B(7) =&/] dV——O/ Lav
47 Jv 13 4 T
SN j
B(F) = —VX/ L av

B can be written as the curl of something else. But since div curl ¥ = 0 for any F

—~ divB=0



This is valid in the presence of all magnetic effects that can be described via the Biot
Savart Law.

Starting from divB = 0 we can derive an integral from via

o=/0dv=/div§dv=]§§d§
Vv Vv S

— ]{Ed_é =0 forany surface

— Magnetic field lines must form closed loops, they do not begin or end anywhere.
There are no sources or drains of magnetic field lines!



This is a complete set of Maxwell's equations for steady conditions in vacuum:

In integral form: in differential form:

%y{éd_;}S’:O diVEZO
S
LBdl = ol culB = poj
fﬁcfs - ¢ dviE = P
S €o €o
Edl = 0O curlE = 0

L

In addition we had these important equations: L —dp
divi = ——
dt
F, = q(E+7x B) j = oE
B — o Idl xr P = qQ-q T

Ar 73 Ameo |r|?



4.4: The Vector Potential|

It was very useful to have a potential for E. We already know that it is generally
impossible to define a similar scalar potential for B.

Magnetic
Electric S
S = HoJ X T
S B = A%
B o= [P Ly Sypme
v 4meq|r|3
= Po J
= 1 = Vx [ —2dV
= -V Pav vAmr
v 4megr
e Ho 5
— p A = ——=dV
V, = / dv mag
l v Amegr vamT
FE = _vvy B = VxA

A is the magnetic vector potential



V was not unique: V' = V 4+ const gave the same E .

—

A is not unique either:
14’/
V x A

<t >y

_|_
X

NS

+§xﬁ

The last part vanishes if an F = Vo for any scalar field . Thus we can add the
gradient of any scalar field to A and obtain an alternative vector potential that gives the
same magnetic field B:

<

ﬁxﬁf-l—ﬁxﬁ
B4V x (V&)
B+0

<
X
Il

The vector potential now will offer similar advantages to calculations with magnetic
fields as the electric potential.



B = Boa, = curlA
0, 0, g
oy 0z
424 — ¢
0z 88
i14 ——Ax — BO
ox oy

A, =Box A,=A. =0 A, =(0,zB,,0)

or Ax — —Boy Ay — Az =0 14_.’2 — (—y Bo, O, O)

1 1 — _yBO xBO
A, = ——yBy, A, =—xBy A, = Az = :
o Y0 ST 5T s = ( 2 2

,0)



gun

[ ]

A A
B

I H

W,
|
o O
w;
o O

n ++

Is it real? Yes! But the experiment is difficult.
1957 the Aharonov-Bohm effect was experimetally
demonstrated.

Take a double slit and fire electrons at it. The matter
waves will diffract and form a double-slit pattern
behind the slits.

Now we introduce a magnetic field in the space
between the slits such that it is zero everywhere
where electrons can travel, i.e. a toroidal solenoid
The electrons cannot interact with B, but if they
interact with A, we should see a change in the
interference pattern.

— Justas V,;isreal, A is real!

Its dimensionis Tm=Vs/ m=N/A



4.5: SummaryI

The complete set of Maxwell's equations for steady conditions in vacuum:

In integral form: in differential form:

_>7§§dfg = 0 dvB = 0
S
> Bdl = pol cul B = puoj
fids = ¢ avE = P
S €o €o
Edl = 0 curlE = 0

L
In addition to the electric potential we defined a magnetic vector potential:

Ay = [ Zlay



4.6: Dielectrics|

We will now investigate what happens if we intro-
duce a piece of insulating material into an electric
field E. The material is made up of charged
particles, positive nuclei and negative electrons,
thus we expect some influence on the material.

Consider a neutral atom with Z electrons and Z
protons.

E—

_ We obtain an electric dipole moment p = Zeda,
where a; is a unit vector in the direction of E .

If the insulator has a density of N atoms per unit
_ volume the total electric dipole moment per unit
E . ~
= —— volume becomes p = N Zeda,.
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As all negative charges move against E and all
positive charges move with E , we build up surface
charges: Consider a small unit volume inside the
insulator.

It's net charge is zero. If an external electric field is
applied, its net charge remains zero. But consider
the small strips of width d at either end of the
volume: If one near the entrance of E is to remain
neutral then atomic nuclei have to have to move into
—= it. If this strip is at the surface of the material that is
impossible and it will contain a net negative charge.

|

_ Similarly on the other side. Electrons have been
E sucked out of this strip, and at the surface of the ma-

+ —— terial they cannot be replenished, therefore we build

up a net positive charge.



How big are these charges?

)O0/0L
NO0I0L
D(OE(
DOOE(

The shaded small volumes have a
thickness d and a surface area dS.
The charge density of electrons was
—N Z e, thus the total charge in this
volume is

IAYAYAYA
AN ANT AN

—NZeddS = —NpdS

This is equal to a surface charge den-

Q.

%@ W — sSity
<\9®@@<§> o=-Np
(9@@@(5) Similarly the other surface acquires a
BIOI0I0I0 surface charge density
LOOOOG E o= +Np

I
+



a=d cos?Y

If the surface d.S is not perpendicular to the direction
of the E we still have

p=N Zeda;
The total charge in a surface element of thickness

a = dcosis

NZeadS NZedcosddS

NpdS = PdS

P is the dipole moment per unit volume of the mate-
rial. We call P the polarization. The surface charge
density can then be written o, = + P. The polariza-
tion will depend strongly on the material:

—

P = XeEOE

X. IS called the electric susceptibility of the material
and is dimensionless.



In general the same arguments apply to the suscep-
tibility as to the conductivity: It need not be a scalar

constant. Generally it will be a tensor. In this course

we will again only consider media in which x. is a
real number: Linear, isotropic and homogeneous

(LIH) materials.
= We shall now examine a plate capacitor with a
-0 ® dielectric material more closely. First we look at the

inside of a slab of dielectric in a electric field:

The electric field inside the dielectric is reduced be-

cause field lines can now start and end on the in-
duced surface polarization charges. If you look more
closely you will note that the electric field from each
dipole is oriented opposite the external field. The
net field is the sum of both, and we get a reduction
of £ .



XY

+0A

We can now introduce this slab into a plate capac-
itor with two parallel plates a distance d apart with
surface area A.

Without this dielectric slab we have a charge Q =
+o0A on the plates and the electric field inside is
constant: Fy = o /¢, from Gauss’ Law:

— — — — A
%E-dS:E-A:Eongaxza—%:EO:g
S €o €o
d _ d
AV:—/ Ed_l:-/ Fod. - (—dzd,) = Eod
0 0

And the capacitance
° AV Eud Zd
EoA

Coz d



Now the slab of dielectric enters the space
between the plates leaving a tiny gap on
either side. We keep the potential difference
fixed at AV. Polarization charges appear
and in the vast majority of the volume the

XY

electric field is reduced:

ymy

The Gaussian surface now encloses the
charge (o0 — o0,) A which leads to an electric
field E = (0 —0,)/€0 = (0 — P)/eg

>

+GA If we keep AV constant (via a battery) the o
must change:

—-cpA —GA
0 =¢E+P=¢cFE+x.eE =e(l+x.)E



The capacitance is now

oA
AV

eo(l 4+ x.)AE
Ed

— CO(]- _I_ Xe)

We call (1 4 x.) = e, the relative permittivity and write C = (A/d)eqe,.
Introducing a dieletric into a capacitor increases the capacity by e, = (1 + x.).

Thus we could also write P = e,(e, — 1)E



We can now turn to the more general case
of dieletric material in a non-uniform eletric
2 field. In addition to surface charges o, we
B (%) P (x+5) might also get a volume charge distribution p,.

|6z Imagine this small cube inside a neutral

B R/ dielectric. Suppose it is placed in an electric

B R B field so that it acquires a polarization P. If the

, Ty electric field is non-uniform it will result in a
. s x = non-uniform polarization.

Assume that P, changes by 6 P, over the length of the cube dz, we get for the charge
flowing into the left hand side P,(x)dydz and for the charge flowing out the other side
P.(x + é6x)dydz. Thus the net charge flowing into the cube is

P.(x + éz) — P,(x) 5 OP,

o x| dyoz = — 8; dxdyoz

[P.(z) dydz — P.(x + dx) dydz] = —



P, (X+35 X)
\

_____
-

____________

oz

X+

oX

Similar arguments apply to the other faces
and we get for the net polarization charge ac-
quired by cube via all faces:

8x+8y+8z

In the entire material we find a macroscopic
polarization charge

P, P P,
- (8 of, L 9 > 0x0Yydz = p, 0x0Yoz

ppz_ﬁ'ﬁ

Is this material still neutral? We can add all
surface and volume charges to obtain

fapdSJr/ ppdvzfﬁdis*—/ divBdV = 0
S \% S 1%

The last step uses Gauss’ theorem.



4.7: The electric displacement field ﬁl

In the most general case, the dielectric may contain both polarization charges p, and
free charges py, i.e. carry a net charge.

All these charges need to be considered in Gauss’ law:

€o €o
Pf — leﬁ

€o

We can rearrange this as
o divE + divP = p;

We define the electric displacement D:

D=eE+P



And Gauss’ law in the presence of dielectrics takes the simple shape
leﬁ = Py

In D all polarization effects are already taken into account.
The units for D and P are C/m2.
We can also write

D= eoﬁ -+ P = eoﬁ -+ XeGOE = (1 + Xe)E — eoerﬁ

In integral form Gauss’ law in the presence of dielectrics becomes
/divﬁdvz j[ﬁdis*z / s dV
|4 S \%

The flux of D through any closed surface is equal to the net enclosed charge.



4.8: Example'

We calculate the capacitance per unit length of a coaxial cable consisting of concentric
cylindrical conducturs of radii a and b filled with a dielectric of relative permittivity e,.

A cylindrical Gaussian surface allows us to calculate the magnitude of D between the
cylinders:

%Dﬁd_:g = 2xrhD(r) = 2waho;
S

D) =2
r

We can use symmetry arguments to find that
D is radial:

D(r) =g,

r
Or
ao ¢ _.




The potential difference becomes

AV = dr = 277 In(b/a)

a €Q€, T €o€,

Finally we get the capacitance

Q _ of2mwalL
AV “In(b/a)

€€y

C =

2mepe, L
In(b/a)

Finally the capacitance per unit length is

C 2TeQE,

¢ = L~ In(b/a)




4.9: Behaviour at Boundaries|

We now study the behaviour of E and D at the boundary between two dielectrics with
relative permittivities e; and e,. The boundary can also carry a net surface charge o.

Consider the volume enclosed by the small cylinder. We know
y{D—*d_S — / odV = ﬁl'd§1+ﬁ2‘d—gg = odS
\%

DQJ_dS_D]_J_dSZO-dS

— DQJ_—DU_:O'

The normal component of D across a bound-
ary is discontinuous by o.

If o = O the normal component of D across
a boundary is continuous.



The components parallel to the surface can be investigated via the circuital law:

Edl=0
L
E: d, i Eidli + Eodly = (EBy — Ey) dl = 0O
A N >| S 10l 2 Qlo __, 1| 2| =
< \ Y eo The components of E parallel to the boundary

di, \gz between two dielectrics are continuous.



4.10: Summaryl

The polarization is given by

—

P = Xeeoﬁ

X. IS called the electric susceptibility of the material and is dimensionless.

The capacitance of a plate capacitor with dielectric is

A g€,
d

O =

We call (1 4+ x.) = e, the relative permittivity

The polarization is related to a polarization volume charge density via

divP = —p,



We define the electric displacement D:

D=e¢E+ P

And Gauss’ law in the presence of dielectrics takes the simple shape

divD = p, fﬁd@ — / s dV
S |4

The normal component of D across a boundary is discontinuous by o.

The components of E parallel to the boundary between two dielectrics are continuous.



4.11: Force on a dielectric|

If we take a plate capacitor and partially fill it with a
dielectric, what will happen?

e Experiment shows that the dielectric is pulled
into a region of high electric field.

e To see why, we will calculate the field and
energy in a capacitor partially filled with a
dielectric.

e Then we find the force on the dielectric as the
negative gradient of the energy.




The energy of a capacitor comes from the buildup of charge and is supplied by an
external source (battery). The energy needed to store additional charge dQ@Q onto a
capacitor plate at potential V' is V' dQ.

Q
0

Using C = Q/V , dQ = CdV and C = ¢y, A/d for a plate capacitor we
rewrite

v 1 102
Uy = / viedy' = toyr = 19
0 2 2C



€rOp

1.2

=9

Now we must deduce the exact field configuration in
the capacitor if it is partially filled with a dielectric.

The rectangular plate has an area A = x¢ - yo. The
length of vacuum (or air) in the capacitor is x.

We can treat this as two parallel plate capacitors, C;
with dielectric and C, without it. We get

O, = 6067“(515'0 — CU)yo C, = €o L Yo
d d

The total capacitance is just the sum of the two:

€0 Yo €0 Yo

C=0C+C, = y le,(zo—x)+z] =

[ErCC‘o _Xex]



We shall first assume that the capacitor is disconnected from a battery and therefore
holds a constant charge Q),. The energy stored in the capacitor is

g 1@

2 C
We need to calculate the force on the dielectric, which we get as the negative gradient
of the energy:

- L . . dU
F=-VU or, just in x-direction F=_-——
dx
p—_ U _ dUdC _1Q;dC _ V*dC
dx dC dx 2C? dx 2 dx
@zieoyo[em B CC]z_eoyoxe
dzx de d =" Xe d

So we get the force on the dielectric as

_ VZeo Yo Xe
2d

F =

into the capacitor!



What happens if we keep the potential constant, instead of the charge on the plates?

If we connect an external battery it will also do work as the charges rearrange them-
selves in the presence of the dielectric. This extra work must be taken into account.

Without the work done by the battery we get:

d d 1 V2dC
F — ——U = ———VQC e
dx dx? 2 dx

which seems to imply that the dielectric is pushed out!

But if we add the work done by the battery on the charges Wi..;: = [V dQ we get

d V2dC dQ V2dC dC V2dC
F: _—Wo —_— V—: — T VQ—: —
de 2d:c+ dx 2da:+ dx +2dx

as before. The dielectric is still pulled into the capacitor.



4.12: Magnetic Materials'

The spectrum of magnetic materials is far larger and more varied than that of di-
electrics. We distinguish

diamagnetic Carbon, Silicon, Plastic, Glass
paramagnetic Sodium, Bromine, Aluminium
ferromagnetic Iron, Nickel, Cobalt, Gadolinium
antiferromagnetic WO;

ferrimagnetic Certain iron oxides

These in principle need individual treatment and whole branches of solid state physics
are devoted to their study. In the previous chapter we were able to reduce all material
specific properties to a single numeric constant x. = ¢, — 1. Can we repeat this for
magnetic materials?

Antiferro- and ferrimagnetics will not be considered. Ferromagnets show hysteresis
which allows the formation of permanent magnets, but as we shall see also means



that the magnetisation of the material is not just a function of the external field, but also
of the history - We will describe such behaviour, but not treat it in an exact manner.
That leaves diamagnetic and paramagnetic materials.

If an external magnetic field is applied to a slab of matter, two things happen: small
current loops are induced in the material analogous to the creation of dipoles in a
dielectric. In addition the atoms in the material already may form little magnetic dipoles
which get aligned in a field. In both cases the net effect is the creation of a macroscopic
magnetisation M of the material.

We will now follow Duffin’s treatment. First we deduce how the magnetisation is related
to Amperian currents in the surface of the material. Then we define the magnetic field
strength H and relate it to M and B via Ampere’s Law. Finally we introduce appropriate
material constants u, and x.,.



(0

di

Take a small cylindrical piece of material with length
dl and cross section dS. Let it possess a magneti-
sation M. The magnetic dipole moment is then

M dV = MdldS

The magnetic dipole moment of the indicated sur-
face current density 7 is

sldLdS
If M is parallel to dl then we find

gs| = | M|

If we make the block out of many such elements,
then all current densities at boundaries inside the
block cancel, and we are left with only surface cur-
rents.



What if the surface is not parallel to M ?

js remains the same, but the surface area increases.
Thus the surface density decreases by sin ¢ to

]S:MS|n5:|MX’ﬁ|

In addition, if M is not uniform we can have Ampe-
rian currents inside the material given by

Jm =V x M
We shall denote all these Amperian currents with I,
If we introduce a slab of magnetic mat erial into a
region of space already containing a magnetic field
B, it will become nagetised and we get Amperian

currents I,,. These in turn give rise to an external
magnetic field B, via Biot-Savart’s Law.



We obtain B = B, + B,, as the magnetic field everywhere and investigate if and how
our field equations must be modified.

divB = divB, +divB, =04+0=0 <« fé-d?g:o
S

Since both fields originate with currents divB = 0 is still true. What about Ampere’s
Law?

ﬁ X E — ,Ll,();
but 7 now consists of free currents j; and induced Amperian currents 7,,.:

VxB = pojr+ tojm

= pojr + pV x M
— V x (B — M) = poj;

— 1 — — —
Vx(—B-M) = j

Ko

Wecall B/uo— M = H the magnetic field strength. Its units are A/m.



Thus Ampere’s Law becomes

ﬁXﬁ—z‘;f

L S

Again we have found a way of writing our fundamental laws in such a way that the
polarisation and magnetisation effects of the medium are already accounted for.

Or in integral form

We did relate E , D and P via the electric susceptibility

l_j = €oE+ﬁ: GOE(I +Xe)



T

For magnetic media we can define a magnetic susceptibility x,, via M = Xm

H = —B-M=—B—x.H
Ko Ko

— B = po(1+ xw)H = pop.H
uw, = (1 + x,») defines an analogous material constant like ¢,. But there are dif-

ferences. We saw ¢, > 1 because the internal dipoles were exclusively created by
external fields.

In magnetic materials each elementary particle, atom, molecule etc can have an intrin-
sic magnetic moment in addition to the induced ones.



4.13: Diamagnetism'

If the material contains no magnetic dipole moments it is diamagnetic. All magnetic
response is induced by the external field.

Xm < O x| << 1

Typical values are:

—1.4x107°°
—0.72 x 10°°

Bi: xn
Water: x,.



4.14: Paramagnetism'

The material contains intrinsic magnetic dipole moments which get aligned by the ex-
ternal field

Typical values are:

1.93 x 107
3.6 x 107*

Platinum: x,,
Liquid Oxigen: x.n
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4.15: Ferromagnetisml

The magnetic moments of the material are so large
that they align each other into magnetic domains.
The magnetization of each domain is completely
saturated.

We can no longer use yx,, as a single valued con-
stant, it even depends on the history!

This behaviour is also temperature depen-
dent. Above a critical temperature (the Curie-
Temperature) the material becomes paramagnetic.

e.g.

Fe: T. 774°C

. Co: T. 1131°C



4.16: Continuity of B |

What are the continuity relations at the boundaries between materials with different p,.?

We can use ¢, BdS = 0 to argue
that BU_ p— Bgl:

0= Ed_S — éldgl + BQC[SQ
LL-! O = By, — B3,
]f B, = By
L2 The normal component of B is

continuous across any boundary.



4.17: Continuity of ﬁ'

The continuity of H at a boundary is a bit more complicated. Again we consider a
boundary between two materials with permeabilities p,; and u,.. The boundary layer
may contain a surface current density.

Case I: The boundary layer contains no
currents:

It\ \ >| FICZZ:O ﬁl'Cﬁ1+ﬁ2'd_22
0 Hydl — Hyydl
N | _
M2 = Hy Hy

H, The tangential component of H is con-
tinuous across the boundary.




Case II: Now we consider a boundary that carries a current sheet.

First we calculate the magnetic field created
by that current sheet. We call the surface cur-

Y4
i Y rent density K. From Ampere’s law we can
- X calculate H on either side:
¥ K
&) |
‘ X H-d+H-d=K-d = H=K/2
. g A. . This can easily be generalised to a current
H, -~ % —% | H2 sheet K in a plane with normal 7 on the side
where we want to find H:
X
o A=lg
g — n
2 SB X
1 2
—




=)
RNIR YRR R R
=)
VN
I
N

Now we split the magnetic field H up into a part gen-
erated by the current sheet Hy and one generated
by all other currents Hp:

ﬁ — I_—_iK + ﬁo
H, is continuous at the boundary. H jumps from
Hin = (1/2)K x @, to  Hgo = (1/2)K X iy

(I_——iKl — ﬁK2) X T = f?
If we add them back together we find
(ﬁl — ﬁg) X ’)71:12 = I?

this means that the tangential component of H is
discontinuous by K.



4.18: Summaryl

Wecall B/uo— M = H the magnetic field strength. Its units are A/m?.
Ampere’s law is

ﬁx_ﬁ:;f Hdl = ;fd_S

L S

V-B=0 BdS =0

Diamagnetic: ., small and negative. = Paramagnetic: x,, small and positive.
Ferromagnetic: x,, large, multivalued and dependent on the history.

The normal component of B is continuous across any boundary.

The tangential component of H is discontinuous by K.












4.19: EIectromagnetism'

We will now leave static situations behind. From now on electric and magnetic fields,
currents, charges and potentials will be allowed to vary with time and we will deduce
the laws that govern their behaviour in the most general cases.

Michael Faraday noticed in 1831 noticed these experimental facts:
e Two coils can mutually induce a current in the other if the current in one is varied.
e A stationary coil could show a current if the magnetic flux through it changed.

e A moving coil could also show a current if it moved in a non-homogeneous mag-
netic field.

e The current in the coil is proportional to the conductance of the material
— An EMF is induced and the current follows from Ohm’s law.



We start with a conducting wire moving through a homogeneous magnetic field:
The electrons in the wire experience a Lorentz force
FL == q{f X B

The charges move as if they are under the influence of an electric field

— 1 — = —

EFE=—F=vxB

q

The Electromotance is given by

- —

b—;—»
8=/EdL or  dE = EBdlL



Thus an circuit element of length dL moving with velocity ¥ through a magnetic field B
obtains an electromotance

dé = EdL = (¢ x B)d

And, if we have a closed circuit:

g:f(ax B) di.
L



We now look at an entire circuit to determine
all directions uniquely.

A rectangular circuit enters a region contain-
ing a homogeneous magnetic field:

S =zoyodr X AY = To Yo 8%

The £ inpiecea — bis

b | b - -
/ EdL=/(z7>< B) di.

b
| (vaz x B(-22)) - dya, = v By

EinNb—c—d— alis zero.




As the rectangle is fully in the field, the con-
tributions ¢« — b and d — ¢ are equal and
opposite: no current flows.

As the rectangle leaves, we only have a con-
tribution from ¢ — d:

gc—)d —_— — ga—)b



EMF

The EMF is:

dt

andinSlunitsk =1

- This is Faraday’s Law:

t

it = - [ Bds
dt Js



4.20: LenZ’ Iaw|

To find the direction of the induced current we can make use of Lenz’ Law:

“The voltage (EMF) induced by a changing flux has a polarity such that the current
established in a closed path gives rise to a flux which opposes the change in flux.”
Lenz 1845

In the example above that means:

e The current must be counterclockwise as we go into the field
to produce B opposing external B.

e The current will be clockwise as we leave the field
to produce B reinforcing external B.



4.21: ExampIeI

A circular wire loop in the =z — y - plane grows in radius:

It sits in a time independent magnetic field B = By a,. What are the induced EMF and
the induced current?

The flux is ®(¢t) = B - A(t) = = BR2t/7

If we choose the orientation of A = Ag, the loop has a positive orientation counter-
clockwise. (right hand rule)

— = qD - 2
/ 7l — . d _ T B R
dt T
The - sign indicates that the EMF is clockwise.

Thus we get a clockwise current, which generates a magnetic field down
(This opposes the change in flux)



4.22: Faraday’s law in differential form'

Faraday’s Law in integral form is

In differential form we get

74 B dlL = /curlE“de = —i/ BdSs
S dt Js
How do we treat the time derivative? The area may change with time 17!

But E is the field at the position of dL, regardless of any motion of dL.



Thus if we want to have E and B measured in the same frame of reference, we choose
that frame in which the loop is stationary, but now B may be moving. Then

]{Edi — /curlEd_S
L S

and since again the two integrals must be equal for any arbitrary surface S, the inte-
grands must be identical:

. 0B
curlf = —
ot

This is Faraday’s Law in differential form.



J

Xy

What if we allow dL to move with velocity 77
We then had a contribution to the EMF of

5=/Ed1=/(6x§)d1
If we add both we get
.. o d s
/Esz/fudeL—a/B-dS

Both £ and B are measured in the laboratory
frame of reference where dL is moving.

. . d [ -
/(E—ﬁxB)dL:—a/BdS



Xy

In the frame of reference where dL is fixed we
have

| B di = —i/ BdS
dt

So we get a relationship between E’ in the
moving frame and E in the laboratory frame:

E'=E—-%xB
If the moving frame moves with velocity v with
respect to the laboratory frame.

An observer may see a electric of magnetic
field or a combination of both depending on
his state of motion!



4.23: ExampIeI

E = Eo(—y,z,0) find B:

. 0B
curlE = (0,0,2F;) = ——
(0,0,25) =~
0B,
5 =0— B, = B{S’y = const
0B,
= -2 Eo
ot

Do the units work out?

[E] = V/Im, [z,y] = m — [E,] =V/m2.
[B] =T =Vs/m?and [(8B/dt)] = V/m?



4.24: Summaryl

An circuit element of length dL moving with velocity # through a magnetic field B
obtains an electromotance

dé = EdL = (¢ x B)d

Faraday’s Law in integral form is:

Lenz’ Law:

“The voltage (EMF) induced by a changing flux has a polarity such that the current
established in a closed path gives rise to a flux which opposes the change in flux.”



Faraday’s Law in differential form:

The relationship between E'in a frame moving with velovity v and E in the laboratory
frame:



4.25: Ampere’s Lawl

We have obtained equations that relate the electric and magnetic fields to currents,
charges and each other. So far we have

BdS = 0 divB = 0
S
Edl = _d BdS  curlE = _oB
L dt Js ot
DdS = | pdV divD = p
S Vv
HdL = | 7jdS curlH =7
L S

If we examine these equations they tell us everything we may need to know exept in
the case of time-varying electric fields. That will be the last addition we need to make
and it will modify Ampere’s Law.



Consider a straight wire that charges a capacitor.
S, We calculate the magnetic field strength H via the

L H surface S; shown in the figure. Clearly H # 0, and
<> more precisely

]{ HAdl= [ jd5=1
L St

' I S But that surface is only one possible surface. What
2 happens if we choose surface S, as a “tophat” that
passes between the plates of the capacitor? No cur-
rent passes through S5, so

fﬁd‘i: 7d5 =0 ?
L S>

Clearly, there must be a non-zero, unique field H,
because we could get it from the Biot-Savart Law!




And another inconsistency rears its head.
curlH = 5

Take the diverence on both sides

div curlH = divj

The left hand side is always zero. The right hand side we remember from the continuity
equation:

and is not zero! We clearly need to extend Ampere’s Law, and the continuity equation
tells us how.



One of Maxwell’'s equations was

divD = p
. = dp 0 , = . oD
= divj = — = ——divD = —div—
V) EY: ot \Y) IV By,

L 0D
= div(7+—)=0
'V(]-l-at)

This suggests an extension to Ampere’s Law in the following way:



Let’s analyse the solution to the “two surface paradox” now:

A constant voltage V; is applied and charges the capacitor via a long wire with resis-
tance R. At t = O the charge on the capacitor is zero

Q(t=0)=0

The charge as a function of time is given by

Q(t) = Qo(1 — exp(—t/RC)) = VoC (1 — exp(—t/RC))

The current thus becomes

_dQ _ Qo B _ W B
I = = Re exp(—t/RC) = = exp(—t/RC)



S
L —] A . |
\) The D field between the plates of area A is

| S = Q) 0D _ 10Q() _ Qo _ .
' s IDWI="" = —S=_—0"= - exp(~t/RC)
oD Vo

—— = 2 exp(—t/RC
5 = AR p(—t/RC)

Now we pxamine §, H dL: First S;:

L oL . 8D - . Vo exp(—t/RC
]{Hsz G+ 2Pyi5 = [ Fis =1 = LXPEYRO)
L Sl at Sl R
Now S5:
L . 8D, - oD -V, Vo exp(—t/RC)
HdL = “YdS = | =—=dS = -2 exp(—t/RC)-A =
7{L LUt 50 s Ot AR SP(-t/RC) R

And our paradox is resolved.



4.26: Maxwell’s Equationsl

We now have a full set of Maxwell equations:

BdS = 0O divB = 0

S

DdS = /pdV divD = p

S Vv

BdL = _iyfgdts ourls = — 28
L dt Js ot

. 8D

HdlL = /(g+—)d5 curld =+~
L



Together with

F; = E+vxB —
L CI( + ) C Areq |7:,|3
. I podL x 7
B = podL X T
4 |73
= oF div) = ——
J 9 J By
D = E+P P=y.E
D = eoe,E  (in LIH media)
— 1 — — — —
H = —B-M M=y,H
Ko
B = pouH (in LIH diamagnetic/paramagnetic media)

This is all we need to understand in Electromagnetism!



4.27: Maxwell’s Equationsl

What do they mean?

Magnetic field lines close in on themselves, there
dvB = 0 are no magnetic monopoles as sources of the
magnetic field.

divD = »p Electric charges are the sources of the electric field.
. OB The vorticity of the electric field is caused by
CurlE = —— . . .
ot time-varying magnetic fields.
. _ -,0D ici ic field |
curld = 7+ The vorticity of the magnetic field is caused by

ot currents and time-varying electric fields.



4.28: The many faces of Maxwell’s equationsl

The general form of Maxwell's equations is

- . OB
divD = p curlb = ——
ot
. . . 9D
dvB = 0 CurIH=j+E

But in many cases simpler, specialised versions are useful to memorise.

In a first step assume that any media present are linear, isotropic and homogeneous
(LIH). Then

A

D = ¢, E and B = Lo fhr



We can then write Maxwell’s equations using just E and B :

4 , OB
dvE = P curl B = -2
€0E, ot
. = —g aE —
divB = O curl B = ,uo,ureoera + poptrg

Exercise: find the corresponding integral forms using Stokes’ and Gauss’ Laws.

A common abstraction used is to neglect any influence of media, but still allow the
presence of charges and currents. Then ¢, = 1 = pu, and we get Maxwell’s equations
in free space with charges and currents:

—

dvE = £ ocunE=-22
60 at
. — — 8E -2
dvB = 0 curl B = poeo—— + poJ

ot



Since there is no matter around the use of B and E only is preferred.
Again, transform these into integral forms.

Finally we write down Maxwell’'s equations in vacuum, with no charges or currents, just
fields:

. . OB
dvE = 0 curlfp = ———
ot
. . OF
dvB = O curl B = “OGOE

This last form is amazing: We started our discussions of electric and magnetic fields
starting from charges and currents. Yet, even in the absence of both, then fields can
take on a life of their own. We don’t even require a medium: Vacuum itself sustains
time-dependent electromagnetic fields. This is light.



4.29: Light]

We know that any wave obeys the wave equation

O F 1 O°F with velocity v and propagation in x-direction
— v -
0x? v2 Ot2 y PIoPad

If we allow propagation in a general direction ¥ = (x, vy, z) the left hand side gets
expanded to

RPEF  O2F O92°F 190°F

ox? = 0y? + 022 v? Ot?
Or, using the Laplace operator V2 = 2 4 597 + =

L 18°F
VQF:_E?F
v2 Ot2

If we can transform our Maxwell equations into this form, then we know we are dealing
with a wave moving at speed v.



We start with

e = 98
ot
- B
curl curlE = curl(—a—) = —gcurIB
ot ot
Now substitute ~ curlB = poeo(9E)/(8t):
curl curlE = 0 8E OE
= ——lo€0—— = — o€
ot o — My

The lefthand side can be rewritten:

VXx(VXxE)=V(V-E)—(V-V)E
grad(divE) — V’E

curl curlE



But in vacuum divE = 0, so

or

A wave equation for the electric field!

— Mo€o

Mo€o

O2F
ot2

O2E
ot2




What about B ?

. OF

curlB = /,L()EOE
— a —
curl curlB = ,uoeoacurlE
- - 0 OB
rad(divB) — V?’B = —(——
grad(div ) poco (=)

But divB = 0, Thus

as well.



So, the electric and magnetic fields both obey a wave equation in free space without
charges or currents. Does that mean we have “electric light” and “magnetic light”?
Examine the propagation more closely.

We start with a time-varying electric field. This induces a time-varying magnetic field
via curlB = poeo(OE) /(8¢t).

This magnetic field in turn induces a time-varying electric field via curlE = —(8B) /(8¢),
which in turn induces a time-varying magnetic field which in turn induces a time-varying
electric field etc.

Thus the electric and magnetic fields cannot exist alone. Any electric wave is always
accompanied by a magnetic wave and vice versa.

This process of cross-excitation is what allows electromagnetic waves to propagate
through vacuum without needing any medium at all.



At what speed do these waves travel? By comparing

- 82E
2 —
V°FE = Mo€o 9¢2
with out general wave equation
L 10°F
VF = —
v2 Ot?
we can read off
2 1 1 1
v = or vV = =
Ho€o Voo 1/8.854 x 10712 A 4 x 10772

— v = 299792458 m/s = ¢

This is the speed of light in vacuum.



4.30: Worked examplel

An electric field is given by E(7,t) = E, &, - sink(z — ct)
- Show that it fulfills the wave equation
- What is the corresponding magnetic field B(7,t)?

- Show that B(7, t) also fulfills the wave equation



O2F
Ot2

O2E  O2E  O°E
0x? + 0y? + 0z?

0 .
@EO a,sink(x — ct)

—Eok*a, sink(z — ct)

—k2°E

o)
5 [—kch a,cosk(x — ct)]

—Eok*c*a, sin k(z — ct)

—k2c*E



Now substiture these into the wave equation:

L 1 02E
V2E = =
c2 Ot?
_wE = —FYp
= —
E—=E

This electric field fulfills the wave equation.



To find B we have to use Maxwell’'s equations. First we use

curlE

Thus we find B, and B,

. B
Curlll = —8—
ot

OF. B OF, OF, B OF, OF, B OF,
oy 0z 0z Oz~ Oz oy

OFEysink(x — ct) B
ox

= (0-0,0-0, 0)

0B
(0,0, kEo cosk(w — ct)) = ——>

are constant in time.



B. is found by integration:

B, = —/kEo cosk(x — ct)dt

= Eoksink(x — ct) + const
—kc

E
= +%sin k(x — ct) + const
c

— E —
B = (0,0, 2sink(z —ct)) + C
C

Now we check our result with

curlB OE _ 10k
pu— €Ehr— — ——
HotoTs = 2 a¢



10F 1 -
Sy = S(—ke)Eod, cosk(z — ct)

—k
= —Fy,3a,cosk(x — ct)
C

A <8Bz _ 0B, 9B. 0B. 9B, _ an> —F

| 7 = —Fya,cosk(x —ct
oy 0z 0z Ox oz dy o PR cosklr =t



Now compare all three components individually:

T .

Z .

A and C are obviously fulfilled. Check B:

0B,
ox

curlB

0B, B 0B, — 0 A
oy 0z
0B, OB, —k
— = —F, cosk(x — ct) B

0z ox C
0B, B 0B, — 0 C
ox oy

0 [E —FEok
_ _Osin ]{I(CU — Ct) p— 0 COS k(fb — Ct)

or | c

10F,

c? Ot
10E

2 9t




Since we are in vacuum no steady currents exist that could generate a constant B .
Thus we can set all constants of integration to zero:

- E
B = (0,0, —sink(z — ct))
C

Lets examine directions. Both E and B propagate into positive z-direction. E is di-
rected parallel to the y-axis and B is directed parallel to the z-axis.

E is perpendicular to B
The direction of propagation is perpendicular to both E and B . This is generally true:

Consider a general electric field
E = Eysin(k - 7 — wt)

propagating in direction k.



divE = 0

E, Qsin(lgf’— wt), 3sin(l%?— wt), 3sin(lZF’— wt),
ox oy 0z

0 = E,- (kx cos(ki — wt), k, cos(ki — wt), k. cos(k7 — fwt))
0 = E,-k-cos(ki— wt)
— Eo 1k

The same arguments shows B Lk

If k£ is a unit vector in direction &k we can write

- 1 = -
B=—(kxF)
C

The magnitude of the magnetic field is a factor ¢ smaller than the magnitude of the
electric field.



E.g.: in the vicinity of a radio transmitter the electric field has a magnitude of 1 V/m.
The corresponding magnetic field has a magnitude

1V v
/M _ 3 10V — 3 10T
3 x 10%m/s m?

Compared to the earths magnetic field 10-*T this is tiny.



4.31: Summaryl

Maxwell’s equations predict electromagnetic waves propagating at the speed of light.

. ’FE

2 —_
V°FE = Mo€o 81’;2
. &°B

2 —_
VB = Mo€o 81‘;2

B and E are perpendicular to each other and the direction of propagation

The magnitude of B is a factor ¢ smaller than the magnitude of E .



The general form of Maxwell's equations is

L . OB
divD = p CurlE = ——
ot

L . . 8D

Maxwell’s equations in free space with charges and currents (but no condensed mat-
ter):

—

L R OB
divE = L Curlf = ———
EO at
. - OF L
divB = 0 curl B =,uoeoa+ﬁboj



Maxwell’s equations in vacuum (no charges or currents):

S S OB
divE = 0 Curlg = —
Ot
L S OF
divB = 0 curl B = poeg—

ot



4.32: Light in medial

How does the propagation of light change inside LIH, non-conducting media?

Maxwell’s equations in LIH media were:

L " 0B
divE = P curl b = —
€0E, ot
. = —g aE —
divB = O curl B = ,uo,ureoera + poptrg

In the absence of currents and charges (i.e. in a piece of glass) this becomes:

R " 0B
dvE = O curlf) = ——
ot
L L OE
dvB = 0 curl B = Mo br€EQ€r——



Compare with the vacuum form. The only difference is the occurrence of o, €€,
instead of uoeo. The wave equations in matter are then

. O2E - 02B
V’E = r€E0€E,—— and V°’B = r€E0E€Ep——
Holbr€o€ 9¢2 Molbr€o 912

The speed of propagation is changed:

1 C
-

C
- \/IJ/OIJ/T’GOGT \ €r Ly - n

We call n = /€., the index of refraction.

What happens if the wave encounters a conductor?



4.33: EM waves in conductors|

Maxwell’'s equations in a conductor without net free charges can be rewritten using
Ohm’s Law j = o E:

. . OB
dvE = O curlf = ———
ot
. o d o aE o d
divB = 0 curl B = ,uo,ureoera + pop.ocE

This looks different. Can we get a wave equation from these?

— 8 — —
curlcurl B = ,uo,u,neoeracurlE + pop-ocurlE
. - 6B dB
grad divB - V°B = Hofbr€Q€r <_ Ot2 > - MOMTJE
. °’B 9B _
V2B = =~ + v— with v = pop,o

2 Ot2 ot



To solve this equation we use an Ansatz for a wave propagating in x-direction:

B(7,t) = Boa, expi(kr — wt)
B(7t) = Boa,exp(i(kz —wt))
0B 2B L
~— = kB = —k’B
ox 0x2
0B . 02B ) =
— = 1w = —
ot Ot2

Substitute these derivatives into the equation:

- n29?B OB
V2B = L i
2ot o
2
k2B = —L?B—ivwB
C2
2,,2
o= X + 1yw

C2



k? = nw?/c® + iyw is complex, thus k is also a complex number!

2, ,2
k:\/nw + 1yw

2
Examine both terms for a typical good conductor with ¢, = u, = 1.

Then n=1 c =3 x 10®m/s w = 10*rad/s

c=102Q 1m-1 = 10%8A/(Vm)

Yw = popow = 4w x 1077 Vs/Am - 108 A/(Vm) - 10**rad/s = 1.26 x 10 rad/m’

n*w?® (10 rad/s)?
2 (3 x 108m/s)>?

= (3.3 x 10°rad/m)? = 10! rad?/m?



We find that usually yw >> (n°w?)/c? thus

k> ~ iwy
—~k = \/%+i\/u}2—7=ko+i§ with ko =

The magnetic field now looks like this:

B = Boa, expi((ko + i&)x — wt)

Bod, expli(kox — wt) — £

Bod, expli(kox — wt)] exp[—&x]

As the wave tries to move through the conductor, it gets attenuated!



4.34: SKkin depthl
_ WY _ [Whoo
= \/z Vo2

For ¢ = 10%A/(Vm) and w = 10%rad/s we have

¢ = /10™rad/s - 2r x 10~ Vs/Am - 10° A/(Vm)

/6.3 x 10" m™2
8 x 10'm™

The penetration depth is defined as

2
5=1/§=,/ ~ 0.125 x 107" m = 12.5nm
W oo

The wave does not enter into the material but gets attenuated near the surface. We
also call this the skin depth.




How thick is this skin?

At a depth of 46 ~ 50 nm the original magnetic field has exponentially fallen to less
than 1 % of its original value. This should be compared to the wavelength of the wave

2 6.3-3 x 108m/s
= =1 . ~2x 107> m=20um

y=°C
Cf W 10 rad/s

The skin depth is only a fraction of the wavelength.



4.35: Poynting Vectorl

Light carries energy. Now that we have established that light is a electromagnetic wave
we can ask where the energy is stored and how it is transported.

We already found that energy is stored in the electric field of a plate capacitor:

u=1[E-Dav
1%

Thus we will hopefully start from Maxwell's equations to find the flow of energy In a
general case. Intuitively we expect that the energy should flow perpendicular to E and
, and energy should be stored in both fields E and B.

Start from

divD = curlE = ———
p ot

dvB = 0 curlH=74+-""
J-l-at



Assume that the current density is produced by movmg charges j = p - ¥. Then the
energy dissipated at any point is 7 - E = pU - E and in the volume V the energy
dissipated is

/w-ﬁw:/j-ﬁdv
Vv Vv

But j - E can be rewritten with Maxwell’s equations

CurlH = — = = CcurlH — —
or T/ J ot

'\ E = E.-i=EFE.(curlH — ==
J J ( 8t)

Examine E - (V x H) more closely:

For any vector fields A and B we have

— -

V- (AxB)=B-(VxA) —A-(V xB)

Exercise: confirm this by explicitly calculating both sides in cartesian coordinates.



We can use this by taking the divergence of E x H:

V(ExH)=H - (VXE)—E-(VxH)
to find
E-(VNxH)=H (VXE)-V-(ExH)
Thus
.- L o . 20D
j-E = E-(VxH) - oD
ot )
L o L oo o .. -0D
joE = H-(VXE)-V-(E H)—Ea—
ot
We use V x E = —9B/t to get
j E=-H"—" _E-~—-V.(Ex H)

ot ot



This is valid at each point. Let us now consider a small volume V bounded by the
closed surface S

/j-Ede—/ 798 4 goP dv—/v-(ExH)dv
1% 1% Ot ot 1%

The last term is converted to an integral over the surface using Gauss’ Law:

- B D Lol o
. Bdv = — / Ha——I—Ea dV—/(ExH)dS
v v ot ot s

The term on the lefthand side is the energy dissipated by ohmic currents ;7 = od OF

<D
/j’EdV:/aEdez I av
Vv Vv

VvV O



The righthand side has two terms.
D
/ (H— + 72P t) 1%

can be interpreted as the decrease of energy stored in the fields in the volume V' if we
take the total energy to be

. 1 — — — —
U =i (#-B+E-D)av
U . [ (8H 5 -8B OE ~  ~0D
= = [ (ZEB+ A+ D+ EZ ) dv
ot 2/v<8t T T DT 8t>

But in LIH media B = uou, H thus

aH _’ — 8B —
B) - pop H = —H
8t 8t Lo Ly ot




AI Id Si|||i|arily
—> —> D

Ot Ot
Thus

o _ / 2H8—B—|—2E8D 4V
ot 2 v Ot ot

/ 728 4 g9P) 4
v Ot Ot

The last term must represent the flow of energy into the volume (i.e. through the
surface) as expected.

—/(Exﬁ)-dig s the flow in
S

/(E x H)-dS is the flow of energy out of the volume
S



4.36: The Poynting Theorem'

The vector N = E x H is called the Poynting vector. It is perpendicular to both E and
H (and thus B) as required.

We write the Poynting theorem (which is a glorified name for conservation of energy):

/N-dS = [ (2P 5P\ F.Edv
S 1% ot ot 1%
Energy flow Decrease of energy stored Ohmic Losses

out of volume in the fields within volume (generate heat)



4.37: Average power transmitted|

EM waves have an infinite range of wavelengths and frequencies with A f = c.

If we talk about energy transport it makes sense to average the energy over at least
one period and examine the steady flow of energy (= average power).

— 1 T—»
<N>=—/ Ndt
T Jo

The easiest way to see how this works is by example: An EM wave is given by the time
dependent E and B fields

usf}

VN
~

N
|

Eya, sink(z — ct)

wef}
N\
~
N
|

E
—an sink(z — ct)
c



This gives the Poynting vector

T ES . > ~ oa _ Eo oo -
N(r,t) = —sin“k(z —ct)a, x 8, = —sin“ k(z — ct)a,
HoC HoC

N is perpendicular to E and B .

Units:

HoC

= = = as expected

Eg| _VA_JC-Cis _ J W Power
 m2 m2  sm2 m? Area



But the instantaneous power oscillates between 0 and E3/uoc twice per period, for
visible light thats 2 x 10'° times per second. The time average is

—

1 T—» —
<N>=—/E><Hdt
T Jo

1 (T Eqa
= —/ °Z25in? k(2 — ct)dt
T Jo pugc
E,a, 1 (7
= 2= | sin?k(z — ct)dt
uoc T Jo

But we know that the average of sin” over one full period is 1/2. Thus
_ Eqa.
- 2/,1,06

< N >

This is the average power transmitted per unit area.



4.38: Example 1 |

E = Eya sink(z — ct)
1 -

E S
—ansin k(z — ct) H=—B
C Mo

el
|

Find the average flux of energy through a square area with sides in the z = 0 plane in
vacuum:

< N> = <ExH>=_"<ExB>
Mo
. E2
< N> = °_3.
2,[1,0(3

since N does not depend on x or y we can easily evaluate

<P> = :/<J\7>.d§

// < N> -dxdy a,

E2 2
[ 0 =5
/vl'OC 2,LLoC




For Eoc = 0.1 V/m and a = 1 m we get

(0.1V/m)?-(1m)? __ 10
247 x 1072 .3 x 108 m/s 2407

< P>=

At this point we can also tie in with your waves course. it is very convenient to write
FE and B in complex form

eyf}
VN
~
N’
|

Eoa, expik(z — ct)

wef}
VN
~
N’
|

E
= a,expik(z — ct)
c

The real and imaginary parts of these are

ReE = Eya cosk(z—ct) ImE = FEy,a sink(z— ct)

—

= b
Re b 0

FE
—an cosk(z — ct) ImB = —3&,sink(z — ct)
C C



If we take N = E x H we end up with

- E?
N = =23 expik(z —ct)
HoC

and we have a complex flow of energy. That becomes difficult to visualise.
However, if we evaluate

L(E x H*) where H"is the complex conjugate of H
E2

= —2 explik(z — ct)] - exp[—ik(z — ct)]
2,[1,0(3

_ Eg

o 2/1,00

we immediately end up with our earlier definition of average power.

Thus we can adopt the definition
< N >= %(E x H*)

as the average power transported per unit area.



4.39: Summaryl

The index of refraction is

N = /€l
The skin depth on a conductor is
2
d=1/) =
WO
The Poynting vector is
N=ExH
The Poynting theorem:
— — _5 — —
/N-dS — —/(H——I—Ea )dV — /j-EdV
S ot 1%
Energy flow Decrease of energy stored Ohmic Losses

out of volume in the fields within volume in the volume



4.40: Electromagnetism and Special Relativityl

In his 1905 paper “Electrodynamics of moving bodies” Einstein laid the foundations for
special relativity. It is all already contained in Maxwell's equations. In this last bit of the
course we will see how special relativity and Maxwell’'s equations relate to each other.

Consider a conductor moving relative to a horseshoe magnet. We can treat this ei-
ther as a stationary magnet and a moving conductor or as a moving magnet and a
stationary conductor.

o
/% A) moving conductor, stationary magnet
The conductor cuts through the B, thus the

charges moving with the conductor experi-
/ ence a Lorentz force and a current flows. In
the picture the current flows into the page.




/// 1 B) stationary conductor, moving magnet
The time dependent magnetic field creates an
electric field at the position of the conductor
which moves the electrons inside it creating a
ol current. The net effect is the same, current
moves into the page.

3

But from a physical point of view these are very different processes governed in one
case by the Lorentz force (A) and in the other by an induced electric field (B). However,
it is clear that only the relative motion of magnet and conductor is relevant, thus the
difference in physical interpretation must be ascribed to the different observers: in
(A) the observer is at rest relative to the magnet, in (B) s/he is at rest relative to the
conductor.



In a second step we examine the relativistic behaviour of
charge. Does an observer in a moving frame measure a
different charge on an electron than a stationary observer?
Consider a He-atom and a H, molecule. The electrons in
both move at roughly the same speed. The two protons
move at vastly different speeds. In H, they can be treated
as being at rest. In the He nucleus they are confined to a
space with 3 fm diameter.

Heisenberg’s uncertainty principle gives us a minimum mo-
mentum:

He

Azx - Ap
Ap

AVARRAVS
‘ =

And a minimum velocity of
h

Ax-m

Av

6.6 x 10-34Js
1.67 x 10-27kg - 3 x 10-15m

Av

1V

= 1.3 x 10°m/s



This is a significant fraction of the speed of light. Both the He atom and the H-
molecule are electrically neutral and we are forced to conclude that charge is rela-
tivistically invariant: The charge on an electron is measured as —e by any observer,
regardless of the observer’s state of motion relative to the electron.

Charge is relativistically invariant!

Thirdly, we already found in our discussions of Faraday’s Law that an electric field
measured in two frames of reference K at rest and K’ moving with a small velocity v
relative to K is given by E in K and

E=E+¢xB
in K'. At large velocities this will be slightly modified.



4.41: Reminder Special Relativity|

Frames K and K’ have parallel axes. At t = O the axes coincide. Frame K’ moves
with velocity v = v 4, in positive z-direction reltative to frame K.

We define v = 1/\/1 — v?/c2.
In frame K we measure 7, t, E, B, in K’ we measure 7. ¢, E', B'.

Between K and K’ we have the Lorentz transformations:

/

~v(x — vt)
Y
z

VT
v(t — g)

~

~ W e 8



Lorentz contraction:

If L, is the length in z-direction of an object stationary in K, its length L' in K’ is

L, = (1/v) L,

Time dilation:

If T is the time interval between two events at the same place in K, the time interval
between the same events in K’ is

T"'=~T



Ne

1/y m

+ + + + + +

+

A 4+ L

4.42: Charge densityI

First we transform a line charge density.
In frame K we have a number of posi-
tive charges e distributed along an infinite
straight line with N charge per unit length.
This is a linear charge density

A = Ne

An observer moving with velocity v parallel to
the line sees the same charges but disagrees
about the distance between them, because
of the Lorentz contraction. S/he thus sees
=NV charges per length (1m/~) giving a larger

o

charge density

AN =~Ne



Take a test charge @ a distance a from a neutral wire. @ is at rest in K. In K the
wire carries a current I. The wire is neutral and therefore carries an equal number of
positive and negative charges per unit length.

Assume all negative charges are at rest in K and the current is created by all positive
charges moving with speed v.

Then the current is I = Newv and the magnetic field created by this current at a dis-

tance a from the wire is

1 N
Bzﬂo __ HoiVev

27T 21T

If the charge ¢Q now moves parallel to the wire with velocity v at that distance r it
experiences the Lorentz force toward the wire of magnitude

N 2
F=QuB =M<

27T

This is a purely magnetic force.



Now analyse this situation from frame K’ where @ and the positive charges are at rest.

Here the negative charges in the wire move in the opposite direction with velocity —wv,
thus their linear charge density appears to be

A = —~vNe

The positive charges are now at rest and their charge density is now reduced to

N
N, =
Y

Thus the observer in K’ sees a net charge in the wire

ANo= AL+ AL
1 2
= qNe(——-1) = —nyeU—
~2 2

—~vlv

CQ



The distance r is perpendicular to the wire. Therefore it is not Lorentz contracted and
we have a purely electric force between a point charge and a line charge.

The electric field of a line charge was

Bl = A 7gNev?
B 2meqr B 2meqrc?
But ¢ = (1//,6060) SO
N 2
E’=7 v Ko = ~yvB
27T

And the force is F' = QF'
F'=~QuB = ~F

The purely magnetic Loretnz force in frame K turns into a pure Coulomb force in frame
K'. Furthermore the two observers also disagree about the magnitude of the force

F'=~F



However, the motion of the charge @2 must not depend on the observer.

We can reconcile the situation if we remember not only Lorentz contraction but time
dilation. A force is a change of momentum per unit time.

d
=22
dt
d
In frame K : F = ap
dt
d /
In frame K’ : F = w
dt’

Since the force points toward the wire and therefore perpendicular to the motion of K’
the same is true for the momentum. However, the perpendicular components of p are
unchanged in Lorentz transformations, but time is not.



Both observers agree that the charge obtains momentum dp’ = dp. But in K it takes
time dt, while an observer in K’ thinks it takes time dt’. For him the clock in K goes
slow so he thinks dt = ~dt’

dp’ _ dp
dt' dt/y

/

YF

This means that both observers agree on the physical consequences for the motion of
the charge Q.

This is the essence of special relativity.



We shall now investigate the transformation of Maxwell's equations under Lorentz

transformations. We also need to see how the differentials transform:

In components we get

E/

x

E,

E,
v(E, — vB.)
v(E. 4+ vB,)
B,

’Y(By + %Ez)
C

(9
’Y(Bz T _QEy)
C

0 0 v O
o~ o~ 2or
0 0
oy dy

0 0

0z - Oz

0 0 0
% — ’Y(a - U@)



nK' V' .B=

iB’—I—iB’+iB’ _ ’yan v 0B, v OF, 0B. v OF,
ox’ oy’ 0z’ ox c® Ot c?® Oy 0z c® 0z
0B, 8B v 8B 8EZ OF
= (2 + ) - -
ox 8y 8y 0z

But in K we have

and

Therefore in K’ we find



The same goes for all other Maxwell equations.

But if all Maxwell equations are the same in both frames of reference, the two observers
must also derive identical wave equations:

— 1 2 5 — ]_ 2 —'I
V2E = O°F and V7?E = _8 B

2 o2 2 Ot’2

This means automatically that they measure the same speed of light, regardless of
their state of relative motion.

Einstein’s genius was that he saw these arguments in reverse. He asked: “Given a
set of Maxwell’'s equations which are invariant under the change of frame of reference,
what are the transformations that govern this change?”

It can be shown that the only transformations in this case are the Lorentz transforma-
tions. Special Relativity was born.



