

High Resolution Gamma Spectroscopy

Plan of Lecture

Which material shall we use? Checking the detector specifications How do they work? What types are available?

				Semio	conc	luct	ors
Material	Temp.as used(K)	Atomic number (Z)	Energy per e-h (eV)	No. of e-h pairs per keV	Typ resolu 5.9	ical g ution : at 122	ood in keV 1332
Si(Li)	77	14	3.76	260	0.17		
Ge	77	32	2.98	350		0.5	1.8
Ge(Li)	77	32	2.98	350		0.5	1.8
CdTe	300	48,52	4.4	230	0.29	0.85	4
HgI ₂	300	53 , 80	4.15	240	0.30	3.5	

Scintillators

	r·	_	r r	-718	
				122 keV	1332 keV
Liquid	300	1, 6,	0.7		
NaI(Tl)	300	11, 53	4	30 keV	95 keV
BGO	300	32, 83	0.5		150 keV

		Varia	tions
Variation of in	teraction probabil	lity with atomic number	
photoe Compt pair pr	lectric effect on scattering oduction	Z^4 or Z^5 Z^0 or Z^1 Z^2	
thus, conside and	ering efficiency (η η(HgI ₂₎ > η(CdZ η(BGO) > η(Nal	η) only [for a given size] ZnTe) > η(Ge) > η(Si) I) > η(LSC)	

Two commonly used gamma detectors

NaI(Tl)	Ge
older	
cheaper [by $\sim \times 10$]	
more efficient [by $\sim \times 10$]	
larger volumes	
room temp operation	must be cooled [77K]
large temp sensitivity	relatively insensitive to temperature
large bias voltage sensitivity [V7]	relatively insensitive to bias volts
poor energy resolution $[\sim 8\%]$	good energy resolution $[\sim 0.15\%]$
31/05/2019 DETECTO	RS Lecture 1 8

	Sel	ection of Material
OPTIONS:	HgI ₂ , CdTe ~ CZT[CdZnT	e], Ge, Si, BGO, NaI, LSC
<u>Parameter</u> resolution [in theory]	<u>Choice</u> semiconductors HgI ₂ , CdZnTe, Ge, Si	<u>Reason</u> number of information carriers
resolution [in practice]	Ge, Si	good charge collection
efficiency	Ge	high Z

Resolution of a Peak in a Spectrum

With Ge

Measure at 1332 keV [60 Co]OK if value is ≤ 2.0 keVAlso measure at 122 keV [57 Co]OK if value is \leq about 1 keVIf low-energy detector, also measure at 5.9 keV [55 Fe]With NaIthe convention is different.Measure at 662 keV [137 Cs]FWHM is reported as a % of 662 keV

Resolution of a Peak in a Spectrum

HOWEVER: Note that the manufacturer's resolution will have been found with:

- · Long time constant, ~ 6 μs
- Low count rate
- Large number of channels in peak, > 20

Why are Peaks so Wide?

measure FWHM as $\sim 10^3 \, eV$

intrinsic width of gammas $\sim 10^{-9}$ - 10^{-3} eV

Uncertainties come from:

electronic noise (preamp, amp)	FWHM _e
drift during count (temp)	FWHM _d
incomplete charge collection	FWHM _c
charge production (statistics)	FWHM _{stat}

 $FWHM_{overall}^2 = FWHM_{intrinsic}^2 + FWHM_e^2 + FWHM_d^2 + FWHM_c^2 + FWHM_{stat}^2$

Charge Production Uncertainty

 E_{ν} produces N_{ν} charge carriers

•but this is only an average number

•if Poisson statistics apply, then $\sigma_{\gamma} = \sqrt{N_{\gamma}}$

•so that $FWHM_{stat}=2.355\sigma_{\gamma}=2.355\sqrt{N_{\gamma}}$

This is the limiting, unavoidable, FWHM

Charge Production Uncertainty

Good resolution occurs when ratio to peak height FWHM/Eγ is small

• The limiting unavoidable resolution is thus proportional to:

 $(FWHM_{stat})/E\gamma = 2.355 \times \sqrt{N\gamma/N\gamma} = 2.355/\sqrt{N\gamma}$

Therefore the best [ie smallest] resolution derives from maximum $N\gamma$ [charge carriers per keV]

•This is why semiconductors give better resolution than scintillators

N = 350 per keV Ge N = 4 per keV NaI

Charge Production Uncertainty

• FWHM in energy units = $2.355 \times \sqrt{N_{\gamma} \times E_{\gamma}/N\gamma}$ keV

•Then for Ge [N = 350] and E = 1332, the *minimum* (theoretical) FWHM = 4.6 keV

•But, in reality, FWHM = 1.8 to 2.0 keV

Probable reason:

Poisson statistics are not applicable as production of electron-hole pairs is constrained

Allowed for, empirically, by FANO factor [F]

Mechanisms of Detector Operation

The probability of promoting an electron across a band gap E_g at temp T [K] is approximately

$$T^{3/2} \times \exp\left(-E_g / 2kT\right)$$

as T \uparrow , probability of thermal excitation $\uparrow\uparrow$

as T \downarrow , thermal excitation $\downarrow\downarrow$

Low temperature operation reduces thermal noise

Compensated material:	
Number of donor impurities =	= Number of acceptor impurities
ntrinsic material: No in	mpurities
ntrinsic material: No in Lithium-drifted Ge(Li)	mpurities Intrinsic High purity: HPGe
ntrinsic material: No in Lithium-drifted Ge(Li) Older	mpurities Intrinsic High purity: HPGe Post 1975
ntrinsic material: No in Lithium-drifted Ge(Li) Older ~10 ¹⁴ impurities cm ⁻³ Must be used and stored at 77 K	Intrinsic High purity: HPGe Post 1975 ~10 ¹⁰ impurities cm ⁻³
ntrinsic material: No in Lithium-drifted Ge(Li) Older ~10 ¹⁴ impurities cm ⁻³ Must be used and stored at 77 K	Intrinsic High purity: HPGe Post 1975 ~10 ¹⁰ impurities cm ⁻³ Used at 77 K; may be stored, transmented at 200 K

Mechanisms of Detector Operation

Arrangement for a coaxial Ge detector

Thin contact, about 0.3 μ m thick, is made by ion implantation of boron. [p⁺] Thick contact, about 600 μ m thick, is made by diffusion of lithium [n⁺]

Broad Energy Ger	mani	um [Deteo	ctors
Composite Carbon Window — Front Contact	Model Number	Area (cm²)	Thickness (mm)	Typical Rel. Eff. (%) ≥
	BE2020	20	20	9
	BE2820	28	20	13
	BE2825	28	25	18
Hear Contact	BE3820	38	20	20
	BE3825	38	25	26
	BE3830	38	30	34
	BE5020	50	20	28
	BE5025	50	25	37
	BE5030	50	30	48
L	BE6530	65	30	60

n & p type detectors - merits

Damage sites [Frenkel defects] mainly trap holes

In p-type material, holes *on average* have further to go and are thus much more likely to be trapped than in n-type where *on average* they have a shorter distance to go

n-type material is therefore more resistant to radiation damage.

n-type detectors are called by

Ortec: *Gamma-X* Canberra: *Reverse Electrode Detector*

n-type advantages:

10 to 20 times less sensitive to neutron damage

usable to lower energies due to thin entrance

n-type disadvantages:

more coincident summing due to X-rays

more expensive [adds about 25%]

		S	umma	nmary of usag		
Application	Activity level	Energy range (keV)	Detecto r type	Comments		
1) Environmental (lots of sample)	low	40-10000	large p-type coaxial	possible low background option possible J geometry		
2) As (1) but low energy needed	low	5-10000	large n-type coaxial	as (1). Note: good X-ray efficiency may promote summing		
3) Environmental (small sample)	low	30-10000	well	near 4n efficiency, but large summing; not good for complex unknowns		
4) Neutron activation	medium-high	40-10000	p-type or n-type	possible Transistor reset preamp (TRP); possible loss-free counting (LFC)		
5) Prompt gamma		up to 10000	n-type repairable	possible absorber for X-rays, risk of neutron damage		
6) Post accident monitoring	low-high	40-10000	p-type coaxial	TRP for high throughput; LFC for transient high activity		
7) Fissile material (Safeguards)	low(-high)	3-1000	n-type (short) or planar	lung monitor needs are similar, large diameter or cluster of smaller detectors		
8) Whole body monitor	low	40-10000	large p- or n- type	unusually large 'sample', clusters of detectors, shielded room		
9) Portable survey (land/sea/air)	low	40-10000	p-type coaxial	'ruggedised detector, portable cryostat if hand-held, electro-cooled if ship-based		
10) Low energy X-rays		1-300. 3-300	Si(Li) Ge ultra-low	Optical reset preamp for best resolution		

DETECTORS

High Resolution Gamma Spectroscopy

36