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Why Study Gamma Rays?

* The strong force constrains the distribution and motion
of the nucleons within the nucleus

* Nuclear charges and currents generate ftime-varying EM
potentials and fields - these reflect the underlying
structure

* Gamma rays arise from EM interactions and allow a probe
of structure without large perturbations of the nucleus

* The EM interaction is well understood
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Gamma Ray Spectroscopy

* Gamma rays provide a superb probe for nuclear structure

> relatively easy to detect with good efficiency and
resolution

> emitted by almost all low-lying states
> penetrating enough to get out to detectors

» no model dependence in the interaction (EM is well
understood)
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Spectroscopic Techniques

Energies, coincidence relationships
> level structure

Angular correlations, linear polarisation
> spin and parity

Doppler shift, lineshape analysis
> lifetime, quadrupole moment

Branching ratios, multipole mixing ratios
> wavefunctions, transition matrix elements
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Fusion Evaporation Reactions

How to Make High Spin Nuclei
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Nuclear Reaction
Fusion Evaporation

David Campbell
Florida State
University
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Generating spectra from
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Coincidence Gates

Improving Peak-to-Background - gated spectra l
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Angular Distributions

» Following a heavy-ion fusion-evaporation reaction the
nuclear spin is aligned in a plane perpendicular to the

beam axis
L=rxp

» This provides a reference quantisation axis against which
gamma-ray angular distributions I (8) can be measured

* The angular distributions depend on the multipolarity of
the emitted gamma ray, i.e they are different for dipole
and quadrupole transitions.
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Angular Distribution Function

* The general form for the angular distribution function
of radiation emitted following a heavy-ion fusion-
evaporation reaction is:

W(B) = Ag [ 1+ Qx{A;/ApIP5(cosB) + Qu{A4/Ag}P,4(cosO) ]

where Q, are geomeftrical attenuation coefficients which
account for the finite size of the detectors and P, (cos6)
are Legendre polynomials. Here 6 is defined relative to
the beam axis

* The measured A,/A, coefficients are compared to
theory for different types of radiation
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Angular Distributions in 10°Te
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Theoretical A,/A, Values

» If the two lowest multipoles of the radiation are L and L'
= L+1, the A, /A, coefficients may be written as:

A/ Ap= 0, By(J;) [1/(1+8%)]
X [ Fk(JfL L J,) + 20 Fk(Jf LL J,) + 8?2 Fk(Jf L'L J,) ]

where a, are attenuation coefficients, B,(J;) are
statistical tensors for complete alignment, and & is the
multipole mixing ratio:

8 = <J(ILT> 7 <T¢|IL]|T>
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Multipole Mixing Ratio

* Because of the relative multipole transition
probabilities, we only need to consider M1/E2 mixing

* For a AT =1 transition, M1 radiation accounts for
1/ [1+82] (typically 95%) of the intensity, while E2
radiation accounts for &2 / [1+32] (typically 5%) of the
intensity

* The mixing ratio, a ratio of reduced matrix elements,
can be positive or negative and perturbs the angular
distribution
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Multipole Mixing Ratios
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Angular Distributions in 157Er
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Angular Correlations

Beam

Two v rays are emitted at

angles 6; and 6, with respect

to the beam direction.
Ag = ¢, - ¢, is the angle

between the planes defined by

the beam and outgoing v rays

* The probability (i.e.
intensity) for this
specific
configuration is
described by:

W(ellGZIAq))

= A"DCO" ratio is
defined as:

Rpco = W(e1,92,A(p)
W(92,91,Acp)
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Angular Correlation Ratios: °7Er
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Linear Polarisations

= Compton scattering can be used to measure the gamma
ray linear polarisation - the direction of the electric
vector with respect to the beam-detector plane

* The linear polarisation distinguishes between magnetic
(M) and electric (E) character of radiation of the same
multipolarity

» The scattering cross section is larger in the direction
perpendicular to the electric field vector of the
radiation
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Clover Detector

» The Compton scattering between
the elements of a clover detector
can be used to determine

« experimental linear polarisations
s = The vertical and horizontal

addback intensities are measured
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Experimental Asymmetry

* The experimental asymmetry is defined as:
A={N.- N”}/{NJ_"' N”}

where N.and N| are the intensities of scattered
photons perpendicular and parallel to the reaction plane

* The experimental linear polarisation is then:
P=A/Q

where Q is the polarisation sensitivity of the detector
(a function of gamma ray energy)

= For astretched E2: P>0 For astretched M1: P<0
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Polarisation Spectra

%7:C'P,2p2n) I @ 150 MeV : Eurogam II
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Spins and Parities
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Flash Animations

Cube Gating

Level Scheme Building
Level Scheme Formation

Compton Suppression

Compton Suppression 2

Clover Addback

David Campbell (Florida State University)
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