MOBILITIES IN GERMANIUM

Bart Bruyneel
CEA Saclay, France $ص_{\text {Irfu }}^{\text {@ }}$
05-09/12/2011 EGAN school, Liverpool

Intro

Monocrystalline Ge

"Face centered cubic"
Fourier transform

Bloch's theorem

The eigenstates of the Hamiltonian $H \Psi=\left(-\frac{\hbar^{2}}{2 m} \Delta+U(\vec{r})\right) \Psi=\varepsilon \Psi$ Where $U(\vec{r}+\vec{R})=U(\vec{r})$ for all R in the Bravais lattice, can be chosen in the form of a plane wave times a function with periodicity of the Bravias lattice:

$$
\Psi_{n, k}=e^{i \vec{k} \cdot \vec{r}} u_{n, \vec{k}}(\vec{r})
$$

Properties:

- $\Psi_{n, \vec{k}}$ and $\varepsilon_{n}(\vec{k})$ are periodic in k space:

$$
\begin{aligned}
& \Psi_{n, \vec{k}+\vec{K}}=\Psi_{n, \vec{k}} \\
& \varepsilon_{n}(\vec{k}+\vec{K})=\varepsilon_{n}(\vec{k})
\end{aligned}
$$

- Group velocity v:

$$
\vec{v}_{n}(\vec{k})=\frac{1}{\hbar} \vec{\nabla}_{\vec{k}} \varepsilon_{n}(\vec{k})
$$

$\rightarrow \quad$ - all distinct values of $\varepsilon_{n}(\vec{k})$

- Energies $\varepsilon_{n}(\vec{k})$ for fixed n vary continuously with \mathbf{k}
$\rightarrow \mathrm{n}=$ band index occur for \mathbf{k}-values in the first Brillouin zone

Germanium Band structure

first Brillouin zone:

- Electrons populate minimum of conduction band
- Holes populate maximum of valence band

Holes

Anisotropic Mobility

- Often neighborhood of valence band is quadratic (+ for electrons / - for holes).

$$
\varepsilon(\vec{k})=\varepsilon_{c} \pm \frac{\hbar^{2}}{2} \sum_{\mu, \nu} k_{\mu}\left(\mathbf{M}^{-\mathbf{1}}\right)_{\mu, \nu} k_{\nu}
$$

- By choosing appropriate principle axis, mass tensor M becomes diagonal:

$$
\varepsilon(\vec{k})=\varepsilon_{c} \pm \frac{\hbar^{2}}{2}\left(\frac{k_{1}^{2}}{m_{1}}+\frac{k_{2}^{2}}{m_{2}}+\frac{k_{3}^{2}}{m_{3}}\right)
$$

\rightarrow Group velocity:

$$
\vec{v}(\vec{k})=\frac{1}{\hbar} \vec{\nabla}_{\vec{k}} \varepsilon_{n}(\vec{k})= \pm \hbar\left(\frac{k_{1}}{m_{1}}, \frac{k_{2}}{m_{2}}, \frac{k_{3}}{m_{3}}\right)
$$

- Drift velocity is average over population of levels:

$$
\vec{v}_{d}=\iiint \vec{v}(\vec{k}) f(\vec{k}) d \vec{k}
$$

- Distribution $f(k)$ found by solution of Boltzman equation as balance between variation due to field and variation due to scattering scattering = interaction with phonons, impurities, defects, other carriers

Anisotropic Mobility
 $$
\vec{v}_{d}=\iiint \vec{v}(\vec{k}) f(\vec{k}) d \vec{k}
$$

- At high fields, radial anisotropy is observed
- Radial anisotropy induces tangential anisotropy: a drift component towards the faster axis
- For fields along symmetry axis, no tangential drift components can exist: Crystal + E field are then invariant under certain rotations; so must be the drift

Radial anisotropy,

Tangential anisotropy,

except for E // symmetry axis

Germanium - Electron mobility

- Electrons distributed over 4 ellipsoidal valleys

$$
\vec{v}_{d}=\sum_{i=1}^{4} n_{i} \vec{v}_{i}
$$

- Linear transf. $\vec{k}^{*}=\alpha_{i}^{1 / 2} \vec{k}$ makes valley \boldsymbol{i} spherical: with R_{i} appropriate rotation matrices

$$
\alpha_{i}=R_{i}^{T} \cdot\left(\begin{array}{ccc}
m_{t}^{-1} & 0 & 0 \\
0 & m_{l}^{-1} & 0 \\
0 & 0 & m_{t}^{-1}
\end{array}\right) \cdot R_{i}
$$

- In \vec{k}^{*} space, the mobility is isotropic: $\vec{v}_{i}^{*}(\vec{E})=-\mu^{*}\left(E_{i}^{*}\right) \vec{E}_{i}^{*}$ with μ^{*} a scalar function of E^{*}
- The field and velocities transform as: $\vec{E}_{i}^{*}=\alpha_{i}{ }^{1 / 2} \vec{E}$ and $\vec{v}_{i}^{*}=\alpha_{i}{ }^{-1 / 2} \vec{v}$
- Filling everything in yields:

$$
\vec{v}_{d}(\vec{E})=-\sum_{i=1}^{4} n_{i} \mu^{*}\left(E_{i}^{*}\right) \alpha_{i} \vec{E}
$$

Germanium - Electron mobility

$$
\vec{v}_{d}(\vec{E})=-\sum_{i=1}^{4} n_{i} \mu^{*}\left(E_{i}^{*}\right) \alpha_{i} \vec{E}
$$

- If $\mathrm{E} / /<100>$: $n_{i}=1 / 4$, and

$$
\alpha_{i} \vec{E}=\Gamma_{0} E_{x} \vec{e}_{x} \quad \Gamma_{0}=2.888
$$

$$
\mu^{*}(E)=\frac{v_{100}\left(E / \Gamma_{0}\right)}{\Gamma_{0} E}
$$

- Population of each valley is defined by intervalley scattering rate ν In equilibrium state:

$$
n_{i}=\frac{\nu\left(E_{i}^{*}\right)^{-1}}{\sum_{k=1}^{4} \nu\left(E_{k}^{*}\right)^{-1}}
$$

Germanium - Electron mobility

Summary:

- v_{100} drift velocity defines μ^{*}
- Intervalley scattering rate defines n_{i}

$$
\vec{v}_{d}(\vec{E})=-\sum_{i=1}^{4} n_{i} \mu^{*}\left(E_{i}^{*}\right) \alpha_{i} \vec{E}
$$

Parametrization:

- $\nu(E) \propto E^{\eta}$ with $\eta(E)=\eta_{0}+\eta_{1} \log E . / E_{0}+\eta_{2}\left(\log E / E_{0}\right)^{2}$

Parameters can be obtained by fit to v_{111} and/or v_{110} drift velocity data

- $v_{100}=\frac{\mu_{0} E}{\left(1+\left(\frac{E}{E_{0}}\right)^{\beta}\right)^{\frac{1}{\beta}}}-\mu_{n} E$

Parameters currently used in ADL:

- See file "Template_DRIFT_GE.txt"

\#ELectron Mobility Parameters:亜品bility in 100:	
ADL_G_E0e100	507.7
ADL_G_Be100	0.80422
ADL_G_Mule100	0.0371654
ADL_G_MuNe100	-0.0001447
\#Intervalley Scattering	rate:
ADL_G_LnNu®	0.459
ADL_G_LnNu1	0.0294
ADL_G_LnNu2	0.000054
ADL_G_E0	1200.0

Anisotropy in mobility

Longituralinal

- Longitudinal and tangential components of drift velocity as function of orientation of the field ($1200 \mathrm{~V} / \mathrm{cm}$)
- Electrons v_{r} mainly slower near [111],

- Holes v_{r} mainly faster near [100]
- Tangential components: -0 along symmetry axes -pointing towards nearest [100] axis

Germanium - Hole mobility

- Maximum of conduction band in middle of $1^{\text {st }}$ brillouin zone
- Band structure there is 2-fold degenerate into a heavy $\left(0.3 m_{0}\right)$ and a light hole $\left(0.04 m_{0}\right)$ band.
- Light hole band can be neglected due to smaller density of states
- Next band is 0.29 eV lower : not accessible (see streaming motion model)

- Streaming motion:

- energy loss by acoustic phonons is negligible
- holes accelerate up to 0.037 eV , then
- optical phonon emission is very likely.
- the hole loses all its energy in this
- the streaming motion is repeated

Germanium \& phonons

Proof for streaming motion picture and Drifted Maxwellian distribution

pictures taken from:
E. M. Conwell, High field transport in semiconductors, Solid State Physics 9 (1967).

Germanium - Hole mobility

Ingredients in the model:

- Drifted Maxwell-BoItzman distribution

$$
f\left(\vec{k} ; \vec{k}_{0}\right)=a \cdot \exp \left(-\hbar^{2}\left(\vec{k}-\vec{k}_{0}\right)^{2} / 2 m k_{b} T_{h}\right) \quad \text { with } \quad \vec{k}_{0} / / \vec{E}
$$

- Warped heavy hole band

$$
\begin{aligned}
& \epsilon(\vec{k})=A \cdot \frac{\hbar^{2} k^{2}}{2 m_{0}} \cdot[1-q(\theta, \phi)] \\
& q(\theta, \phi)=\left[b^{2}+\frac{c^{2}}{4} \cdot\left(\sin (\theta)^{4} \sin (2 \phi)^{2}+\sin (2 \theta)^{2}\right)\right]^{1 / 2} \\
& A=13.35 \quad b=0.6367 \text { and } c=0.9820
\end{aligned}
$$

Germanium - Hole mobility

- Approximate solution to $\quad \vec{v}_{d}=\frac{\hbar}{a \pi^{3 / 2} \sqrt{2 m k_{b} T_{h}}} \int \vec{v}(\vec{k}) f\left(\vec{k} ; \vec{k}_{0}\right) d \vec{k} \quad$:
- Let $\vec{E}\left(E, \theta_{0}, \phi_{0}\right)$, then

$$
\begin{aligned}
& v_{r}=v_{100}(E)\left[1-\Lambda\left(k_{0}\right)\left(\sin \left(\theta_{0}\right)^{4} \sin \left(2 \phi_{0}\right)^{2}+\sin \left(2 \theta_{0}\right)^{2}\right)\right] \\
& v_{\theta}=v_{100}(E) \Omega\left(k_{0}\right)\left[2 \sin \left(\theta_{0}\right)^{3} \cos \left(\theta_{0}\right) \sin \left(2 \phi_{0}\right)^{2}+\sin \left(4 \theta_{0}\right)\right] \\
& v_{\phi}=v_{100}(E) \Omega\left(k_{0}\right) \sin \left(\theta_{0}\right)^{3} \sin \left(4 \phi_{0}\right)
\end{aligned}
$$

- The Anisotropic "amplitudes" are given by
$\Lambda\left(k_{0}\right)=-0.01322 k_{0}+0.41145 k_{0}^{2}-0.23657 k_{0}^{3}+0.04077 k_{0}^{4}$
$\Omega\left(k_{0}\right)=0.006550 k_{0}-0.19946 k_{0}^{2}+0.09859 k_{0}^{3}-0.01559 k_{0}^{4}$
- With k_{0} from $k_{0}\left(v_{\text {rel }}\right)=9.2652-26.3467 v_{\text {rel }}+29.6137 v_{\text {rel }}^{2}-12.3689 v_{\text {rel }}^{3} \quad\left(v_{\text {rel }}=v_{111} / v_{100}\right)$
- $\mathrm{v} 100(\mathrm{E})$ and $\mathrm{v} 111(\mathrm{E})$ determine model.

Example: Hole trajectories

Hole trajectories for homogeneous starting positions around the core electrode. Every 25 ns a point was plotted on the trajectory

Parameters used in ADL:

(6) \bigcirc Template_DRIFT_GE.txt

\#This file is an example for the setup of the file
\# ADL_DRIFT_GE

\#HATTICE ORIENTATION PARAMETERS:
ADL_G_LatticePhi
0.7853981633
ADL_G_LatticeTheta
0.0
0.0

ADL_G_LatticePsi
\#Electron Mobility Parameters:
\#Mobility in 100:
$\begin{array}{ll}\text { ADL_G_E0100 } & 507.7 \\ \text { ADL_G_Be100 } & 0.80422\end{array}$
ADL_G_MuØ10100 0.037165
ADL_G_MuNe100 -0.0001447
\#Inter-valley Scattering rate:
ADL_G_LnNu® 0.459
ADL_G_LnNu1 $\quad 0.0294$
ADL_G_LnNu2 $\quad 0.000054$
ADL_G_Eด
1200.0

\#\#Hole Mobility Parameters:

舞Mobility in 100:

ADL_G_EOh100 181.9
ADL_G_Bh100 0.73526
ADL_G_Muh100 0.062934
噮Mobility in 111:
ADL_G_EOh111 143.9
$\begin{array}{ll}\text { ADL_G_Bh111 } & 0.7488\end{array}$ ADL_G_Muh111 0.062383
+0ther Parameters:
ADL_G_SmallField

Measuring the crystal axis

-400kBq Am source +
-Lead Collimator: $\varnothing 1.5 \mathrm{~mm} \times 1 \mathrm{~cm}$
-Front Scan at $\varnothing 4.7 \mathrm{~cm}: 300 \mathrm{cts} / \mathrm{s}$
-Fitfunction Risetime $(\theta)=$

$$
\text { A. }\left[1+\mathrm{R}_{4} \cos \left(\theta-\theta_{4}\right)\right] \cdot\left[1+\mathrm{R}_{2} \cos \left(\theta-\theta_{2}\right)\right]
$$

ATC1

ATC2

ATC4

But what at boundaries?

Mullowney et al. NIM A 662 (1) (2012) p.33-44

- Particles are trapped to the surface of the interface
- Mobility at interface 2 orders lower

Recommended literature

http://kups.ub.uni-koeln.de/1858/ www.ikp.uni-koeln.de/research/agata/
\rightarrow publications

+ references here in
- E. M. Conwell, High field transport in semiconductors, Vol. 9 of Solid State Physics, Academic Press, 1967.

