ELECTRONICS

Bart Bruyneel

CEA Saclay, France

05-09/12/2011 EGAN school, Liverpool

Recapitulation: Extended Ramo theorem

3)

- Describes detectors in a realistic electronic network.
- In 3 steps:
 - 1) Apply the Ramo theorem: Calculate the induced currents in each electrode
 - 2) Equivalent electronics scheme: Proof: see Gatti and Padivini, NIM 193 (1982) 651-653
 -Determine the capacitances of your detector,
 -Add the current sources found from 1)
 - 3) Realistic electronics scheme: Change the above simplified scheme into a realistic model
- Result = realistic signals

The Laplace Transform

- Laplace Transform of f(t): $F(s) = \int_0^\infty f(t)e^{-st} dt$ with complex frequency $s \in \mathbf{C}$
- Transforms integral and differential equations into algebraic equations:
 L, R, C circuits easily solved with impedances

$$i(t) = C \frac{du(t)}{dt} \rightarrow I(s) = C \cdot s \cdot U(s)$$
 or $\frac{U(s)}{I(s)} = \frac{1}{sC}$

Convolution becomes multiplication

Fourier transform is for periodic functions, while
 Laplace transform for signals "switching on" at time t=0 : f(t<0) = 0

The Laplace Transform rules

 $\mathcal{L}(f(t) + g(t)) = \mathcal{L}(f(t)) + \mathcal{L}(g(t))$ $\mathcal{L}(cf(t)) = c\mathcal{L}(f(t))$ $\mathcal{L}(y'(t)) = s\mathcal{L}(y(t)) - y(0)$ $\mathcal{L}\left(\int_0^t g(x)dx\right) = \frac{1}{s}\mathcal{L}(g(t))$ $\mathcal{L}(tf(t)) = -\frac{d}{ds}\mathcal{L}(f(t))$

$$\mathcal{L}(e^{at}f(t)) = \mathcal{L}(f(t))|_{s \to (s-a)}$$

 $\mathcal{L}(f(t-a)H(t-a)) = e^{-as}\mathcal{L}(f(t)),$ $\mathcal{L}(g(t)H(t-a)) = e^{-as}\mathcal{L}(g(t+a))$ $\mathcal{L}(f(t)) = \frac{\int_0^P f(t)e^{-st}dt}{1-e^{-Ps}}$

 $\mathcal{L}(f(t))\mathcal{L}(g(t)) = \mathcal{L}((f * g)(t))$

Linearity. The Laplace of a sum is the sum of the Laplaces. Linearity. Constants move through the \mathcal{L} -symbol. The t-derivative rule. Derivatives $\mathcal{L}(y')$ are replaced in transformed equations. The t-integral rule.

0

The *s*-differentiation rule. Multiplying *f* by *t* applies -d/ds to the transform of *f*.

First shifting rule. Multiplying f by e^{at} replaces s by s - a.

Second shifting rule. First and second forms.

Rule for *P*-periodic functions. Assumed here is f(t + P) = f(t).

Convolution rule. Define $(f * g)(t) = \int_0^t f(x)g(t - x)dx$.

Laplace Transform lookup table

F(s)	$f(t) 0 \le t$	
1. 1	$\delta(t)$ unit impulse at $t = 0$	
2. $\frac{1}{s}$	1 or $u(t)$ unit step starting at $t = 0$	
3. $\frac{1}{s^2}$	$t \cdot u(t)$ or t ramp function	
4. $\frac{1}{s^n}$	$\frac{1}{(n-1)!}t^{n-1} \qquad n = \text{positive integer}$	0
5. $\frac{1}{s}e^{-as}$	u(t-a) unit step starting at $t = a$	
6. $\frac{1}{s}(1-e^{-as})$	u(t)-u(t-a) rectangular pulse	I hav
7. $\frac{1}{s+a}$	e^{-at} exponential decay	for
8. $\frac{1}{(s+a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{-at} n = \text{positive integer}$	J.
9. $\frac{1}{s(s+a)}$	$\frac{1}{a}(1-e^{-at})$	~~~
$10. \frac{1}{s(s+a)(s+b)}$	$\frac{1}{ab}(1-\frac{b}{b-a}e^{-at}+\frac{a}{b-a}e^{-bt})$	
11. $\frac{s+\alpha}{s(s+a)(s+b)}$	$\frac{1}{ab}\left[\alpha - \frac{b(\alpha - a)}{b - a}e^{-at} + \frac{a(\alpha - b)}{b - a}e^{-bt}\right]$	
12. $\frac{1}{(s+a)(s+b)}$	$\frac{1}{b-a}(e^{-at}-e^{-bt})$	
13. $\frac{s}{(s+a)(s+b)}$	$\frac{1}{a-b}(ae^{-at}-be^{-bt})$	

... or use mathematica or similar

AC small signal equivalent scheme...

- Analog electronics schemes can be separated in a DC scheme + AC small signal equivalent scheme
- The **DC scheme** serves to properly bias all the components
 - only DC currents and potentials are regarded
 - AC current / potential sources are taken out
- The AC scheme equivalent for small signal perturbations
 - DC bias values are used to define a linearization of non-linear elements
 - DC current / potential sources are taken out
- (Superposition principle) the solution for the whole circuit =
 The small signal solution superposed on the DC bias values.

AC equivalent scheme... example

• EXAMPLE: Noise analysis of a detector.

- (Convention: use capital letters for DC quantities, small letters for AC quantities)
- $C_b = HV$ filter
- R_b = HV load resistor (1G ohm)
- C_c = HV coupling capacitor (1000 pF)
- R_s = any resistivity betw. det and preamp (e.g. resistivity wires, det. Electrodes,..)
- i,e = AC current / voltage noise sources (leave out if you don't want to study noise)

1) DC scheme

Reduction to DC equivalent scheme

Consider:

- Capacities as open circuit, inductances as short circuit.
- AC current sources as open circuit, AC voltage sources as short circuit
- Remark: a DC coupled preamp would remain in the scheme. It can be used to monitor the leakage current

1) DC scheme

.

Solution:

- DC leakage current I_d found by analysis of "load line"
- In reality: take a HV module with current readout
- For AGATA detector, I_d = 100 pA (not measureable with HV module)
 - I_d known, Potential drop over R_b is: $V_{drop} = 10^{-10}$ A X 10^9 Ω = 0.1V (here negligible, but not always...)

Leakage current of an AGATA detector Birkenbach, et al. NIM A Vol.40, Iss. 1 (2011), p.176

2) AC equivalent scheme

Reduction to AC equivalent scheme.

- Consider: DC current sources as open circuit, DC potential sources as short connected
- Replace nonlinear elements by their small signal equivalent (parameters depend on DC bias values)
- Small signal equivalent of a detector:

- Series resistance
 (if detector not fully depleted)
 Detector Corporation
- Detector Capacitance
- Parallel resistance(allows leakage current)(AGATA: > 1TΩ : leave out)
- Series resistance and Capacitance measured by manufacturer as function of V_{bias} AGATA: R_s = 0, C~46pF at full depletion

2) AC equivalent scheme

- "White" noise sources $i_{nd}^2 = 2eI_d$ $i_{nb}^2 = \frac{4kT}{R_b}$ $e_{ns}^2 = 4kTR_s$
- Remark: in AC scheme, R_b becomes in parallel with the detector !!
- Presence of C_d makes the white noise frequency dependent at the output
- Traditional calculation ends here: noise sources are statistical and amplitudes add quadratically !!!

Noise analysis

H. Spieler – "Semiconductor detector systems"

• Analysis of noise using an CR-RC shaper (time constant T_s):

$$Q_n^2 = \left(2eI_d + \frac{4kT}{R_b} + i_{na}^2\right)F_iT_S + \left(4kTR_s + e_{na}^2\right)F_v\frac{C_d^2}{T_S} + F_{vf}A_fC_d^2 \qquad F_i = F_v = 0.9$$

= current noise + voltage noise + 1/f noise

AGATA: normal = 6us shaping If leakage current increases, optimum shaping time moves to left

The Field Effect Transistor

 Surface effect conduction under control of gate potential:

$$I_d = K_0 \cdot \frac{W}{L} \cdot (Vgs - Vt)^2$$

- W/L=transistor aspect ratio
- Ko=f(mobility, gate capacitance, T, ...)
- Vt=f(dopant, gate capacitance, fixed charges
- Transconductance "g_m"

$$gm = \frac{\Delta I_d}{\Delta Vgs} = 2\sqrt{K_o \cdot \frac{W}{L} \cdot I_d}$$

The FET small signal equivalent

$$v_{out} = \frac{-AZ_{FB}}{1+A} i_{in}$$

for ideal CSP: $Z_{FB} = 1/sC_{FB}$

Ideal Opamps

- Open loop gain A is very high (10⁵ ~ ∞) negative Feed-back prevents saturation
- If output is not saturated, then difference between "+" and "-" must be nihil if "+" is ground, then "-" is a virtual ground
- Input impedance is very high no current flows into preamp
- We use preamps with only the inverting input this allows to reduce the noise by $\sqrt{2}$

Developed preamplifiers

A. Pullia, G. Pascovici, B. Cahan, D. Weisshaar, C. Boiano, R. Bassini, M. Petcu, F. Zocca, "**The AGATA charge-sensitive** preamplifiers with built-in pulser and active-reset device", Proc. Nucl. Sci. Symp., October 16-22, 2004, Rome, Italy

More realistic preamps

- FET small equivalent with load impedance $Z_L = R_L // C_L$ ($Z_{in} = C_{gs}$)
- Open loop gain is now frequency dependent Signals will have realistic rise times.

$$A(s) = \frac{v_{out}}{v_{in}} = -g_m Z_L$$

= $-g_m \frac{1}{1/R_l + sC_L} = \frac{-g_m R_L}{1 + sC_L R_L}$

• Cut off frequency $f_g = \frac{1}{2\pi R_L C_L}$ limited by Nyquist theorem

More realistic preamps

- FET small equivalent with load impedance $Z_L = R_L // C_L$ ($Z_{in} = 1/sC_{gs}$)
- Open loop gain is now frequency dependent Signals will have realistic rise times.

$$\begin{split} A(s) &= \frac{v_{out}}{v_{in}} = -g_m Z_L \\ &= -g_m \frac{1}{1/R_l + sC_L} = \frac{-g_m R_L}{1 + sC_L R_L} \end{split}$$

• Cut off frequency $f_g = \frac{1}{2\pi R_L C_L}$ limited by Nyquist theorem

Charge Sensitive Preamp

• i_{in} = current from Ramo Theorem • $Z_{in} = C_d // C_{gs} // R_b$ ~ 50pF // 1G • $Z_L = R_L // C_L$ • $Z_{fb} = C_{fb} // R_{fb}$ =1pF // 1G

Nodal network:

$$i_L = i_{FB} + g_m v_{in}$$
 or
 $-\frac{v_{out}}{Z_L} = \frac{v_{out} - v_{in}}{Z_{FB}} + g_m v_{in}$
 $\approx \frac{v_{out}}{Z_{FB}} + g_m v_{in}$ (Virtual ground)

$$i_{in} = \frac{v_{out} - v_{in}}{Z_{FB}} + \frac{v_{in}}{Z_{in}}$$

SOLUTION: (Compare with ideal integrator)

$$\frac{v_{out}}{i_{in}} = -\frac{-Z_{FB} \cdot A_{eff}}{1 + A_{eff}} \approx -Z_{FB} = \frac{R_{fb}}{1 + sR_{FB}C_{FB}}$$

Looking this function up in the list yields:

$$v_{out}(t) = i_{in}(t) \star \frac{1}{C_{FB}} \cdot \left(e^{-t/\tau}\right)$$
 with $\tau = R_{FB}C_{FB} = 1ms$

The output voltage is a convolution with a near-step function.

$$A_{eff} = \frac{g_m}{Z_{FB}} \cdot \left[Z_{FB} / / Z_L \right] \cdot \left[Z_{FB} / / Z_{in} \right]$$

For the approximation, this "effective" open loop gain should be still large

Another result, of importance for dynamic input impedance calculations – see next slide: $\frac{v_{out}}{v_{in}} = -g_m \left[Z_{FB} / / Z_L \right]$

Dynamic input impedance of CSP

 Apply a test current to the CSP, from previous results:

$$v_{out} = -Z_{FB} \ i_{test}$$
$$v_{out} = -g_m \left[Z_{FB} / / Z_L \right] v_{test}$$

The dynamic input impedance is:

$$Z_{eq} = \frac{v_{test}}{i_{test}} = \frac{Z_{FB}}{g_m \left[Z_{FB} / / Z_L \right]}$$

or

$$Z_{eq} = \frac{Z_{FB}}{g_m R_L} + \frac{C_{FB} + C_L}{g_m C_{FB}}$$

Zeq = Miller equiv. + noiseless R_{eq} $Z_{eq} \approx \frac{1}{sAC_{fb}} + R_{eq}$

A numerical simulation (Multisim)

Preamp rise time

Undepleted detector = amplitude drop and rise time increase

- Consider an undepleted detector with coupling capacitor C_c
- Calculation simplifies by using a Norton equivalent i_n, Z_n

$$Z_n = R_s + 1/sC_d + 1/sC_c$$
$$i_n = \frac{1/sC_d}{Z_n} i_{ramo}$$

In the Norton equivalent scheme:

$$v_{out} = -Z_{FB} \cdot i_{in}$$
$$= -Z_{FB} \cdot \frac{Z_n}{Z_n + Z_{eq}} \cdot i_n$$

The current divider term equals:

Proportional and Differential Xtalk are related by same C₀₁

Proportional Cross talk

Segment labeling:

Derivative cross talk is correlated

Proportional Xtalk [pro mille]

Summary

- AC equivalent schemes is all we need
- Charge sensitive preamp:

 $v_{out} = -Z_{FB} i_{in}$

- CSP's dynamic input impedace Z_{eq} is source of all evil
- You should now be able to understand
- Ramo's extended theorem yields crosstalk

G. Pascovici – "Front-End Electronics for Large Arrays of HP-Ge", MSU, Sept. 2006

Specs	IKP-Cologne	
	(a) (FET_BF862)	
Sensitivity	~ 100 mV/MeV	
(mV / MeV)	(differential)	
Resolution (Cd= 0pF; cold FET)	~ 600 eV	
Slope	< 10 eV / pF	
(+ eV/ pF) [Cd]	(cold FET)	
Rise time *)	< 10 ns	
(Cd= 0pF); *[Amplit.]	(cold FET)	
Slope	~ 0.2 ns	
(+ns/pF) [Cd]	(~20 ns/45 pF)	
U(out) @ [100 Ohm] /	~ 2.0V*/ ~290 mW	
Power [mW]	(LM-6171; *AD-8057)	
Saturation of	equiv. ~ 90 MeV	
the 1st stage @	(@ ~20 mW_jFET)	
Open Loop Gain	> 80,000 - 100,000	
Open Loop Gain	> 80,000 - 100,000	
the 1st stage @		

References

Rivista Del Nuovo Cimento Vol 9 nr 1 (1986)

della Società Italiana di Fisica 1986

E. GATTI and P. F. MANFREDI

Processing the signals from solid-state detectors in elementary-particle physics

