MOBILITIES IN GERMANIUM

Bart Bruyneel

CEA Saclay, France

05-09/12/2011 EGAN school, Liverpool

Intro

Bloch's theorem

The eigenstates of the Hamiltonian $H\Psi = \left(-\frac{\hbar^2}{2m}\Delta + U(\vec{r})\right)\Psi = \varepsilon\Psi$ Where $U(\vec{r} + \vec{R}) = U(\vec{r})$ for all R in the Bravais lattice, can be chosen in the form of a plane wave times a function with periodicity of the Bravias lattice:

$$\Psi_{n,k} = e^{i\vec{k}\cdot\vec{r}}u_{n,\vec{k}}(\vec{r})$$

Properties:

- $\Psi_{n,\vec{k}}$ and $\varepsilon_n(\vec{k})$ are periodic in k space:

$$\begin{split} \Psi_{n,\vec{k}+\vec{K}} &= \Psi_{n,\vec{k}} \\ \varepsilon_n(\vec{k}+\vec{K}) &= \varepsilon_n(\vec{k}) \quad \textbf{-} \end{split}$$

- Group velocity v: $\vec{v}_n(\vec{k}) = \frac{1}{\hbar} \vec{\nabla}_{\vec{k}} \varepsilon_n(\vec{k})$

- Energies *ε_n(k)* for fixed n vary continuously with k
 n = band index
 - all distinct values of $\varepsilon_n(\vec{k})$ occur for **k**-values in the first Brillouin zone

Germanium Band structure

Anisotropic Mobility

• Often neighborhood of valence band is quadratic (+ for electrons / - for holes).

$$\varepsilon(\vec{k}) = \varepsilon_c \pm \frac{\hbar^2}{2} \sum_{\mu,\nu} k_\mu (\mathbf{M^{-1}})_{\mu,\nu} k_\nu$$

• By choosing appropriate principle axis, mass tensor M becomes diagonal:

$$\varepsilon(\vec{k}) = \varepsilon_c \pm \frac{\hbar^2}{2} \left(\frac{k_1^2}{m_1} + \frac{k_2^2}{m_2} + \frac{k_3^2}{m_3} \right)$$

• →Group velocity:

$$\vec{v}(\vec{k}) = \frac{1}{\hbar} \vec{\nabla}_{\vec{k}} \varepsilon_n(\vec{k}) = \pm \hbar \left(\frac{k_1}{m_1}, \frac{k_2}{m_2}, \frac{k_3}{m_3} \right)$$

• Drift velocity is average over population of levels:

$$\vec{v}_d = \iiint \vec{v}(\vec{k}) f(\vec{k}) d\vec{k}$$

 Distribution f(k) found by solution of Boltzman equation as balance between variation due to field and variation due to scattering scattering = interaction with phonons, impurities, defects, other carriers

Anisotropic Mobility

 $\vec{v}_d = \iiint \vec{v}(\vec{k}) f(\vec{k}) d\vec{k}$

- At high fields, radial anisotropy is observed
- Radial anisotropy induces tangential anisotropy: a drift component towards the faster axis
- For fields along symmetry axis, no tangential drift components can exist:
 Crystal + E field are then invariant under certain rotations; so must be the drift

Tangential anisotropy,

Germanium – Electron mobility

- Electrons distributed over 4 ellipsoidal valleys • $\vec{v}_d = \sum_{i=1}^4 n_i \vec{v}_i$
- Linear transf. $\vec{k}^* = \alpha_i^{1/2} \vec{k}$ makes valley i spherical: with R_i appropriate rotation matrices

$$\alpha_i = R_i^T \cdot \left(\begin{array}{ccc} m_t^{-1} & 0 & 0\\ 0 & m_l^{-1} & 0\\ 0 & 0 & m_t^{-1} \end{array} \right) \cdot R_i$$

- In \vec{k}^* space, the mobility is isotropic: with μ^* a scalar function of E^*
- The field and velocities transform as: $E_i^* = \alpha_i^{1/2} E$ and $\vec{v}_i^* = \alpha_i^{-1/2} \vec{v}$

$$\vec{v}_{i}^{*}(\vec{E}) = -\mu^{*}(E_{i}^{*})\vec{E}_{i}^{*}$$
$$\vec{v}_{i}^{*} = \frac{1/2}{\vec{v}_{i}} \vec{E}_{i}^{*}$$

Filling everything in yields: ullet

Phys.Rev. 130(6):2201-2204 (1963) NIM A. 447 (2000) 350-360

$$\vec{v}_d(\vec{E}) = -\sum_{i=1}^4 n_i \,\mu^*(E_i^*) \,\alpha_i \vec{E}$$

Germanium – Electron mobility

$$\vec{v}_d(\vec{E}) = -\sum_{i=1}^4 n_i \,\mu^*(E_i^*) \,\alpha_i \vec{E}$$

• If E // <100> :
$$n_i$$
= ¼, and

$$\alpha_i \vec{E} = \Gamma_0 E_x \vec{e}_x \qquad \Gamma_0 = 2.888$$

$$\mu^*(E) = \frac{v_{100}(E/\Gamma_0)}{\Gamma_0 E}$$

- Population of each valley is defined by intervalley scattering rate ν In equilibrium state:

$$n_i = \frac{\nu(E_i^*)^{-1}}{\sum_{k=1}^4 \nu(E_k^*)^{-1}}$$

Germanium – Electron mobility

Summary:

- v_{100} drift velocity defines μ^*
- Intervalley scattering rate defines n_i

$$\vec{v}_d(\vec{E}) = -\sum_{i=1}^4 n_i \,\mu^*(E_i^*) \,\alpha_i \vec{E}$$

Parametrization:

• $\nu(E) \propto E^{\eta}$ with $\eta(E) = \eta_0 + \eta_1 \log E / E_0 + \eta_2 (\log E / E_0)^2$ Parameters can be obtained by fit to v_{111} and/or v_{110} drift velocity data

•
$$v_{100} = \frac{\mu_0 E}{\left(1 + \left(\frac{E}{E_0}\right)^{\beta}\right)^{\frac{1}{\beta}}} - \mu_n E$$

Parameters currently used in ADL:

See file "Template_DRIFT_GE.txt"

#Electron Mobility Param	meters:
#Mobility in 100:	
ADL_G_E0e100	507.7
ADL_G_Be100	0.80422
ADL_G_Mu0e100	0.0371654
ADL_G_MuNe100	-0.0001447
#Intervalley Scattering	rate:
ADL_G_LnNuØ	0.459
ADL_G_LnNu1	0.0294
ADL_G_LnNu2	0.000054
ADL_G_E0	1200.0

Anisotropy in mobility

- Longitudinal and tangential components of drift velocity as function of orientation of the field (1200 V/cm)
- Electrons v_r mainly slower near [111],
- Holes v_r mainly faster near [100]
- Tangential components:
 -0 along symmetry axes
 -pointing towards nearest
 [100] axis

Germanium – Hole mobility

- Maximum of conduction band in middle of 1st brillouin zone
- Band structure there is 2-fold degenerate into a heavy (0.3m₀) and a light hole (0.04m₀) band.
- Light hole band can be neglected due to smaller density of states
 - Next band is 0.29eV lower : not accessible (see streaming motion model)

Streaming motion:

- energy loss by acoustic phonons is negligible
- holes accelerate up to 0.037eV, then
- optical phonon emission is very likely.
- the hole loses all its energy in this
- the streaming motion is repeated

Germanium & phonons

Proof for streaming motion picture and Drifted Maxwellian distribution

pictures taken from:

E. M. Conwell, High field transport in semiconductors, Solid State Physics 9 (1967).

Germanium – Hole mobility

Ingredients in the model:

Drifted Maxwell-Boltzman distribution

$$f(\vec{k};\vec{k}_0) = a \cdot \exp(-\hbar^2(\vec{k}-\vec{k}_0)^2/2mk_bT_h)$$
 with \vec{k}_0/\vec{E}

Warped heavy hole band

$$\epsilon(\vec{k}) = A \cdot \frac{\hbar^2 k^2}{2m_0} \cdot [1 - q(\theta, \phi)]$$
$$q(\theta, \phi) = [b^2 + \frac{c^2}{4} \cdot (\sin(\theta)^4 \sin(2\phi)^2 + \sin(2\theta)^2)]^{1/2}$$

A = 13.35 b = 0.6367 and c = 0.9820

Germanium – Hole mobility

• Approximate solution to
$$\vec{v}_d = \frac{\hbar}{a\pi^{3/2}\sqrt{2mk_bT_h}}\int \vec{v}(\vec{k}) f(\vec{k};\vec{k}_0) d\vec{k}$$
:

• Let $\vec{E}(E, \theta_0, \phi_0)$, then

 $v_r = v_{100}(E)[1 - \Lambda(k_0)(\sin(\theta_0)^4 \sin(2\phi_0)^2 + \sin(2\theta_0)^2)]$ $v_\theta = v_{100}(E)\Omega(k_0)[2\sin(\theta_0)^3\cos(\theta_0)\sin(2\phi_0)^2 + \sin(4\theta_0)]$ $v_\phi = v_{100}(E)\Omega(k_0)\sin(\theta_0)^3\sin(4\phi_0)$

The Anisotropic "amplitudes" are given by

 $\Lambda(k_0) = -0.01322k_0 + 0.41145k_0^2 - 0.23657k_0^3 + 0.04077k_0^4$ $\Omega(k_0) = 0.006550k_0 - 0.19946k_0^2 + 0.09859k_0^3 - 0.01559k_0^4$

- With k_0 from $k_0(v_{rel}) = 9.2652 26.3467 v_{rel} + 29.6137 v_{rel}^2 12.3689 v_{rel}^3$ ($v_{rel} = v_{111}/v_{100}$)
- v100(E) and v111(E) determine model.

Example: Hole trajectories

Hole trajectories for homogeneous starting positions around the core electrode. Every 25ns a point was plotted on the trajectory

Parameters used in ADL:

		ate_DRIFT_GE	
######################################			
#This file is # ADL DRIFT G	•	for the setup	or the file
# ADL_DRIFT_G			
******	*********	**************	********
#LATTICE ORIEN	TATION PARA	METERS:	
ADL_G_LatticeP	hi 0	.7853981633	
ADL_G_LatticeT	heta 0	1.0	
ADL_G_LatticeP	si O	1.0	
#Electron Mobi	lity Parame	ters:	
#Mobility in 1	00:		
ADL_G_E0e100	5	07.7	
ADL_G_Be100	0	.80422	
ADL_G_Mu0e100	0	.0371654	
ADL_G_MuNe100	-	0.0001447	
#Inter-valley Scattering rate:			
ADL_G_LnNu1 0		1.459	
		.0294	
		0.000054	
ADL_G_E0	1	1200.0	
#Hole Mobility	Parameters	:	
#Mobility in 100:			
ADL_G_E0h100	181.9		
ADL_G_Bh100	0.73526		
ADL_G_Muh100	0.062934		
#Mobility in 1	11:		u. F
ADL_G_E0h111	143.9	v_{100}, v_{111}	$\mu_0 E$
ADL_G_Bh111	0.7488	v_{100}, v_{111}	
ADL_G_Muh111	0.062383		$=$ $\frac{1}{(1 + (\frac{E}{E_0}))}$
			_0

#Other Parameters: ADL_G_SmallField 1e-6

Measuring the crystal axis

•400kBq Am source +
•Lead Collimator: Ø 1.5mm X 1cm
•Front Scan at Ø 4.7cm: 300 cts/s
•Fitfunction Risetime(θ) =

A.[1+R₄cos(θ-θ₄)].[1+R₂cos(θ-θ₂)]

'1R/RT_1R.dat' using 4:5 f1(x) Risetime [ns] ³⁵⁰ θ [°] -50

R

G

R

G

But what at boundaries?

Mullowney et al. NIM A 662 (1) (2012) p.33-44

- Particles are trapped to the surface of the interface
- Mobility at interface 2 orders lower

Hole Drift Velocity

Recommended literature

http://kups.ub.uni-koeln.de/1858/ www.ikp.uni-koeln.de/research/agata/ →publications + references here in

• E. M. Conwell, High field transport in semiconductors, Vol. 9 of Solid State Physics, Academic Press, 1967.