

Primary standardisation of ²²⁷Th – developing traceability and nuclear data for a novel α-emitting radiopharmaceutical

Seán Collins Nuclear Metrology Group National Physical Laboratory & University of Surrey

lockdown seminar - 2020-09-03

Overview

- Traceability and why it's needed
- What is a primary standardisation
- Thorium-227 and its challenges
- Half-lives determinations of ²²⁷Th and ²²³Ra
- Radiochemistry and time zero
- Standardisation of Thorium-227
- Absolute gamma-ray emissions

Traceability for Pre-clinical & Clinical Use

The absolute primary standardisation of radioactivity is a key mission of NMIs (e.g. NPL) to provide the international radioactivity community traceability to the SI unit of the becquerel.

Traceability for Pre-clinical & Clinical Use

Importance of traceability– View of a Pharmaceutical Manufacturer

- Accurate radioactivity measurements, in order to demonstrate compliance with regulators, is vital for the business.
- Important to ensure the correct dose administered to the patient.
- Accurate radioactivity measurements of Radiopharmaceuticals, is only obtained by using high quality measurement equipment calibrated with a Certified Standard Reference Source.
- Accurate nuclear decay data needed for release of product
 - γ-ray emission intensities
 - Half-lives

Primary standardisation: Techniques

4π(LS)-γ

counting

 $4\pi\alpha/\beta-\gamma$ coincidence counting

- Defined by capability to measure simultaneously:
 - (1) The disintegration rate
 - (2) The detection efficiency

Ratio (TDCR) counting

No prior knowledge of detector efficiencies or nuclear data required

> γ - γ coincidence counting

Defined Solid Angle (DSA) αcounting

Primary standardisation: Techniques

4π(LS)-γ

counting

- Defined by capability to measure simultaneously:
 - (1) The disintegration rate (2) The detection efficiency

Triple-to-Double Coincidence Ratio (TDCR) counting

A few caveats...

 γ - γ coincidence counting

NPLO

National Physical Laboratory

Defined Solid Angle (DSA) αcounting

$4\pi\beta$ -γ coincidence counting (idealised decay scheme and detectors)

Count rates:

 $N_{\beta} = N_0 \cdot \varepsilon_{\beta}$ $N_{\gamma} = N_0 \cdot \varepsilon_{\gamma}$ $N_{c} = N_0 \cdot \varepsilon_{\beta} \cdot \varepsilon_{\gamma}$

$4\pi\beta$ -γ coincidence counting (idealised decay scheme and detectors)

$4\pi\beta$ -γ coincidence counting (idealised decay scheme and detectors)

$4\pi\beta$ -γ coincidence counting (real world...)

$4\pi\beta$ - γ coincidence counting (real world...)

- Modifying detection efficiency of one channel (typically beta channel) to change ϵ_{β}
 - Multiple methods available
- Extrapolating to $\varepsilon_{\beta} = 1$ (or $(1-\varepsilon_{\beta})/\varepsilon_{\beta} = 0$)

Efficiency Extrapolation

May not always be a linear extrapolation or this flat!

HPGe gamma-ray spectrometry at NPL

 Calibrated using suite of primary and secondary standards

HPGe gamma-ray spectrometry at NPL

Energy /keV

https://doi.org/10.1016/j.apradiso.2015.04.008

Thorium-227

a

 1×10^{7}

Decay Scheme (Partial...it's complex)

²²³₈₈Ra₁₃₅

Temporal relationship of ²²⁷Th → progeny

Temporal relationship of ²²⁷Th → progeny

Thorium-227 for targeted alpha radiotherapy

Combination to treat tumors

Specific antibodies carry their highly effective payload to the tumor: the radioactive element thorium then releases its energy-rich radiation directly and locally at the cancer cells.

Antibody

https://www.research.bayer.com/en/fighting-cancer-with-radio-immunotherapy.aspx

Dial factors for radionuclide calibrators for ²²⁷Th **NPL**

- For Ionisation Chamber measurements (SIR) it is not just the activities of the progeny that are important.
- Must consider the convolution of the activities and their relative responses.

- Ingrowth
 - Radium-223 and other progeny removed prior to administration.
 - Total count rate changing with time...including during measurement
 - Need to divide observed total rate by the calculated sum of progeny at time of measurement
 - Need to know time elapsed since separation (time zero, where $A_t(^{227}\text{Th}) = 100\%$)

- Ingrowth
 - Radium-223 and other progeny removed prior to administration.
 - Total count rate changing with time...including during measurement
 - Need to divide observed total rate by the calculated sum of progeny at time of measurement
 - Need to know time elapsed since separation (time zero, where $A_t(^{227}\text{Th}) = 100\%$)
- Radiochemistry
 - Need an efficient method to remove progeny

- Ingrowth
 - Radium-223 and other progeny removed prior to administration.
 - Total count rate changing with time...including during measurement
 - Need to divide observed total rate by the calculated sum of progeny at time of measurement
 - Need to know time elapsed since separation (time zero, where $A_t(^{227}\text{Th}) = 100\%$)
- Radiochemistry
 - Need an efficient method to remove progeny
- Nuclear decay data
 - Temporal dependence makes half-lives critical for accuracy and precision
 - Poor precision of gamma-ray emission intensities

- Ingrowth
 - Radium-223 and other progeny removed prior to administration.
 - Total count rate changing with time...including during measurement
 - Need to divide observed total rate by the calculated sum of progeny at time of measurement
 - Need to know time elapsed since separation (time zero, where $A_t(^{227}\text{Th}) = 100\%$)
- Radiochemistry
 - Need an efficient method to remove progeny
- Nuclear decay data
 - Temporal dependence makes half-lives critical for accuracy and precision
 - Poor precision of gamma-ray emission intensities
- Rn-219
- Po-215
 - Temporal relationship with Rn-219 can lead to losses of counts

Where to start?

S. Pommé a, *, S.M. Collins b, A. Harms b, 1, S.M. Jerome b

^a European Commission, Joint Research Centre, Retieseweg 111, B-2440 Geel, Belgium ^b National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 OLW, UB

The potential radio-immunotherapeutic α -emitter $^{227} Th$ – part II: Absolute γ -ray emission intensities from the excited levels of $^{223} Ra$

S.M. Collins*, J.D. Keightley, P. Ivanov, A. Arinc, A.J. Fenwick, A.K. Pearce National Physical Laboratory, Hampton Road, Teddington, Mikidlasee, TW11 0KW, United Kingdom

Where to start?

The potential radio-immunotherapeutic α -emitter ²²⁷Th – part I: Standardisation via primary liquid scintillation techniques and decay

S.M. Collins*, J.D. Keightley, P. Ivanov, A. Arinc, S.M. Jerome, A.J. Fenwick, A.K. Pearce National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom

The potential radio-immunotherapeutic α -emitter ²²⁷Th – part II: Absolute γ-ray emission intensities from the excited levels of ²²³Ra

S.M. Collins*, J.D. Keightley, P. Ivanov, A. Arinc, A.J. Fenwick, A.K. Pearce National Physical Laboratory, Hampton Road, Teddington, Middlesex, TWI1 OLW, United Kingdom

Ra-223 radiopharmaceutical: Xofigo™

Used to treat men with advanced prostate cancer when the disease has spread to the bones and is causing symptoms (pain).

Why is it useful to start here for ²²⁷Th?

- Absolute gamma-ray emission intensities
 Needed for determining time zero
 For determining activity by ingrowth rate measurements (HPGe)
 Th227 and decay progeny share gamma-ray emissions with same energy, needed for corrections.
- ²²³Ra calibration factors for IC

Temporal relationship of ²²³Ra \rightarrow progeny

Standardisation of ²²³Ra at NIST

Standardization of radium-223 by liquid scintillation counting

J.T. Cessna *, B.E. Zimmerman

Ionizing Radiation Division, Physics Laboratory, National Institute of Standards and Technology, 100 Bureau Drive MS 8462, Gaithersburg, MD 20899-8462, USA

Fig. 3. Results of activity determinations by the CIEMAT/NIST method of ³H efficiency tracing liquid scintillation counting (LS), $2\pi\alpha$ proportional counting (PC), and germanium spectroscopy (Ge) expressed relative to measurements of a radium (²²⁶Ra) reference source on the NIST 4π – γ secondary ionization chamber. Uncertainty bars represent expanded uncertainties, k=2.

Standardisation of ²²³Ra at NPL

Standardisation of ²²³Ra at NPL

and NIST ionisation chamber calibration factors

Discrepancy between NIST and NPL

Discrepancy between NIST and NPL

21190

23Ra

Residuals

Discrepancy between NIST and NPL

Energy /keV

Discrepancy between NIST and NPL

Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.004 Journal of Research of the National Institute of Standards and Technology

Revision of the NIST Standard for ²²³Ra: New Measurements and Review of 2008 Data

B. E. Zimmerman, D. E. Bergeron, J. T. Cessna, R. Fitzgerald, and L. Pibida

National Institute of Standards and Technology, Gaithersburg, MD 20899

Updated absolute emission intensities

Derive absolute values from primary standard – don't need to know internal conversion coefficients

Radionuclide	Energy	I ₁ (This work)	I ₇ (DDEP)	z-score	Difference	Radionuclide	Energy	I _r (NPL)	I ₇ (NIST)	I ₇ (PTB)	χ²/(n-1)
	/koV	0/2	0/0		0/2		/keV	%	%	%	
	/ KC V	/0	70		7 0	²²³ Ra	122.3	1.312 (6)	1.30(1)	1.304 (12)	0.3
²²³ Ra	269.5	13.37 (7)	14.23 (32)	-2.6	-6.0	²²³ Ra	144.3	3.481 (16)	3.51 (3)	3.469 (20)	0.3
²¹⁹ Rn	271.2	10.75 (6)	11.07 (22)	-1.4	-2.9	²²³ Ra	154.2	6.02 (3)	6.08 (6)	6.03 (5)	0.2
²¹⁵ Po	438.8	0.0533 (7)	0.058 (19)	-0.3	-8.1	²²³ Ra	269.5	13.37 (7)	13.24 (12)	13.16 (15)	0.5
21174	101.0	4.011.00	2.02.00	2.0	4.7	²²³ Ra	323.9	3.655 (18)	3.63 (2)	3.661 (21)	0.3
211РЬ	404.8	4.011 (9)	3.83 (6)	3.0	4.7	²²³ Ra	338.3	2.605 (13)	2.59 (2)	2.614 (13)	0.3
²¹¹ Bi	351.0	13.17 (7)	13.00 (19)	0.8	1.3	²²³ Ra	445.0	1.218 (6)	1.217 (8)	1.222 (6)	0.1
²⁰⁷ T1	897.7	0.2725 (15)	0.263 (9)	1.0	3.6	²¹⁹ Rn	271.2	10.75 (6)	10.69 (10)	10.87 (12)	0.3
						²¹⁹ Rn	401.8	6.57 (3)	6.56 (4)	6.62 (4)	0.3
						²¹¹ Pb	404.8	4.011 (19)	4.01 (3)	4.05 (5)	0.1
						²¹¹ Pb	427.2	1.890 (9)	1.89 (1)	1.912 (10)	0.8
						²¹¹ Pb	832.0	3.448 (16)	3.48 (3)	3.430 (17)	0.5
						21176	351.0	13 17 (7)	13 11 (9)	13 24 (6)	0.4

BI	551.0	15.17 (7)	15.11 (5)	13.24 (0)	0.4
No. of γ-rays	s reported	83	15	43	

Where to start?

S.M. Collins^{*}, J.D. Keightley, P. Ivanov, A. Arinc, A.J. Fenwick, A.K. Pearce National Physical Laboratory, Hampton Road, Teddington, Middleset, TW11 0LW, United Kingdom

Summary of half-lives

- Critical for calculating corrections for ingrowth
- Recommended values (DDEP) for critical radionuclides http://www.lnhb.fr/nuclear-data/nuclear-data-table/

	Evaluated T _{1/2}	'New' T _{1/2}
²²⁷ Th	18.718(5) d	
²²³ Ra	11.43(3) d	

207T

207Pb

4.77 min

235U

231Th

α

Uncertainties in half-lives

- Underestimation of uncertainties a significant problem
 - Inconsistent evaluation datasets
- Many studies only quote uncertainty of the fit

Available online at www.sciencedirect.com

Applied Radiation and Isotopes 60 (2004) 257-262

www.elsevier.com/locate/apradiso

Half-life data—a critical review of TECDOC-619 update

M.J. Woods^{a,*}, S.M. Collins^b

Uncertainties in half-lives

- Underestimation of uncertainties a significant problem
 - Inconsistent evaluation datasets
- Many studies only quote uncertainty of the fit

OPEN ACCESS OP Publishing Bureau International des Poids et Mesures	Metrologia
Metrologia 52 (2015) S51-S65	doi:10.1088/0026-1394/52/3/S51

The uncertainty of the half-life

S Pommé

European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel, Belgium

$$\frac{u(T_{1/2})}{T_{1/2}} \approx \frac{2}{\lambda t} \sqrt{\frac{2}{n+1}} \frac{u(A)}{A}$$

Available online at www.sciencedirect.com

Applied Radiation and Isotopes

Applied Radiation and Isotopes 60 (2004) 257-262

www.elsevier.com/locate/apradiso

Half-life data-a critical review of TECDOC-619 update

M.J. Woods^{a,*}, S.M. Collins^b

Figure 1. True (dark dots) and perceived (light dots) residuals from a fit of a decay curve through hypothetical data affected by high (top), medium (middle) and low (bottom) frequency instabilities. Systematic deviations are not fully observed by the experimentalist, as the fit tends to minimise them.

Uncertainties in half-lives

- Underestimation of uncertainties a significant problem
 - Inconsistent evaluation datasets
- Many studies only quote uncertainty of the fit

OPEN ACCESS OP Publishing Bureau International des Poids et Mesures	Metrologia
Metrologia 52 (2015) S51-S65	doi:10.1088/0026-1394/52/3/S51

The uncertainty of the half-life

S Pommé

European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel, Belgium

Paralla defense anna 62 an anna an

$$\frac{u(T_{1/2})}{T_{1/2}} \approx \frac{2}{\lambda t} \sqrt{\frac{2}{n+1}} \frac{u(A)}{A}$$

Analysis of residuals of fit key

Available online at www.sciencedirect.com

Applied Radiation and Isotopes

Applied Radiation and Isotopes 60 (2004) 257-262

www.elsevier.com/locate/apradiso

Half-life data—a critical review of TECDOC-619 update

M.J. Woods^{a,*}, S.M. Collins^b

Figure 1. True (dark dots) and perceived (light dots) residuals from a fit of a decay curve through hypothetical data affected by high (top), medium (middle) and low (bottom) frequency instabilities. Systematic deviations are not fully observed by the experimentalist, as the fit tends to minimise them.

- Excellent long-term stability
- Back-to-back system reduces background significantly
- Good linearity of response

 $T_{1/2}(^{223}\text{Ra}) = 11.4363 \pm 0.0027 \text{ d}$

- Excellent long-term stability
- Back-to-back system reduces background significantly
- Good linearity of response

 $T_{1/2}(^{223}\text{Ra}) = 11.4363 \pm 0.0027 \text{ d}$

- Excellent long-term stability
- Back-to-back system reduces background significantly
- Good linearity of response over the same voltage range

 $T_{1/2}(^{223}\text{Ra}) = 11.4363 \pm 0.0027 \text{ d}$

- Excellent long-term stability
- Back-to-back system reduces background significantly
- Good linearity of response over the same voltage range

-				
Uncertainty components	ơ(A)∤A (%)	n	Factor	$\sigma(T_{1/2})/T_{1/2}$ (%)
High frequency				
Standard deviation of residuals	0.024	33	0.16	0.0038
Medium frequency				
Trends in residuals	0.024	1	0.66	0.016
Geometric repeatability	0.070	33	0.16	0.011
Low frequency				
Background	0.00016	1	0.66	0.00010
Impurities	0.010	1	0.66	0.0070
Efficiency stability	0.016	1	0.66	0.011
Linearity	0.010	1	0.66	0.0066
Final half-life result	11 4358 /28) days		0.024
range rear the result	1111200 (20	, aays		0.0101

The determined ²²³Ra half-life and uncertainty budget. The uncertainty values are quoted at k = 1.

Half-life of ²²³Ra – Comparison to literature

_	Authors	Year	Value (d <i>a</i> ys)	Method	Comment
-	Hagee et al. Robert*	1954 1959	11.685 (56) 11.22 (5)	Abstracted from proportional alpha counting of ingrowth ²²³ Ra from ²²⁷ Ac Microcalorimetry	Superseded by Kirby et al. (1965)
	Kirby et al.*	1965	11.4346 (11)	Weighted mean of direct measurement of ²²³ Ra by microcalorimetry and proportional alpha counting.	
	Jordan et al. Miller et al *	1967	11.372 (45)	Abstracted from calorimetry measurements of ingrowth of ²²³ Ra from ²²⁷ Ac.	Superseded by Kirby et al. (1965)
	Kossert et al. This work*	2015 2015	11.4362 (50) 11.4358 (28)	Direct measurement of ²²³ Ra in equilibrium by lonisation chamber	

 $T_{1/2}(DDEP) = 11.43(3) d$

Half-life of ²²⁷Th

Reference	T _{1/2} (²²⁷ Th)/days	Method	Comment
Peterson and Ghiorso (1949)	18.68 (1)	α activity ratio measurements of ²²⁷ Th/ ²³⁰ Th	Currented ad hu tenden and Planks
Hagee et al. (1954)	18,109 (84)	microcalorimetry.	(1967)
Eichelberger et al. (1963)	18,729 (48)	Determined indirectly by ingrowth decay progeny of ²²⁷ Ac using microcalorimetry.	Superseded by Jordan and Blanke (1967)
Jordan and Blanke (1967)*	18.7176 (52)	Determined indirectly by ingrowth decay progeny of ²²⁷ Ac using microcalorimetry.	
Miller et al. (1987)	18,738 (54)	Determined indirectly by ingrowth of 215 Po using α -spectrometry.	
		Contanta liste surilable at SsignagDirect	I Appled Radiates and
		Contents lists available at ScienceDirect	Ebiopes Holes Note Expension
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Applied Radiation and Isotopes	
	EI SE	VIED journal homepage: www.elsevier.com/locate/apradiso	

 Applied Radiation and Isotopes

 journal homepage: www.elsevier.com/locate/apradiso

 The half-life of ²²⁷Th by direct and indirect measurements

 S.M. Collins ^{a,*}, S. Pommé^b, S.M. Jerome^a, K.M. Ferreira ^a, P.H. Regan ^{a,c}, A.K. Pearce ^a

 *National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK

 *National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK

 *Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK

HPGe gamma-ray spectrometry (direct) & Ionisation Chamber (indirect)

Decay progeny removed before starting measurements

 $A_t = A_0 e^{-\lambda t} \frac{1 - e^{\lambda \Delta t}}{\lambda \Delta t}$

Fig. 4. Goodness of the peak fit of the 50.1 keV (dashed line) and the 236.0 keV doublet (solid line) as calculated by the peak fitting software.

Compton continuum evolving as progeny grow in.

Half-life of ²²⁷Th – Ionisation chamber (indirect)

Measuring the sum of the response

National Physical Laboratory

- Each radionuclide has a different response
- Fitting was performed assuming just a two-body system i.e. All progeny share the ²²³Ra half-life

Half-life of ²²⁷Th – Ionisation chamber (indirect)

$$A_{t} = B_{Th,0}e^{-\lambda_{Th}t}\frac{1 - e^{-\lambda_{Th}\Delta t}}{\lambda_{Th}\Delta t} + B_{Ra,0}e^{-\lambda_{Ra}t}\frac{1 - e^{-\lambda_{Ra}\Delta t}}{\lambda_{Ra}\Delta t}$$

National Physical Laboratory

 λ_{Ra} was fixed to (ln(2)/11.4354)

Half-life of ²²⁷Th – Ionisation chamber (indirect)

Fig. 8. Dependence of the fitted ²²⁷Th half-life on the half-life of ²²³Ra. The two datasets refer to sample 1 (squares) and sample 2 (triangle) measured by the ionisation chamber.

 $T_{1/2}(^{227}\text{Th}) \approx -1.3802 \times T_{1/2}(^{223}\text{Ra}) + 34.4766$ $T_{1/2}(^{227}\text{Th}) \approx -1.3662 \times T_{1/2}(^{223}\text{Ra}) + 34.3214$

 Half-life can be re-evaluated in future If ²²³Ra half-life changes.

Half-life of ²²⁷Th – Results

 $T_{1/2}(^{227}\text{Th}) = 18.697(7) \text{ d}$

Summary of half-lives

- Critical for calculating corrections for ingrowth
- Recommended values (DDEP) for critical radionuclides http://www.lnhb.fr/nuclear-data/nuclear-data-table/

	Evaluated T _{1/2}	'New' T _{1/2}
²²⁷ Th	18.718(5) d	18.697(7)
²²³ Ra	11.43(3) d	11.4354(17) d

4.77 min

235U

231Th

α

Where to start?

S. Pommé^{a,*}, S.M. Collins^b, A. Harms^{b,1}, S.M. Jerome^b

^a European Commission, Joint Research Centre, Reties eweg 111, B-2440 Geel, Belgium ^b National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 OLW, UB

The potential radio-immunotherapeutic α -emitter ²²⁷Th – part II: Absolute γ -ray emission intensities from the excited levels of ²²³Ra

S.M. Collins^{*}, J.D. Keightley, P. Ivanov, A. Arinc, A.J. Fenwick, A.K. Pearce National Physical Laboratory, Hampton Road, Teddington, Middleser, TWI1 0LW, United Kingdom

Radiochemistry for ²²⁷Th & Time zero

- Good radiochemical separation of decay progeny essential
- Needs to provide a time zero close to the time of separation
 - Not always possible to determine experimentally i.e. nuclear medicine departments
- Accurate time zero needed for precise standardisation

	Contents lists available at ScienceDirect	Applied Radiation and balances			
	Applied Radiation and Isotopes	<u>بچ</u>			
ELSEVIER	journal homepage: www.elsevier.com/locate/apradiso				
Evaluation of the separation and purification of ²²⁷ Th from its decay progeny by anion exchange and extraction chromatography					
P.I. Ivanov ^{a,*} , S.M. Collins ^a , E.M. van Es ^{a,b} , M. García-Miranda ^a , S.M. Jerome ^a , B.C. Russell ^a					
^a National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 OLW, United Kingdom ^b Chemistry Department, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom					

^a European Commission, Joint Research Centre, Retieseweg 111, B-2440 Geel, Belgium ^b National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 OLW, UK

Assessing efficacy of radiochemistry for ²²⁷Th

Assessing efficacy of radiochemistry for ²²⁷Th

But....

Assessing efficacy of radiochemistry for ²²⁷Th

The potential radio-immunotherapeutic α -emitter ²²⁷Th – part I: Standardisation via primary liquid scintillation techniques and decay progeny ingrowth measurements

S.M. Collins*, J.D. Keightley, P. Ivanov, A. Arinc, S.M. Jerome, A.J. Fenwick, A.K. Pearce National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 OLW, United Kingdom

- Vacuum box was added to the method.
- End of separation = 09:00 UTC
- Measured time zero = 08:57:20 UTC ± 00:01:19

Fig. 4. Difference in the measured time zero from the chemical separation endpoint for each measurement using the γ -ray emission probabilities for the sum of the 234.8 keV and 236.0 keV doublet emissions of ²²⁷Th determined in this work. The solid and dashed lines indicate the weighted mean time zero and its standard uncertainty.

Standardisation of ²²⁷Th

Two primary methods used

 4π (LS)- γ coincidence counting $4\pi\alpha$ (LS) counting

Two confirmatory ingrowth techniques used

HPGe gamma-ray spectrometry Ionisation chamber

Standardisation of ²²⁷Th - $4\pi(LS)$ - γ coincidence **NPL** counting

Absolute gamma-ray emission intensities

- -3.4% difference to primary standard
- 8.5 % uncertainty on normalisation scaling factor
- Significant improvements using primary standard can be made

Standardisation of ²²⁷Th – HPGe ingrowth measurements

- Using gamma-rays from ²²³Ra and ²¹⁹Rn
 - 154.2 keV; 269.5 keV; 271.2 keV; 401.8 keV
 - *I*_y from weighted mean of NPL, NIST and PTB
- Activity at start of measurement determined by:

$$A_t(D) = \frac{\left(\frac{N(E)}{I_{\gamma}(E) \cdot \varepsilon(E) \cdot m} \cdot k_{\mu} \cdot k_{\rho}(E)\right) - \Delta N_D}{\Delta t} \cdot k_{\lambda}$$

where,

$$\Delta N_D = \left(A_z (^{227}Th) \cdot e^{-\lambda_{Th}t} \cdot \frac{\lambda_{Ra}}{(\lambda_{Ra} - \lambda_{Th}) \cdot \ln(2)} \right)$$
$$\cdot \left(\frac{\ln(2) \cdot (1 - e^{-\lambda_{Th}\Delta t})}{\lambda_{Th}} - \frac{\ln(2) \cdot (1 - e^{-\lambda_{Ra}\Delta t})}{\lambda_{Ra}} \right)$$

Standardisation of ²²⁷Th – HPGe ingrowth measurements

National Physical Laboratory

Standardisation of ²²⁷Th – Results

Results of the absolute standardisation and ²²³Ra ingrowth techniques for the determination of activity of ²²⁷Th at the reference time 2016–12-13 09:00 UTC. The final activity per unit mass and its standard uncertainty have been determined from the 4π (LS)- γ DCC and the 4π LS counting measurement techniques.

Measurement technique	Activity /kBq g ⁻¹
4π(LS)-γ DCC	20.780 (72)
4π LS	20.675 (56)
4π LS (Tricarb)	20.676 (56)
4 π LS (Beckman)	20.674 (56)
²²³ Ra ingrowth technique	
IC-PA782-5mL	20.754 (76)
IC-VINTEN-NBS	20.743 (93)
IC-VINTEN-10R	20.759 (87)
HPGe	20.791 (55)
HPGe (Browne, 2001)	20.0 (17)
Final Result	20.726 (51)

Standardisation of ²²⁷Th – Results

Results of the absolute standardisation and ²²³Ra ingrowth techniques for the determination of activity of ²²⁷Th at the reference time 2016–12-13 09:00 UTC. The final activity per unit mass and its standard uncertainty have been determined from the 4π (LS)- γ DCC and the 4π LS counting measurement techniques.

Measurement technique	Activity /kBq g^{-1}
4π(LS)-γ DCC	20.780 (72)
4π LS	20.675 (56)
4π LS (Tricarb)	20.676 (56)
4π LS (Beckman)	20.674 (56)
²²³ Ra ingrowth technique	
IC-PA782-5mL	20.754 (76)
IC-VINTEN-NBS	20.743 (93)
IC-VINTEN-10R	20.759 (87)
HPGe	20.791 (55)
HPGe (Browne, 2001)	20.0 (17)
Final Result	20.726 (51)

The HPGe result isn't really the 'best' – issue of unpicking the correlations between NPL, NIST and PTB absolute gamma-ray emissions for ²²³Ra

Absolute gamma-ray emission intensities

Rate calculated using

$$R_0(E) = \frac{(N(E) - k_{In}(E) - B(E))}{\Delta t \cdot m} \cdot k_{\lambda} \cdot k_{\mu} \cdot k_{\rho}(E)$$

where,

 $k_{In}(E) = N_D \cdot \varepsilon(E) \cdot I_{\gamma}(E)$

where,

Emission intensity using

$$I_{\gamma}(E) = \frac{\overline{R}_0(E)}{A_0(^{227}Th) \cdot \varepsilon(E)}$$

Absolute gamma-ray emission intensities

u(L)/L /%

Absolute γ ray emission intensities per 100 decays (I_{γ}) and intensities normalised to the 236.0 keV γ ray emission ($I_{\gamma}/I_{\gamma(236)}$). Multiply the normalised intensities by 0.12470 \pm 0.00034 to determine the absolute emission intensities. The γ -ray energies marked with an asterisk (*) have been corrected for the ingrowth of interfering decay progeny.

Uncertainty budget for the 236.0 keV y-ray emission intensity.

Component

Energy/keV	<i>I</i> ₇ /per 100 decays	$I_{\gamma}/I_{\gamma(236)}$ %	Energy/keV	I ₇ /per 100 decays	$I_{\gamma}/I_{\gamma(236)}$ %
29.9	0.0703 (19)	0.564 (15)	249.6*	0.0036 (22)	0.029 (18)
31.6*	0.0685 (38)	0.549 (31)	250.2 & 250.3	0.4884 (22)	3.916 (14)
43.8	0.2320 (91)	1.860 (73)	252.5	0.0917 (22)	0.736 (18)
49.8 & 50.1	8.879 (62)	71.20 (46)	254.6	0.7178 (33)	5.756 (21)
62.3	0.1381 (11)	1.1071 (86)	256.2	6.642 (30)	53.26 (19)
68.7*	0.04720 (88)	0.3785 (70)	262.9	0.12111 (73)	0.9712 (52)
99.5	0.3154 (94)	2.529 (75)	267.7	0.0109 (18)	0.087 (14)
100.2	0.7193 (34)	5.768 (22)	272.9	0.5059 (23)	4.057 (15)
102.5*	0.2473 (17)	1.983 (12)	279.7	0.05018 (45)	0.4024 (34)
103.7*	0.06003 (85)	0.4814 (67)	281.4	0.1731 (19)	1.388 (15)
108.0	0.0114 (18)	0.091 (15)	284.2	0.04102 (48)	0.3289 (37)
110.7*	0.0110 (14)	0.088 (11)	286.1	1.7537 (79)	14.063 (51)
113.1	0.8026 (38)	6.435 (25)	289.8	0.0164 (12)	0.1315 (94)
117.2	0.2000 (20)	1.604 (15)	292.4	0.0604 (12)	0.4846 (97)
134.6	0.0358 (38)	0.287 (30)	296.5	0.4565 (36)	3.660 (27)
141.5	0.1216 (16)	0.975 (13)	300.0 & 300.5	2.1522 (80)	17.258 (44)
150.1	0.0070 (15)	0.056 (12)	304.5	1.0404 (39)	8.343 (22)
162.2	0.0110 (25)	0.088 (20)	308.4	0.0192 (14)	0.154 (11)
164.8	0.0153 (17)	0.122 (13)	312.7	0.5057 (31)	4.055 (23)
168.4	0.0115 (25)	0.092 (20)	314.9	0.4754 (19)	3.812 (11)
169.7	0.0061 (17)	0.049 (14)	319.2	0.03682 (94)	0.2953 (75)
173.5	0.0166 (13)	0.133 (11)	326.1	0.00514 (62)	0.0412 (49)
184.7	0.03764 (51)	0.3018 (40)	329.9	2.696 (10)	21.615 (55)
197.5	0.01062 (74)	0.0852 (59)	334.4*	1.0100 (52)	8.099 (35)
200.5	0.0257 (21)	0.206 (17)	339.6	0.0032 (15)	0.026 (12)
201.7	0.0250 (30)	0.200 (24)	342.6*	0.4146 (20)	3.324 (13)
204.2	0.1901 (18)	1.525 (14)	346.5	0.01187 (30)	0.0952 (24)
204.9	0.1510 (16)	1.211 (13)	362.7*	0.00279 (62)	0.0224 (50)
206.1	0.2378 (22)	1.907 (17)	381.9	0.00605 (25)	0.0485 (20)
210.6	1.1843 (54)	9.497 (35)	383.5*	0.04459 (40)	0.3576 (30)
212.8	0.0864 (25)	0.693 (20)	398.2	0.0043 (18)	0.035 (15)
218.9	0.10588 (68)	0.8490 (49)	447.2	0.00249 (71)	0.0200 (57)
234.8	0.4417 (91)	3.542 (73)	812.2	0.00280 (45)	0.0224 (36)
236.0	12.470 (57)	100.00 (36)	823.1	0.00340 (15)	0.0273 (12)
246.1	0.0141 (23)	0.113 (19)	908.2	0.00195 (13)	0.0156 (11)

	a (ay) ay 1 is
Standard uncertainty of the weighted mean (12 measurements)	0.044
Activity per unit mass	0.25
FEP detection efficiency	0.28
Decay progeny interference correction	-
Peak & Continuum fitting	0.20
True-coincidence summing	0.10
Gravimetric	0.020
Gravimetric dilution	0.042
Self-absorption correction	0.0026
Dead time/ pulse pile-up	0.12
Decay correction	0.025
Combined uncertainty	0.45

70 gamma-rays

Absolute gamma-ray emission intensities

 $u(I_y)/I_y /\%$

Absolute γ ray emission intensities per 100 decays (I_{γ}) and intensities normalised to the 236.0 keV γ ray emission ($I_{\gamma}/I_{\gamma(236)}$). Multiply the normalised intensities by 0.12470 \pm 0.00034 to determine the absolute emission intensities. The γ -ray energies marked with an asterisk (*) have been corrected for the ingrowth of interfering decay progeny.

Uncertainty budget for the 236.0 keV y-ray emission intensity.

Component

Energy/keV	<i>l</i> ₇ /per 100 decays	$I_{\gamma}/I_{\gamma(236)}$ %	Energy/keV	<i>l</i> _γ /per 100 decays	$I_{\gamma}/I_{\gamma(236)}$ %
29.9	0.0703 (19)	0.564 (15)	249.6*	0.0036 (22)	0.029 (18)
31.6*	0.0685 (38)	0.549 (31)	250.2 & 250.3	0.4884 (22)	3.916 (14)
43.8	0.2320 (91)	1.860 (73)	252.5	0.0917 (22)	0.736 (18)
49.8 & 50.1	8.879 (62)	71.20 (46)	254.6	0.7178 (33)	5.756 (21)
62.3	0.1381 (11)	1.1071 (86)	256.2	6.642 (30)	53.26 (19)
68.7*	0.04720 (88)	0.3785 (70)	262.9	0.12111 (73)	0.9712 (52)
99.5	0.3154 (94)	2.529 (75)	267.7	0.0109 (18)	0.087 (14)
100.2	0.7193 (34)	5.768 (22)	272.9	0.5059 (23)	4.057 (15)
102.5*	0.2473 (17)	1.983 (12)	279.7	0.05018 (45)	0.4024 (34)
103.7*	0.06003 (85)	0.4814 (67)	281.4	0.1731 (19)	1.388 (15)
108.0	0.0114 (18)	0.091 (15)	284.2	0.04102 (48)	0.3289 (37)
110.7*	0.0110 (14)	0.088 (11)	286.1	1.7537 (79)	14.063 (51)
113.1	0.8026 (38)	6.435 (25)	289.8	0.0164 (12)	0.1315 (94)
117.2	0.2000 (20)	1.604 (15)	292.4	0.0604 (12)	0.4846 (97)
134.6	0.0358 (38)	0.287 (30)	296.5	0.4565 (36)	3.660 (27)
141.5	0.1216 (16)	0.975 (13)	300.0 & 300.5	2.1522 (80)	17.258 (44)
150.1	0.0070 (15)	0.056 (12)	304.5	1.0404 (39)	8.343 (22)
162.2	0.0110 (25)	0.088 (20)	308.4	0.0192 (14)	0.154 (11)
164.8	0.0153 (17)	0.122 (13)	312.7	0.5057 (31)	4.055 (23)
168.4	0.0115 (25)	0.092 (20)	314.9	0.4754 (19)	3.812 (11)
169.7	0.0061 (17)	0.049 (14)	319.2	0.03682 (94)	0.2953 (75)
173.5	0.0166 (13)	0.133 (11)	326.1	0.00514 (62)	0.0412 (49)
184.7	0.03764 (51)	0.3018 (40)	329.9	2.696 (10)	21.615 (55)
197.5	0.01062 (74)	0.0852 (59)	334.4*	1.0100 (52)	8.099 (35)
200.5	0.0257 (21)	0.206 (17)	339.6	0.0032 (15)	0.026 (12)
201.7	0.0250 (30)	0.200 (24)	342.6*	0.4146 (20)	3.324 (13)
204.2	0.1901 (18)	1.525 (14)	346.5	0.01187 (30)	0.0952 (24)
204.9	0.1510 (16)	1.211 (13)	362.7*	0.00279 (62)	0.0224 (50)
206.1	0.2378 (22)	1.907 (17)	381.9	0.00605 (25)	0.0485 (20)
210.6	1.1843 (54)	9.497 (35)	383.5*	0.04459 (40)	0.3576 (30)
212.8	0.0864 (25)	0.693 (20)	398.2	0.0043 (18)	0.035 (15)
218.9	0.10588 (68)	0.8490 (49)	447.2	0.00249 (71)	0.0200 (57)
234.8	0.4417 (91)	3.542 (73)	812.2	0.00280 (45)	0.0224 (36)
236.0	12.470 (57)	100.00 (36)	823.1	0.00340 (15)	0.0273 (12)
246.1	0.0141 (23)	0.113 (19)	908.2	0.00195 (13)	0.0156 (11)

70 gamma-rays

-	11.1
Standard uncertainty of the weighted mean (12 measurements)	0.044
Activity per unit mass	0.25
FEP detection efficiency	0.28
Decay progeny interference correction	-
Peak & Continuum fitting	0.20
True-coincidence summing	0.10
Gravimetric	0.020
Gravimetric dilution	0.042
Self-absorption correction	0.0026
Dead time/ pulse pile-up	0.12
Decay correction	0.025
Combined uncertainty	0.45

236 keV intensity

•
$$I_{\gamma}(\text{ENSDF}) = 12.9(11)$$

- $I_{\gamma}(NPL) = 12.470(57)$
- 3.3% lower than ENSDF
- ~ 20 times more precise

Gamma-ray emission intensities – comparison to literature

Comparison of the normalised γ -ray emissions with absolute intensities > 0.1% determined in this work and previous literature. Only those γ -ray emissions detected in this work have been listed.

Energy/keV	This work	Abdul- Hadi et al. (1992)	Hesselink et al.(1972)	Briançon et al.(1969)	χ²/ (n-1)
49.8	71.20 (46)	3.5 (5)	1.7 (13)	4.6 (14)	1.2
50.1		63(2)	75.7 (52)	65(3)	
113.1	6.435 (25)	6.6 (3)	4.70 (63)	5.50 (74)	1.8
117.2	1.604 (15)	1.7 (1)	1.50 (31)	1.38 (18)	0.9
204.2	1.525 (14)	1.7 (2)	2.0 (4)	1.6 (4)	0.9
204.9	1.211 (13)	1.2 (2)	1.5 (3)	1.2 (3)	0.6
206.1	1.907 (17)	1.9 (2)	2.32 (41)	1.70 (42)	0.6
210.6	9.497 (35)	9.4 (3)	11.00 (91)	8.5 (11)	1.1
234.8	3.542 (73)	3.4 (3)	5.0 (10)	3.10 (65)	1.0
236.0	100.00 (36)	100 (-)	100 (-)	100 (-)	-
254.6	5.756 (21)	5.3 (3)	7.9 (10)	3.90 (86)	1.9
256.2	53.26 (19)	54(1)	55.0 (46)	57.0 (55)	2.8
272.9	4.057 (15)	3.9 (2)	4.30 (62)	3.90 (68)	0.5
281.4	1.388 (15)	1.4 (1)	1.30 (30)	1.30 (32)	0.2
286.1	14.063 (51)	15.0 (1)	14.30 (90)	12.3 (11)	4.9
296.5	3.660 (27)	3.3 (3)	3.40 (62)	3.70 (58)	0.7
300.0	17.258 (44)	17.3 (5)	18.8 (15)	16.9 (22)	0.6
304.5	8.343 (22)	8.6 (5)	12.0 (11)	7.7 (10)	2.0
312.7	4.055 (23)	4.0 (3)	4.50 (92)	3.90 (68)	0.3
314.9	3.812 (11)	3.7 (3)	4.70 (92)	3.60 (58)	0.6
329.9	21.615 (55)	21.7 (5)	25.2 (17)	21.5 (26)	1.2
334.4	8.099 (35)	8.2 (3)	10.00 (99)	8.5 (13)	1.1
342.6	3.324 (13)	3.4 (1)	1.70 (41)	3.20 (65)	2.4

Outcomes

- FDA in US have approved traceability for clinical studies of ²²⁷Th to NPL a first
- Phase I clinical trials now in proceeding (<u>https://clinicaltrials.gov/ct2/show/NCT03507452</u>)
- Investigations of quantitative medical imaging using ²²⁷Th

Cancer Biotherapy & Radiopharmaceuticals, Vol. 35, No. 7 | Quantitative Dual-Isotope Planar Imaging of Thorium-227 and Radium-223 Using Defined Energy Windows

Iain Murray 🔄, Bruno Rojas, Jonathan Gear, Ruby Callister, Adriaan Cleton, and Glenn D. Flux

Quantitative Dual Isotope SPECT Imaging of the alpha-emitters Th-227 and Ra-223

Michael Ghaly^{1/2/3}, George Sgouros^{1/2/3} and Eric Frey^{1/2/3}

Summary

- Developed traceability for ²²⁷Th through two liquid scintillation techniques
- Effective radiochemistry technique developed
- New precise measurements of the half-lives made for ²²⁷Th, ²²³Ra and ²¹¹Pb
- New precise absolute emission intensities for ²²⁷Th and progeny derived from primary standard
- Still work to do be done on the decay scheme

Credits

Dr John Keightley

Dr Ben Russell

Arzu Arinc

Dr Peter Ivanov

Andrew Fenwick

Paris Aitken-Smith

Maria Garcia-Miranda

Andy Pearce

Prof Paddy Regan

Dr Elsje van Es

Kelley Ferriera Dr Dr Stefaan Pommé

Simon Jerome

Dr Lena Johannson

Many thanks also to BAYER AS

Thank you for your time

Department for Business, Energy & Industrial Strategy

FUNDED BY BEIS

The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company of the Department for Business, Energy and Industrial Strategy (BEIS).