Digital spectroscopy and coincidence timing

NuSPIN School

Topics

In this lecture:

- Comparison of analogue and digital Pulse Height Analysis (PHA)
- Why digitise detector signals?
- The principles of signal digitisation
- Energy filter (Moving Window Deconvolution)
- Timing filter
- Digitiser types
- Multichannel digital systems
- Digital coincidence / TAC measurements

8

9

Digitiser types Research grade – (practical 3) Multi channel – modular Records partial traces Programmable FPGA Custom software

Digitiser specifications

• **Clock frequency** - determines how often the analogue input signal is sampled. Faster clock speed = more samples = better digital signal

• N° Bits – Higher number of bits -> better resolution

• Dynamic range – Size of the signal the digitisers can process

- **FPGA size** determines the number of and complexity of algorithms / calculations that can be done on the cards themselves
- Bandwidth determines how many events per second can be processed

Usually a compromise between all of these parameters and cost

Specifications									
Com	mercially	availa	ble CAEN (diaitise	ars				
Model ⁽¹⁾	Form Factor	N. of ch. ⁽⁴⁾	Max. Sampling Frequency (MS/s)	N. of Bits	Input Dynamic Range (Vpp) ⁽⁴⁾	Single Ended / Differential Input	Bandwidth (MHz)	Memory (MS/ch) ⁽⁴⁾	DPP firmware ⁽⁵⁾
x724	VME Desktop/NIM	8 4/2	100	14	0.5 / 2.25 / 10	SE / D SE	40	0.5/4	РНА
x720	VME Desktop/NIM	8 4/2	250	12	2	SE / D SE	125	1.25 / 10	CI, PSD
x721	VME	8	500	8	1	SE / D	250	2	no
x731	VME	8-4	500 - 1000	8	1	SE / D	250/500	2/4	no
x730	VME Desktop/NIM	8 4/2	500	12	2	SE / D SE	250	1.25 / 10	PSD
x751	VME Desktop/NIM	8-4 4-2	1000 - 2000	10	1	SE / D SE	500	1.8 / 14.4 - 3.6 / 28.8	PSD
x761	VME Desktop/NIM	2	4000	10	1	SE / D SE	TBD	7.2 / 57.6	no
x740	VME Desktop/NIM	64 32	62.5	12	2/10	SE	30	0.19/1.5	no
x742	VME Desktop/NIM	32+2 16+1	5000 ⁽²⁾	12	1	SE	600	0.128 / 1 ⁽³⁾	no

Multi-Channel acquisition

Often need to process data from multiple detectors / channels at once

- 1 digitiser per channel
- Common clock signal or synchronisation signal to align clocks on multiple digitisers
- Time stamp individual digitiser data with common / aligned clock
- Common trigger logic to decide which channels to write out, either
 - Hardware gating more efficient (lower data rate)
 - Software gating more flexible

Coincidence – Software gated

- The signals from detector preamplifiers are digitalized and recorded event by event with amplitude and timestamp
- Offline (or online) analysis and spectral reconstruction can be performed on the selected coincident / anticoincident event
- Comparing with analogue coincidence/anticoincidence counting system, the software gated data analysis has higher flexibility of data manipulation with coincidence criteria between different detectors
- Crucial that the time stamps from different channels are correlated
- Number of timestamp bits determine how wide coincident window can be. E.g. for a 100Mhz clock
 - 16 bit = 655 µs, 32 bits = 42.9 s, 48 bits = 32.6 days

Digital spectroscopy and coincidence timing

NuSPIN School

