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 Nuclear Instrumentation: Lecture 4  
 

Pulse Counting Systems and Dead Time 
 

4.1 BASIC MEASUREMENT SCHEME 

 

The system, shown in Figure 4.1, illustrates the components of a basic measurement scheme 

designed to measure the rate of pulses from a detector. 
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Figure 1 A typical system for pulse-rate counting 

 

4.1.1 Preamplifier 

The pulses from the preamp usually have amplitudes of tens to hundreds of mV, too small to 

be directly counted (there are some exceptions, see Lecture 3). In addition, the long decay time 

of these pulses can cause stability and pile-up problems. 

 

4.1.2 Amplifier  

Therefore, the preamp output is usually processed (amplified and shaped) through a linear 

amplifier. A gain of a factor of 1000 can be achieved so that output pulses with a range of 0 to 10 
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volts can be produced. The shaping requirements in a simple counting system are usually not 

severe (but beware of high counting rates). 

 

4.1.3  Discriminator 

To be counted, the linear pulses must be converted into logic pulses (yes/no answer). The 

simplest unit to do this is the integral discriminator, which produces a logic pulse output only 

when the input linear pulse amplitude exceeds a set discriminator level. The logic pulse is 

usually produced soon after the leading edge of the linear pulse passes the discriminator level. 

This so called leading-edge timing is not suitable for all applications and will be contrasted with 

other time pickoff methods later. 

For maximum sensitivity the discriminator level is normally set to be just above the electronic 

noise level for the system. 

The differential discriminator or single-channel analyzer (SCA) involves two independent 

discrimination levels, commonly referred to as the lower and upper levels, respectively. The 

SCA will only produce an output logic pulse if the amplitude of the input pulse lies between the 

two preset discrimination levels.  

Several different nomenclatures exist for SCAs. In some, the discriminators are labelled upper 

and lower level (uld and lld, respectively), while in others, the lower level is labelled E and the 

window width or difference between levels is labelled ∆E. 

In counting systems, an SCA can be used to select a limited range of amplitudes (energies) 

from the detector. A common example is to set the acceptance window to count only full-energy 

pulses. 

 For normal SCA's the time of appearance of the logic pulse is not closely related 

to the actual time of the event and therefore, SCAs should not be used in timing circuits. 

Specifications exist for the amplitude and shape of the input pulses to SCAs. Normally, they 

tend to accept positive input pulses with amplitudes 0 - 10 V and 0.5 - 10 µs shaping times (slow 

logic). 
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4.1.4   Scalers, counters and timers 

As a final link in the chain, the logic pulses must be counted. A scaler or counter is a simple 

digital register, which is incremented by one count for every input pulse. They are normally 

operated in one of two modes, preset time or preset count:  

 In preset-time mode, the counting period is controlled by an external timer.   

 In preset-count mode, the counter will count until a specified number of counts 

are accumulated. If the time period was also measured, the count rate can be determined. 

Preset-count mode has the advantage that a specified statistical precision can be entered at the 

beginning of the measurement, the counting time being extended until enough counts have been 

accumulated.  

The function of a timer is simply to start and stop the accumulation period for a counter or 

other recording device. Obviously, its most important property is the precision to which the 

interval is measured. Two general methods of control are encountered. The simplest (and 

cheapest) is to base the time interval on the ac frequency of the power line. The power-line 

frequency is usually stable, when averaged over a long time period (days), but can be inaccurate 

over short periods of time (less than a few hours). Better accuracy is obtained from timers based 

on internal crystal controlled clocks. 

 

4.1.5 Count Rate Meters 

Count rate meters give a visual indication of the count rate (obviously!). A common form of 

rate meter can be represented by the diode pump circuit shown in Figure 4.2. In the figure, the 

voltage generator and series resistance represent the output stage of the logic device that is 

driving the rate meter. Each logic pulse deposits a small amount of charge on the capacitor Ct, 

which is also continuously discharging through the resistance R. If the rate of arrival of pulses 

were constant, an equilibrium will be reached (after several values of the time constant RCt) 

where the rate of charging of the capacitor equals its rate of discharge. If the conditions shown in 

the figure are met the average voltage at the output will be  

rVRC=QrR=iR=V fout                                                (4.1) 
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where r is the rate, Q the charge deposited per pulse and V the pulse amplitude. Therefore, the 

output voltage is proportional to the rate. 
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Figure 4.2  Schematic diagram of the diode-pump rate meter. 

 

4.2 DEAD TIME IN COUNTING SYSTEMS 

This is an important consideration for many counting systems. For some systems, the detector 

itself limits the minimum interval between events for which two pulses can be counted (true 

notably for the G-M tube). More often, the dead time inherent in some component in the signal 

chain will be the limiting factor. In the simple circuit shown in Figure 4.1, the slowest 

component is probably the SCA. 

Two simple models of dead time behaviour in counting systems, paralysable and non-

paralysable, will now be discussed. The fundamental assumptions inherent in these models are 

illustrated in Figure 4.3. In the centre are shown six randomly spaced pulses from the detector. 

The corresponding response of a system with non-paralysable dead time is shown on the 

bottom of the figure. A fixed dead period τ is assumed to follow each event that occurs during 

the `live period' of the detector. Real events that occur during the dead period are lost and have 

no effect whatsoever on the system behaviour. In the example shown, the system will record four 

counts from the six real events. 
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The behaviour of a 

paralysable system, is 

illustrated at the top of Figure 

4.3. The same dead period τ is 

assumed to follow each true 

event that occurs during the 

live period. True events that 

occur during the dead period, 

although still not recorded as 

counts do further extend the 

dead period by τ following the 

lost event. In this example, only three counts are recorded.  
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Figure 4.3 Illustration of dead-time behaviour 

The two models, paralysable and non-paralysable, predict the same first-order losses and 

differ only when count rates are high. They are in some sense extremes of the behaviour of real 

systems.  

In the following discussion, we define 

 timedead system
rate count recorded
raten interactio true

 = 
 = m
 = n

τ
 

and seek to derive expressions that relate the true interaction rate n to the measured rate m and 

the system dead time τ, so that appropriate corrections for the system dead time can be made. 

 

4.2.1 For the non-paralysable case: 

 The fraction of all time that the detector is dead is simply the product mτ.  

 Therefore, the rate at which true events are lost is nmτ. 

 Therefore, the rate of loss is   n - m = nmτ 

 

Solving for n gives                                      
τm

mn
−

=
1

                                                            (4.2) 

 

4.2.2 For the paralysable case: 
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In this case, dead periods are not always a fixed length, so the same argument doesn't apply. 

Instead, note that the recorded count rate m is identical to the rate of occurrences of time 

intervals between true events that exceed τ. So we need a probability distribution function to 

describe the time intervals between adjacent random events.  

Assume that an event has occurred at time t = 0.  

 

Rephrase the question: What is the differential probability that the next event will take place 

within a short time interval dt after a time interval of t? 

 To satisfy this requirement, two independent processes must take place: No 

events can occur within the time interval 0 to t.  

 An event must occur between t and t + dt. 

 

Then the overall probability will be given by the product of the probabilities characterizing 

the two processes. 

 

 

 

 

The first factor o

distribution function

which, upon subs
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 in dt after time t             time 0 to t         during dt 
L4-6 

P1 (t)dt             =           P(0)        ×       ndt                                       (4.3) 

n the right-hand side comes directly from our knowledge of the Poisson 

, viz; 

eent=P nt-
-nt
=

!0
)((0)

0

                                                    (4.4) 

tituting, gives 

ten=t(t)P -nt
l dd .                                                        (4.5) 

ution function for intervals between adjacent random events.  

 a simple exponential shape as shown in Figure 4.4. Notice that the most 

ween events is zero!  
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The average interval between events is 

calculated by 

n
  =  

dte

dtet
  =  

(t)dtP

(t)dtPt
  =  I

nt-
0

-nt
0
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∞

.    

(4.6)  

Thinking about it, this is the result one 

would expect, that the average separation 

should be one over the rate. 

Pl(t)dt is the probability of observing an 

interval whose length lies between t and t + dt. The probability of having an interval larger than τ 

is obtained by integrating this distribution between τ and infinity,  

P (t)1

r

r/e

1/r time 

Figure 4.4 Probability distribution function for 
the intervals between adjacent random events. 

e=t(t)P=)P(I -n
1

τ
ττ d∫> ∞              (4.7) 

The rate of occurrence of such intervals is obtained by multiplying by the true rate n, giving 

the result for the paralysable case. 

en=m -nτ                                                            (4.8) 

Clearly this is a more cumbersome result than for the non-paralysable model since, in this 

case, we cannot solve explicitly for the true rate n. Instead, this equation must be solved 

iteratively to obtain n if m and τ are known. 

A plot of the observed rate versus the true rate is shown in Figure 4.5 for both models. As can 

be seen, for low rates, the two models agree well but the behaviour at high rates differs markedly. 
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Figure 4.5 Variation in the observed rate m versus true rate n for the two models of dead-time losses 
discussed in the text. 

 A non-paralysable system approaches an asymptotic value for the observed rate 

of 1/τ. This represents the situation where the system barely has time to finish one dead 

period before starting another. 

 For paralysable systems the observed rate goes through a maximum! Very high 

true interaction rates result in an extension of the dead period following an initial event, 

hence very few events are recorded! 

 

 When using paralysable systems, one must always take care that low observed rates 

actually correspond to low true rates, rather than very high true rates on the other side of this 

maximum!  

Mistakes have occurred in the past by overlooking the fact that there are always two possible 
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true interaction rates corresponding to a given observed rate!  

This ambiguity can only be resolved by altering the true rate in a known direction and 

observing the effect on the observed rate.  

For low rates (n << 1/Τ) the following approximations can be used: 

Nonparalysable              )1(
1

τ
τ

nn
n

nm −≈
+

=                                              (4.9) 

                      Paralysable                                                            (4.10) )1(e-n ττ nnnm −≈=

 

4.2.3 Measurement of dead time 

To make a correction for the dead time, one needs to know what τ is! Sometimes τ can be 

associated with the known limiting property of the counting system, (e.g. a fixed resolving time 

of a circuit). More often, τ will not be known or will vary with operating conditions. Therefore, it 

must be measured directly. 

Common measurement techniques are based on the fact that the observed rate varies non 

linearly with the true rate. Therefore, by measuring the observed rate for at least two true rates, 

which differ by a known ratio, the dead time can be calculated. 

A common example is the two-source method. This method is based on observing the count 

rate from two sources individually and then in combination. Because the losses are non linear, 

the observed rate due to the combined sources will be less than the sum of the rates from the 

individual measurements and the dead time can be obtained from this discrepancy. 

For example, if n1, n2, and n12 are the true counting rates (sources plus background) and m1, 

m2, and m12 are the observed rates. Let nb and mb be the true and observed background rates with 

both sources removed. Then, 

n12 −nb  = (n1 −nb) + (n2 −nb) 

                                                                        or 

n12 +nb  = n1 +n2 

Assuming the non-paralysable model we get 

ττττ m-1
m+

m-1
m=

m-1
m+

m-1
m

2

2

1
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b

b
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which can be solved explicitly for τ, giving 

Y
)Z--X(= 11τ                                                       (4.11) 

where                                           X = m1m2 − mbm12 

                                                     Y = m1m2(m12  +  mb) − mbm12(m1  +  m2) 

2
1221 )(

X
mmmmY

Z b−−+
=  

In the case of zero background, the expression simplifies somewhat, 

1221

2/1
2121122121 )])(([

mmm
mmmmmmmm −−−

=τ                                 (4.12) 

However, the use of any type of approximation is discouraged as significant errors can be 

introduced in realistic situations! 

Because the two-source method is essentially based on observing the (small) difference in two 

nearly equal large numbers, very careful measurements are required to get reliable measures of 

the dead time.  

The measurement is usually carried out by counting source 1, placing source 2 close by and 

counting the combined rate and then removing source 1 and counting source 2 alone. During this 

operation, care must be taken not to move the source already in place.  

A second method can be used if a short-lived source is available. In this case, the departure of 

the count rate from the known exponential decay of the source can be used to calculate the dead 

time. The technique is known as the short-lived or decaying-source method. 

The true rate n goes as 

n+n=n b
t-

0 e λ                                                            (4.13) 

where n0 is the true rate at the beginning of the measurement and λ is the source decay 

constant.  

 

For the non-paralysable method, we get the observed rate 
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Neglecting background: 

                    
e1

e t-
0

0t

n
nm

λ
λ

τ+
=     

whence 

0e n+mn-=m 0
t τλ                                                          (4.14) 

 

The dead time is obtained from a plot of  me-λt versus the observed rate m, see Figure 4.6. 

 

For the paralysable method (also neglecting background), we start with Equation (4.8): 

m = n e-nτ 

Taking logs and using Equation (4.13) gives:  ln m = ln n - nτ = ln n0  -λt - n0τ e-λτ. 

Whence  

n+n=m+t 0
t-

0 lneln λτλ −                                                   (4.15) 

As before, the dead time τ can be obtained from a straight-line plot, this time of (λt + ln m) 

versus e-λt. 
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Figure 4.6 Dead time obtained using the decaying-source method. 
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The decaying-source method offers the advantage of not only being able to measure the dead 

time but also of testing the validity of the assumed model of dead time behaviour (i.e. which plot 

gives the best agreement with the data). 

However, beware! If the background is more than a few percent of the smallest measured rate, 

then the graphical procedure can lead to significant errors. In this case, it is best to perform a 

numerical analysis based on the exact expression. 
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